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L Summary 

The main object of this paper is to find a criterion for comparison of two tests 
for non-parametric hypotheses, taking advantage of the qualitative information that  
may exist. After a detailed analysis of the problem and some earlier suggestions for its 
solution (sections 2-4), a criterion is suggested in section 5. In  order to apply it to 

concrete case, a location problem is specified in section 6. The rank tests to be 
compared are analyzed in section 7, and the comparison by way of the criterion is 
carried out in section 8. I t  turns out that  sign tests, sometimes slightly modified , are 
very often optimal according to the criterion used. 

2. Statistical hypotheses testing 

The general problem of testing statistical hypotheses can be described in the 
following way. We are interested in the distribution F of a stochastic variable X, 
which may generally be thought of as a vector {X1, X~ . . . . .  Xn} the elements of 
which may correspond to different dimensions of the variable and/or  to several 
observations on the same variable. Let us make the following basic assumptions. 
In  the sample space there is a a-algebra of subsets (:~). All probability measures are 
defined on (~). All functions introduced in the following arc measurable (:~), and all 
sets belong to (~). 

We know that  FED,  a class of probability distributions. After drawing a sample, 
i.e. observing a sample point x, we want to decide to which of a number of mutually 
exclusive sub-classes o)1, co 2 . . . .  , w m of D we shall refer F. In  the most common cases, 
m = 2. The problem is then often stated to be the testing of the null hypothesis Hi: 
FEool, against the alternative hypothesis H2: FEw~. If eoi is not topologically equiv- 
alent to a finite-dimensional Euclidean space, H/ is said to be a non-parametric 
hypothesis /  In  the following, we shall be mainly concerned with such hypotheses. 

1 The  n a m e  is n o t  a v e r y  good one, as co i is o f ten  cha rac t e r i zed  b y  a p a r a m e t e r .  As an  e x a m p l e ,  

eot m a y  c o n t a i n  al l  F t h e  m a r g i n a l  d i s t r i b u t i o n s  of which,  w i t h  r espec t  to  al l  Xi, h a v e  pos i t i ve  

m e d i a n s .  The  t e r m  seems to  h a v e  been  f i rs t  used  by  WO•FOWITZ (1942) for t he  t r u l y  non -pa ra -  
m e t r i c  t w o - s a m p l e  p r o b l e m  where  eo I con ta in s  all F t h a t  are  i n v a r i a n t  w i t h  r espec t  to  a l l  per-  
m u t a t i o n s  of X1, . . . ,  Xn, whi le  to~ con ta in s  al l  ~w i n v a r i a n t  on ly  to  p e r m u t a t i o n s  within" each  

of the  sequences  X1, . . . ,  X k a nd  Xk+ 1 . . . .  , Xn, b u t  no t  be t ween  them.  
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Let us denote the decision to accept H i by  d~ (i = 1, 2). I t  is then required to con- 
struct a test ~, i.e. a function ~ (x) of the sample point x, such that  0 <~(x)  _< 1, 
indicating for every sample point the probability with which decision d~ should be 
made. By the s i z e  of the test we shall mean 

= sup P (d~ ] ~, F) = sup f ~ (x) d F (x) 
F E ~  1 ~e0l 

where the integral is to be taken over the entire sample space. If  P (d~ [ ~, F) = 0¢ 
for all F 6 w ~  the test is said to be s i m i l a r  with respect to wl. Usually, with each test 

(x) there is associated a real-valued function y~ (x) such that  

(]) 

1 if ~ ( x ) > c  

(x)= p if yJ(x)=c 

0 if v2(x)<c 

where c and p are parameters, 0 _< p _< 1. The choice of c and p determines the value 
of ~. By changing c and p any value of ~ (0 _< a _< 1) can be obtained. To every value 
of a there is only one relevant combination of c and p (if P {~(x) = c I F 6 W l }  = O, 
the value of p is irrelevant). Thus y~(x) may be said to generate a [ a m i l y  o] test~¢ 
~b = {~ (x)} where to each value of ¢¢ corresponds one, and only one, ~ (x). If necessary, 
we shM1 denote this member of the family by ~ .  According to this definition, 
the t test is a test family, generated by 

~o (x) = ~ -  m ~ _  1. 
8 

Another type of tests which is of interest in the present context is obtained if c 
and p are replaced by functions c (x) and p (x) of the sample point. This is the case 
with the invariance tests investigated by LEH~e~N and ST~n~ (1949). Denote by 
x (1), x c21 . . . .  , x ¢M) the sample points obtained from x by attaching in all possible ways 
plus and minus signs to the absolute values of the components of x, and let the 
order among the sample points be defined by 

~0 (x (1)) > ~o (x (2)) > - - -  > ~o (x(M)). 

Then we define c ( x )  = ~fl(x a+tM~])) where [M~] denotes the largest integer less t h a a  
or equal to M~. The value of p ( x )  is determined so as to give to the test the desired 

1 x) size a. A simple example is the following test of symmetry around 0: Let n~0 ( = ~,, 

the sample mean. Suppose that  the sample values are 6, 3, - 1, 4, 2, 3, so that  yJ(x) = 
= 17. If  we choose c¢ =0.05, we get [M~] = 3. Further, ~0(x m) = 19, ~o(x (~) = 17,. 

~p(x TM) = 15, ~(x (4~) = 13, so c ( x )  = 13, and since ~p(x) >c(x)  we find ~0(x) = 1, i.e. 
we reject the hypothesis of symmetry. 

For this type of tests also, any value of :¢ could be obtained by the use of one ~o (x). 
Thus, this function generates one family of tests when c is a parameter, independent. 
of x, and another family when c (x) takes values depending on x in the way described 
above. We may call them the fixed-limit test family and the permutation test family 
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generated by  ~v (x). I t  is clear t ha t  any  str ict ly increasing funct ion of v 2 (x) will generate  
the  same families as ~v(x). HO~.FFDr~O (1952) has shown that ,  subject  to  certain 
restrictions, the  two families generated by  a funct ion ~v (x) are asymptot ica l ly  equiva- 
lent  for increasing n. I n  this paper  we shall be concerned wi th  these types  of tests 
exclusively, and  by  "a  tes t"  we shall mean  a test  belonging to a fixed-limit or a 
pe rmuta t ion  test  family.  

A test family  m a y  be said to  be distribution-/tee in a class co of distributions,  if 
the  distr ibution of q~ (x) is the  same for all FEco. This means,  in the  cases considered 
here, tha t  the probabilit ies P {q~ (x) = 1}, P (q0 (x) = p}, and P {~0 (x) = 0} are the  
same for all FEco. Thus,  the  t test  family  is distribution-free in the class of normal  
distr ibutions with mean  m. W h e n  test ing a non-parametr ic  hypothesis  H 1, it is of ten 
convenient  to  use a test  f rom a family t h a t  is distribution-free in the  corresponding 
cor Accordingly,  these tests are usually called non-parametr ic .  As they  are also used 
in  other  cases, and as t h e y  often test  the  value of some parameter ,  the  name  is mis- 
leading, and  the  te rm distribution-free will be used here. 

There is a simple relat ion between similar tests and distribution-free test  families 
as  is seen f rom the following 

T h e o r e m  1. A test  fami ly  is distr ibution-free in cos, if and only  if all tests be- 
longing to it are similar with respect to co 1. 

P r o o f :  For  the  sake of clarity, denote c and  p by  c~ and  p~. Then, for any  given 
and  F,  let 

~s (~, F)  = P {~ (x) = 1 I~, F }  = P {~v (x) > c~ I F } 

~(~,  F) = P  {~(~) =p~ [~, F} =P {~(~) = c~ IF} 

~(~,  F) = P  {q0 (x) = 0 ]~, F} =P  {~v(x) < c~ IF}.  
3 

B y  definition, ~ ~ (~, F )  = 1 and  ~s (~, F )  + p~ ~,  (a, F)  = ~ for all Fecos. Now suppose 

t h a t  for two distributions F ' ,  lv"eco s the  inequal i ty  z , ( a , F ' ) ~ = z ~ ( ~ , F " ) i s  t rue  
a t  least for some i and for some c¢, say  ~1- Then define c¢, = ~s (as, F ' )  and 

~3 = ~l(~S, F ' )  + ~ ( ~ s ,  F ' ) .  

To  reach these sizes for F', we mus t  make  

But ,  as the test  is similar, 

and  

p~, = 0 p~0 = 1. 

~1(~,, F " ) = z 1 ( ~ 3 ,  F " )  =z1(~i ,  F " )  = ~  

~ (~z ,  F " )  =~2(~1, F " ) = ~ 3 - ~ 2  

~3 (~1, F ' )  = ~3 (~1, F " )  = 1 - ~3- 
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Thus, the probabilities must be equal for any value of a, and the test family is 
distribution-free, which completes the proof of the first part of the theorem. As the 
converse of this is trivial, the second part  follows. 

3. Optimality criteria 

The choice among all possible tests in a given situation is guided by the general 
aim of keeping the probability of a wrong decision as small as possible. For a test ~%, 
the probability of wrongly making decision d2 is at most ~, and the probability of 
wrongly making decision d I is P (dl [ qga, F eo~2). Its complement, P (d 2 ] q~a, F Eeo2) = 
= 1 - P  (dll ~0~, F Eo)2) = f ~a (x)d F (x) is called the power of the test, and is a function 
of F. Several criteria have been suggested for discriminating between the tests. 
Some of these pick out one test as the best one, weighting in some way the seriousness 
of the different kinds of wrong decisions. Others point out the test ]amily to be used, 
leaving the size of the test to be determined subjectively. These criteria are based 
on the power function only. Sometimes the choice of size is supposed to be made 
prior to the choice of a test family, but  this is generally equivalent to using the 
reverse order, as in most cases all tests of a family have the same optimality proper- 
ties. 

Suppose first that  the size of the test is chosen subjectively. Then in the simple 
case when Wl and w2 each contain only one distribution, say _F i and F2, it is clearly 
desirable to use a test family which for any given ~ maximizes P(d2 Iq~a, F2), i.e. 
most power]ul tests. Even in more general cases there sometimes, though rarely, 
exists a unilormly most power/ul test family, the tests ~'  of which satisfy 

P(d 2 [q~, F) = max P(d 2 [ ~ ,  F) for all FE(o2. 
ca  

When no uniformly most powerful tests exist, the choice between several test families 
is not so obvious. If, however, two tests of size :¢ satisfy 

P (d 2 ]~0~, F) _> P (d2 ]q~, 2 ' )  for all FEw2 

P (d2[ q~'~, F) > P (d21 q~, F) for some FE~o 2 

~0~ is said to be uni/ormly more power/ul than q~ (WiLI), 1942), and ~9~ is clearly pre- 
ferred to V~- A test for which no uniformly more powerful test exists may be called 
or-admissible (L~HMANN, 1947, called such a test admissible). A test that  is more 
powerful than any other test of the same size for at  least one FEw2 is obviously 
a-admissible. A test family all tests of which are a-admissible may be called admissible. 
Test families that  are not admissible are usually undesirable. 

For the choice between admissible test families some additional criterion, more 
or less subjectively chosen, is necessary. I t  may have the effect of disqualifying a 
class of test families having a property that  is regarded as undesirable. An example 
of such a property is bias, which means that  there exists a F ' E o 2  for which 
B(d2] ~0~, F ' ) <  ~¢. If  all biased families are excluded from the class of admissible 
test families, there may sometimes be only one left, the uniformly most powerful 
unbiased test family. 

Another method of choosing between admissible families is to take special regard 
to the power against some specific FEw,.. Thus, for the case where co i contains only 
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one element, and co~ is a parametr ic  family of distributions, thus ~ being a finite- 
dimensional paramete r  space, N E ~ A ~  and PERSON (1936) suggested tha t  among 
all unbiased tests of size a, the test  with the steepest power function in the vicinity 
of col should be regarded as best. They knew tha t  the criterion could be criticized, 
since usually a wrong decision d 1 is not so serious when F is close to co x as when 
it is far from it. They hoped, however, tha t  a good test  according to this criterion 
would also behave well far ther  away from co~. 

W ~ D  (1942) suggested another criterion, saying tha t  a test  q" is most stringent, 
if i t  minimizes 

max [sup p (~ 1 ~ ,  F) - P (d~ I ~ ,  F)]. 

Thus, the criterion takes account of the maximal  deviation from the envelope power 
function. 

From an intuitive point of view, an opt imali ty  criterion should preferably take 
account of the whole of the power function. LINDLEY (1953) tried to do this, saying 
essentially tha t  a test  is optimal, if it minimizes a weighted average probabil i ty of a 
wrong decision. Thus, he considered not only P (di I q, F eco~) but  also P(d~ [ q, Fecol) 
and accordingly he obtained a unique optimal test, not a tes t  family. In  the situation 
described above, if co~ is a one-parameter family {F(0)), a test  is optimal according 
to Lindley if i t  minimizes 

VlP (d~lq, Fecol)+ f %(o) P(dl]q~, F(O))dO 

where v~ and v~ (0) are fixed weights. The weights are derived by  a combined evalua- 
t ion of the belief in the plausibility of the distribution and the seriousness of com- 
mitt ing the corresponding error. I t  seems very difficult to determine such weights in 
a given situation, and hence the applicability of the criterion is restricted. 

WXLD (1950) a t tacked the problem differently, but  he also introduced numerical 
weights, first to all Ffico2, indicating the seriousness of, or the loss suffered from, 
making decision d 1 when the true distribution is F. Considerations of symmet ry  
led to the introduction of corresponding weights in col, indicating for any Ffico 1 
the seriousness of making the wrong decision d 2. Let  us denote the weight function 
by  W(F, dJ. For completeness, let W(F, di) = 0 for FEco~ (i = 1, 2). Now, for any  
and any  F,  the expected loss equals r@, F) = r~@, F) + r~(% F)  where 

ri( % F) =P(di[ % F) W(F, di). 

A test  q '  is said to be uni/ormly better than ~ if 

r@' ,  F) < r ( q ,  F) for all Fe /2 ,  and 

r(9 ' ,  F)  < r@, F) for some Fc~Q 

which is in this case equivalent to 

P(d, lqJ, F)>P(d,]%F) forallFeco~,i=l, 2, and 
P (di ] ~0', F)  > P (di] % F) for some F ecol. 

This concept is seen to be related to the concept "uniformly more powerful",  but  is 
more general, since it  admits  a comparison of two tests of different sizes, and stronger, 
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since it takes account of col as well as of co 2. A test for which no uniformly better 
test exists is called admissible. This is a stronger concept than co-admissibility. 
Admissibility implies ~-admissibility, but  the contrary is not  necessarily true. 

For the choice between admissible tests, WXLD introduced the minimax principle, 
saying that  the test ~'  is optimal in the minimax sense if 

sup r (~', F ) =  rain sup r (~0, F). 
F~.Q ~o Fefl  

By this criterion also, we do not get a family of tests of different sizes, but usually 
only one test, owing to the fact that  we have evaluated the relative seriousness of 
committing the two possible kinds of error. According to a theorem of SVE~DRUI" 
(1952), a minimax test is admissible, if it is unique, but not necessarily otherwise. 

For any test ~0, the distribution F '  for which 

r (~0, F ' )  = sup r (~, F )  
FE£) 

is, if it exists, called a least favorable distribution with respect to ~0. WALD showed 
that,  subject to rather mild restrictions, the minimax test ¢ '  satisfies 

r (~', F ' )  = min  r (q, F' )  
¢ 

if F '  is a least favorable distribution with respect to ~0'. Thus, a minimax test is 
optimal for its least favorable distributions, meaning inter alia that  if F'Eco2, q~' is 
more powerful relative ix) F' than any other test of the same size. 

Let, as above, eo 1 contain only one element and co 2 be a parametric family, and 
W ( F ,  d~) = k i for F$co i. Then, for all unbiased tests, 

r l ( ~ p  , ~ )  < ]c1(1 - -  0¢), 

but if the power function is continuous, r l ( q ~  , F)-+kl(1  - ~ )  as F-+oJ r Thus, the 
maximum risk in e% is kl (1 - ~ )  + e where e-->0. In  0) 1 the risk r 2 is always = k2:¢. 
Then, a test is minimax if it is optimal for F-->oJl, and of size ¢¢ so that  k1(1 - ~¢) = 

kl = k2~, i.e. ~ . Such a test has higher power in the close vicinity of 0) 1, i.e. 
k 1 + k 2 

steeper power function in that  vicinity, than any other test, and is thus optimal 
according to the Neyman-Pearson criterion. This is a slight modification of a theorem 
by SVV, RDRUP (1953, p. 85). 

The minimax approach is applicable to any se t /2  and is thus of great generality. 
I t  has, however, been subjected to some criticism. Thus, it is said not to be practical 
to let the worst possible situation guide one's behavior. Nor is it usually possible to 
define the absolute value of the loss for different F, i.e. the weight function. Speci- 
fically, the effect of wrongly making decision d 1 may be of a kind quite different from 
that  of wrongly making decision d2. Thus, the choice of a test within the "best"  
test family cannot be made on the basis of quantitative judgement. The practical 
applicability of the minimax principle to non-parametric problems is limited also 
by the fact that  the problem of finding the minimax test for a given situation has 
so far been solved only for some special cases. 

HO~.FFD~TG (1951) has used the minimax criterion in a way slightly different from 
WALD'S. Thus, he agrees with the second part  of the criticism cited above, tha t  it is 
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often impossible to introduce a weight function in f2, and to compare the two kinds 
of wrong decisions. Consequently, he restricts himself to defining a weight function 
W(F,  dl) in eo~ only. We might  call such a weight function incomplete. HOEFFDINO 
defines a test  ~ of given size c¢ as being of minimax risk if 

sup r 1 ( ~ ,  F) = rain sup r 1 ( ~ ,  F).  
Feeoz q~ Fem2 

He further points out tha t  although it may  not be realistic to give numerical weights 
to different Few2, i t  is usually possible to rank all pairs F 1, F26co 2 according to 
whether the weight of F 1 should be greater than, equal to, or smaller than tha t  of F2. 
This is equivalent to partit ioning eo 2 into disjoint sets ~2 (a) where a is a real valued 
parameter  such tha t  

W ( F  1, dl) <_ W(F2, dl) if F le f2(a l )  and F~6f2(a2) where a 1 < a 2, 

and W(F1, dl) = W(Fa, dl) if F, ,  F26~Q(a). 

We may  call such a weight function a-ordered incomplete. 
Now, HOEFFDINO has shown tha t  if a test  ~ satisfies the condition 

inf P ( d p . { q ~ ' , F ) = m a x  inf P ( d  2{T~,F)  for all a 
Fe~  ta) q~o~ FefJ(a) 

i t  minimizes, among all tests of size ~, the max imum risk r 1 ( ~ ,  F) with respect to 
all a-ordered incomplete weight functions. Thus, HOEFFDING'S criterion gives tests 
tha t  are optimal in a great many  situations, but  it  does not, like WALD'S, choose a 
test, only a test  family. IqOEFFDINO gives examples of such test  families of maximin 
power with respect to {~Q (a)}. As in the case of complete weight functions, we may  
speak of F'6o~ 2 as a least favorable distribution in eo~ relative to a test family ¢ ,  
if for any  

r I (~, iV') = sup r I (0%, F). 
F~co~ 

By restricting F to f2 (a) we get by  the same definition a least favorable 
distribution in f2 (a). Since W (F, dl) is constant within f2 (a), the condition is 
in this case equivalent  to 

P (d 2 { ~ ,  F ' )  = inf P (dz {~=, F). 
Fef2 (a) 

So far there is no general way of establishing the existence of such a test  family 
of maximin power in a given situation, nor of finding it, if it exists. Thus, even after 
the introduction of HOEFFDINO'S criterion, it is not  always possible to find an optimal  
test. This is especially t rue when ~Q is a non-parametric class of distributions, i.e. 
when little or nothing is known of the functional form of F.  

The main results in finding optimal tests with respect to non-parametr ic  classes 
of distributions are due to LE~MA~N and STEIN (1949). They found tha t  if m 1 contains 
all distributions invariant  with respect to permutat ions of the variables X1, X2, • •., X~, 
and w2 contains only one element, say F ' ,  the most  powerful test  family is a permuta-  
t ion family with yJ (x) = / '  (x), the density function of F'. By a theorem of HUNT 
and STEIn, they extended the results to some cases where wz is a parameter  space. 
The results are very important ,  as the invariance hypothesis tested is a very common 
one, including as special cases the two-sample problem and the problem of symmetry .  
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However,  the computat ional  work necessary for the tests obtained is prohibit ive 
unless the sample is very small, say less than  10. Further,  the tests '  proper ty  of being 
uniformly most  powerful is retained only as long as eo 1 is a very wide class of distri- 
butions. 

Thus, in this case as well as in others where no opt imal  test  has been found, it is 
necessary to use less powerful tests, and to decide which of two given tests is to be 
considered the better.  

4. Comparing two tests  or test  families 

Of course, the criteria referred to above are capable of picking out the bet ter  of 
two tests as well as of finding a best test. Thus, if one test  is uniformly more powerful 
than  another, i t  should generally be preferred to the second one. I f  none of the tests 
is uniformly more powerful than  the other one, we have to apply some other criterion, 
which is sometimes difficult if ~Q is not a parametric  space. For  several distribution- 
free tests, such comparisons have been made, based on different criteria, the choice 
between these generally depending more upon what is possible than  on what is 
desirable. To understand the background of these comparisons, it is necessary to  
remember  under what  circumstances distribution-free tests are being used. 

Besides being distribution-free, these tests have often the property of being very 
simple to compute,  and tha t  is the reason why they are applied in two distinctly 
different situations: 

1. When the number  of observations is large, and computational  ease may  be 
worth  some loss of power. Even if the form of the distribution is unknown, most of 
the s tandard tests could have been applied in this case, as the ~ (x) corresponding to  
them are often asymptotical ly normally distributed for almost any •. 

2. When the number  of observations is small, and the functional form of the dis- 
t r ibut ion is unknown. The standard tests could not be applied, as the sample size 
is too small for the asymptot ic  normali ty to be relied upon. This is very often the  
case in statistical problems relating to the social sciences. 

For the first case, it is of course of interest to see how much power is lost by not  
using the most  powerful test. I t  is quite enough for this purpose to make the inves- 
t igat ion under the assumption tha t  F is normal in some sense, and tha t  the number  
of observations is so large tha t  asymptot ic  results may  be used. The comparison is 
ordinarily made in terms of relative efficiency. The e//iciency of test  ~ relative to  
q~' is said to be e, if the power of ~ using n observations is in some sense equivalent  
to the power of q~', using e n observations. I f  ~ '  is a uniformly most  powerful test, 
e may  be called the  absolute efficiency of q~. The first to compute the  efficiency 
of a distribution-free test seems to have been COC~RAN (1937), who used a sign 
test  (see below, p. 147) for testing Student 's  hypothesis, and found its efficiency 
(relative to the uniformly most  powerful unbiased t test) to tend to 2 /g  as n increased 
infinitely. By his definition the powers are equivalent if their slopes are equal in 
the near vicinity of to r This measure of efficiency is of course related to the Neyman-  
Pearson definition of an optimal test, referred to above, and may  be called asymptotic 
local e//iciency {BLoMQWST, 1950). The same measure was obtained for Wilcoxon's 
one-sample test  {cf. p. 147) by  PITMA~ (1948), who found it to be 3/~. Thus, according 
to Neyman-Pearson 's  criterion, Wilcoxon's test  should be preferred to the sign tes t  
when ~o 2 contains only normal distributions and the sample is large. I~TMA~ applied 
the same technique to Wilcoxon's two-sample test, whose asymptot ic  local efficiency 
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relative to the t test  was found to be 3 /~  = 0.96 if w~ contained normal distri- 
butions, 1 for rectangular distributions, and 81/64 for a / ' ( 3 )  distribution, giving a 
rough indication of the applicability of the test  for big samples. 

I t  was felt, however, t ha t  the local efficiency of the distribution-free tests decreases 
when the sample size increases, and thus it was of interest to compute the relative 
local efficiency of some tests also for small samples. VAN D~R VA~_RT (1950) computed 
the first two derivatives of the power functio~ of the Wilcoxon two-sample test  
for 0) 2 normal and n _< 6, and compared them with the corresponding measures for 
the t test  with the same number  of observations. He did not work out the value of 
the relative efficiency as defined above, but  approximate  calculations based on his 
results indicate tha t  the local efficiency of Wileoxon's test  relative to the t test  is 
a t  least 0.95 for these sample sizes. 

However, it seemed necessary to look not only for local properties of the tests, 
but  for more general properties of the power functions. WALSH (1946, 1949) made 
extensive calculations for different tests when ~ is a class of normal  distributions, 
and when the power for different FEe% depends only on one parameter ,  say 0. 
He  chose to introduce a new definition of equivalence of power functions and obtained 
what  may  perhaps be called average e[ficiency. According to WALSH'S definition, two 
power functions are equivalent if the integral of their difference over the range of 0 
corresponding to 0) 2 is equal to 0. This definition is obviously closely related to  
LINDLEY'S opt imali ty  criterion, except tha t  WALSH gives the same weight to all  

In  the examples given above, the power efficiency in some sense was computed  
for very restricted we, mainly  normal ones. Where, moreover, only asympto t ic  
expressions were derived, they  point mainly to the usefulness of the tests in case 1, 
and may  serve as rough guides only for case 2. 

Without  assuming normali ty or some other functional form of the distribution, 
very few results on the power of distribution-free tests exist. HOEFFDING (1952) 
has shown tha t  under certain restrictions the tests belonging to the pe rmuta t ion  
family generated by  a function yJ (x) have asymptot ical ly the same power against a 
certain m2 as the corresponding tests of the fixed limit family generated by  y~ (x). 

Sometimes, it is possible to define a parti t ion (Q (a)) such tha t  the power for certain 
tests is constant within every ~ (a). I f  so, the methods used for parametr ic  problems 
can be directly applied. LEHMAN~ (1953) found such a part i t ion and a corresponding 
class of tests for the two-sample problem. Thus, within this class the tests m a y  be 
compared using, say, WXLSH'S method. I t  is, however, rarely possible to find such a 
partition. Thus, there does not seem to be any a t t empt  so far to develop a general 
method for comparing two distribution-free tests when the reason for their use is 
the second one listed above. Curiously enough, little has been done even for the  
development of opt imal  tests except on a very general or a very specified level. 
This may  be the reason for the common complaint tha t  too much information is 
lost when using a distribution-free test. Therefore standard tests are applied even 
when the conditions for their  strict validity are not satisfied. Very often, the informa- 
t ion " lost"  never existed, but  there may  be some information regarding the distri- 
bution, e.g. tha t  it is symmetric,  unimodal, etc. This information is usually lost  
when using a distribution-free test, since most  of them are distribution-free with 
respect to very general classes of distributions. To increase the applicabili ty of distri- 
bution-free tests, i t  seems important  to find optimal tests with respect to more  
restricted classes ~ ,  or in any  case to rank given tests with respect to such classes. 
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For the comparison of tests, the minimax principle seems very well fitted. The 
criticism against it (cf. p. 138) may  to some extent  be taken into account. If HO~FF- 
DINO'S method of arranging the elements of wz according to their distance from w 1 
is used, no numerical weights have to be given to them. I f  moreover, Q is restricted 
to  include only those distributions tha t  are relevant, using all a priori information, 
the  method of looking primarily to the least favorable of these cannot be criticized 
as much as when ~2 is too wide. The' following section is devoted to the development 
of the theoretical set-up necessary for a comparison based on these principles. 

5. The n e w  criterion 

In  consequence with the minimax principle, we may  define a test  ~ '  as being 
better in the minimax sense than  another test  ~ with respect to a given weight function, 
if 

sup r @', F) < sup r @, F). 
F e ~ .  F~.O 

Of course, the best test  according to this criterion is identical with the minimax 
tes t  defined on p. 138. 

Specifically, we may  compare all tests ~ E ~  and find the best one among these 
in the minimax sense. Let  us call it ~{,~. Then, by definition, 

sup r (~0 ~m~, F ) =  rain sup r (~, F). 
Fe.Q 9 ~  F~.Q 

Different weight functions will usually yield different ~v ~ .  I f  for two families ¢ '  
and  ¢ the ~'~'~ relative to any  weight function belonging to a given class is bet ter  
t han  the corresponding ~'~), ¢ '  may  be said to be superior to ¢ in the  minimax 
sense with respect to tha t  class. 

As in the case of optimal tests, we may  take regard to r I only, and compare tests 
of the same size. Thus, ~ may  be said to be conditionally better than  qa in the minmax  
sense if 

sup r 1 (~0~, (F) < sup r I @~, F). 
FEOJ I .~'G~ 2 

Now, by  an obvious extension of HOEFFDING'S (1951) theorem 1 on optimal  tests, 
we have the following 

T h e o r e m  2. I f  for two tests of size ~, 

(2) inf P ( d  2 1 ~ ,  F) > inf P ( d  2 ] ~ ,  F)  for all a, 
F~bQ ( a )  F~.(2 ( a )  

then ~ is conditionally bet ter  than ~ in the minimax sense with respect to 
a n y  a-ordered incomplete weight function. 

The proof is analogous to HOEFFDINO'S: I f  (2) is true, then 

(3) sup W~ sup P (dl I ~ ,  F)  < sup W~ sup P (d 11 ~ ,  F) 
a Fe.Q ( a )  a F~.Q ( a )  

where Wa is the constant  value of W (F, dl) for all F G ~  (a). 
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(3) may  also be writ ten 

sup sup W (F, dl) P (d 11 q~, F) < sup sup W (F, dl) P (d 1 [ ~ ,  F) 
a F e ~  ( a )  a F~Q (a) 

which is by  definition equivalent to 

sup rl (~,', F)  < sup r~ (9~, F)  
FEo~ Fern2 

a n d  T~ is conditionally bet ter  than ~ in the minimax sense. 
Now, if for all c¢ the tests of a family ~b' are conditionally bet ter  than those 

of another f am i l y  ~5 with respect to all a-ordered incomplete weight functions, 
then ~b' m a y  be said to be conditionally superior to ~b in the minimax sense 
wi th  respect to { ~  (a)}. 

A weight function where W (F, dl) is a-ordered and where 

V for all F E~01 

W ( F ,  d2)= 0 for a l lF f io )3  

:where V is a constant, may  be called an a-ordered complete weight function. Using 
such a weight function, we have for all tests of distribution-free families 

% (q~, F) = P (d~ I ~  , F)  W (F, d2) = ~ V for all F E0)1. 

Fur ther  r = r 1 + r 2, and r i ((~, F) = 0 for F(~o~ i. Thus, if ~b' is conditionally superior 
t o  ¢ with respect to the corresponding a-ordered incomplete weight function, i t  
~ollows tha t  

sup r (q ' ,  F)  _< sup r ( ~ ,  F)  for any  ~, 
Fe~9 F e ~  

i.e. q" is a t  least as good as ~ in the minimax sense. Now, let ~(m) be of 
! 

size %. Then ~ must  be a t  least as good as ~(m), and a f o r t i o r i  q'(m) is also 
a t  least as good as ~(~) for any a-ordered complete weight function. Thus, we 
have  established 

T h e o r e m  3. I f  two test  families ~b' and ~ are distribution-free with respect to oJ1, 
and  ff q)' is conditionally superior to (or equivalent to) ¢ in the minimax sense with 
respect to {~(a)}, then ~b' is never inferior to ~b in the minimax sense with respect 
to  the class of a-ordered complete weight functions. 

As a corollary to Theorems 2 and 3 we m a y  state: 
A test family ~b' of maximin power with respect to {~2 (a)} is conditionally superior 

to  any other test  family, with the exception of other test  families of maximin power 
which, if they exist, are equivalent to ~b' in the minimax sense, with respect to any  
a-ordered incomplete weight function. I f  ~ '  is distribution-free, it is furthermore 
superior (or equivalent) to any  other distribution-free test  family, but not necessarily 
to  any other test  family, with respect to any  a-ordered complete weight function. 

The consequence of the theorems is tha t  for distribution-free test  families, if (2) 
is satisfied for all :% ~b' is bet ter  than q} according to rather  general opt imal i ty  criteria, 
whether it  is adequate to compare the two kinds of wrong decisions or not. For test  
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families tha t  are not distribution-free, the relation between the tests can be assured 
to hold only for each size ~ separately, but  even so, this way of comparing two tests 
seems attractive. Thus we may very often reduce the problem of comparing tw~ 
test families to the following steps: 

a) fix co x and cog., 
b) find a partition {/2 (a)} of eos such that  F 1 may be said to be further away 

from Wl than F s if F1e/2(al) , FsE/2(as), and a I > a s, 
c) for arbitrary fixed a and ~, find out which test has the bigger lower limit of it~ 

power function, and 
d) see if this relation is independent of a and ~. 
I t  may, of course, happen that  one test is better for some a or a, and worse for  

others. I n  tha t  case, the weight function has to be specified numerically in order 
to get a discrimination between the tests, and the use of the minimax principle may 
be more severely criticized. In  the following sections, however, we shall be able to  
show that  there are interesting cases where the relation between the tests is inde- 
pendent of a and a, and thus a fairly unambiguous choice between them can be made. 

Before going over to the examples it is important to notice that  the properties of 
superiority and conditional superiority depend rather heavily on the choice of /2. 
If /2 is very wide, the test family ¢ '  may be superior to ¢ ,  but i f / 2  is narrowed 
down, corresponding to an increase of a priori information, ~b may well become 
superior to ~b'. If  this is the case, it would be of interest to find out when this change 
takes place. 

6. Location tests 

In  the remaining part  of the paper, the general principles, given in the previous. 
section, of comparing two test families, are applied to the problem of testing the~ 
value of the median ~z in a one-dimensional distribution. The discussion is confined 
to the one-sided case of testing bt = 0 against ~t > 0. The sample is assumed to consist. 
of n independent observations drawn from the population to be tested. 

In  order to be able to introduce successively increasing information (by decreasing: 
/2) symmetrically into eo 1 and 092, we shall use the following notation: 

Let F denote the distribution of the one-dimensional variable, and 
(X) the cumulative distribution function belonging to it, 

M 1 the class of all one-dimensional distributions with [z = 0, 
M s the class of all one-dimensional distributions with ~z > 0, 
/2' a class of one-dimensional distributions being considered, e.g. distributions'. 

with symmetrical density functions, 
co 1 = M 1 N /2' 
eos = M s N /2' 
/2 = cox U co2. 

By different choices o f /2 '  the problem may be given different degrees of generality.. 
I f / 2 '  contains only normal populations, it is the c/assical Student problem of testing 
the mean of a normal population with unknown variance. For changing/2' ,  or equiva- 
lently, changing degrees of information, the order between the tests according to. 
our optimality criterion will probably change. We shall be concerned with a com- 
parison of tests at a gradual decrease of /2 '  from the most general case to more spe- 
cific ones. 
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Like HOEFFDING, we shall define a par t i t ion of 0)2, and  say  t h a t  of two distribu- 
t ions in eo~, t h a t  one is far ther  away  f rom 0) 1 which has the  bigger a = ½ - F (0). 
Besides being mathemat ica l ly  simple, this seems to be a re levant  measure in several 
kinds of applications. F (0 )  will be denoted by  q. For  convenience,  we shall write 
0)z (q) for Q (½ - q), and q-ordered for (½ - q)-ordered weight  functions.  

I n  the following comparison of tests, rank  tests will p lay  a p redominan t  part ,  and  
it  seems appropr ia te  first to  examine this type  of tests. 

7. Rank test families 

A rank  test  family  m a y  be defined in the following way.  Le t  the sample point  be 

x = {x,} = {e~y~} (i = 1, 2 . . . . .  n), 

where Yi = ] xi ] and e i = sgn x i, We shall assume t h a t  the  dis t r ibut ions are continuous,  
so tha t  P {x i = 0} = 0, and P {y~ = yj} = 0 for i ~= j. The observat ions  m a y  then  be 
ordered  in such a wa y  tha t  

Yl  < Y~ < "'" < Yn" 

I f  ~v (x) is a funct ion of {el} only, the fixed limit test  family  and  the  pe rmuta t ion  test  
~amily generated by  ~v (x) coincide and const i tute a rank  test  family.  A n y  sequence 
~1, ez . . . .  , e~ defines a region in the sample space. There are M = 2 n such basic cells 
(WALs~, 1949). Le t  us denote  them by  Bj (~ = 1 . . . . .  M). 

For  distr ibutions with densi ty functions symmetr ica l  a round  0, 

1 
P { x e B j I F e 0 ) ~ } = T ~  for a n y  7". 

Thus,  all rank  test  families are distribution-free in the  class of such symmetr ica l  
distr ibutions.  

A n y  ~v defines an  ordering of the Bj, say Bt, ,  Bt,,  . . . ,  Bt  M, in the sense t h a t  

~) (Btl) ~ (Bt,) ~ - . . .  ~ )  (BtM). A rank  test  family  is complete ly  defined by  the  
sequence tl, t2, . . . ,  tM. Thus,  any  str ict ly increasing func t ion  of ~v will generate  
the  same rank  test  family  as % 

An  al ternat ive wa y  of describing certain rank  test  families was pointed  out  b y  
W~LSH (1949), who arranged the observations in increasing order of magni tude.  
L e t  us call the $th observat ion in t ha t  order x(,), so t h a t  

~(1) < x ( 2 ) <  . . .  <X(n) .  

Then  he suggested the tests 

1 if min [½ (xc) + x(~)), ½ (x(k) + x(l)), . . .]  > 0 

(x) = 0 otherwise 

where i, ~, k, l, . . .  are determined so as to give the  desired size to the test .  
WALSH showed t h a t  an increase in one or several of the  i, ~, k, l , . . .  amoun t s  
to  increasing the  region where ~ (x)= 1 by  one or more  basic cells. This means,  
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in the  present  nota t ion,  t h a t  to each test  family  of WALSH'S type  corresponds 
an ordering of the  Bs, or equivalently,  a funct ion ~o (x). The opposite is n o t  
true, a t  is easily seen by  an example :  Take  for simplicity n = 5 .  Then,  if 

5 10 
~p (x) = ~ ~, i, for c = 4 we get  P {~o (x) = c} = 0 and :c = 3-~. Here, ~o ( + + + ) = 

i=l  
= ~ 0 ( +  + + + - ) = 5 .  I n  order to get  q 0 ( x ) = l  for these sequences also in  
WALSH'S formulat ion,  we can a t  mos t  require rain [½ (x(2) + x(~)), x(3)] > 0 bu t  that.  
is also satisfied by  the sequences ( - + + + - ), and ( + - + - + ) with ~0 (x) = 3~ 
and b y  ( + - + + - ) with ~0 (x) = 1. WXLSE'S formula t ion  of the  tests is, how- 
ever, ve ry  simple in numerical  applications and  could prof i tably  b y  used when-  
ever possible. 

The  mos t  powerful  rank  test  family  for the  case when 0) 3 contains one dis t r ibut ion 
F '  only  is generated by  the funct ion 

~p(B~) = P (xe Bj [ F'} 

(cf. LEHlVIANN and  STEIN, 1949, and HOEFFDING, 1951). 
W h e n  working exclusively with rank  tests we m a y  introduce slightly modif ied 

admissibil i ty concepts. Thus, a test  is :c-admissible among rank tests if no un i fo rmly  
more powerful  rank  test  exists, and it is admissible among rank tests if no un i fo rmly  
be t te r  r ank  test  exists. These two concepts are, however,  equivalent.  I t  is t r ivial  
t h a t  admissibil i ty among  rank tests implies :c-admissibility among rank  tests, and  t h e  
converse is proved by  

T h e o r e m  4. A r ank  test  t ha t  is :c-admissible among  rank tests is also admissible 
among  rank tests for a ny  weight  function. 

P r o o f :  Le t  ~0~, be :c-admissible among  r ank  tests. Now suppose the  theorem 
were no t  true. Then  there would exist a r ank  tes t  ~0~, t ha t  is uni formly  b e t t e r  
t han  ' 

a) Suppose first t ha t  :c~ > :cl- Bu t  then  

P (d 2 [ q0~,, F)  > P (d2 [ q0~,, F)  for all F E co: 

and  T~, cannot  be uniformly bet ter  t han  q:, .  
b) I f  :c1:0~2, 

and  
P (as I ~0=,, F) > p (d~ I ~'.., F) 

for all F E o l ,  

for all F E co2, 

with the  inequal i ty  sign t rue  for at  least one F C Q. Bu t  since the  tests a re  
similar and of the  same size, 

P (d 21 q~a,, F)  = P (d~ [ ~0~,, F)  = :cl, for all F e o l .  

Thus,  the inequal i ty  sign mus t  hold for some F E co2. Bu t  t h a t  would  i m p l y  
t h a t  ~0~, is un i formly  more powerful  t han  q0~,, which is impossible, since q0~, is 
a-admissible among  rank  tests. 
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c) If  ~ <  ~1, we may  compare ~ with the test  of size gl f rom the same 
family. As the power with respect to any  absolutely continuous F E co2 is an  
increasing function of :¢, 

P(d2]qD~ ~, F)<P(d2]q)~ ,, F) for all F ~eo 2. 
Thus, if 

P (d2 I q~,, F) _> P (d 2 [ q~',, F) for all F E o)2 

~0~, would be uniformly more powerful than  ~v~,, which is impossible by  defini- 
tion. This completes the proof. 

A family of rank tests, all members of which are admissible among rank tests, 
may  be called rank-admissible. Although we may  perhaps, because of its simplicity, 
accept a rank test  family tha t  is not admissible, we would hardly do so, were it no t  
rank-admissible. 

For later reference, we list a few rank test  families below: 
1. The sign test/amily, apparent ly  first mentioned by  :FISHER (1925), and inves- 

t igated by  I ) Ixo~  and Mood (1946). I t  is generated by  ~(x) = ~ ei. 
i=l  

In  a sense, the sign tests are quite crude, as ~o has the same value for several B~.. 
I t  will be convenient in this connection to introduce another  notation. Let  T~ be 
the total i ty  of all Bj with ~fl (Bj) = k. To point out which Bj E T k, they  will occasionally 
be numbered Bkl , Bg~ . . . . .  B~,%. Since P(T~ [eOl) will be rather  big, the tests depend 
heavily on the outcome of the random experiment determining the decision when 
T(x) = p .  HEMI~LRIJK (1950 a, b) pointed out, however, tha t  a sign test  may  be 
regarded as basic to every other test  in this situation. Thus, any  test  for the median 
of a symmetrical  distribution may  be considered as a combination of a sign test  
and a conditonal two-sample test, testing whether or not the positive and the negative 
observations come from identical populations. The functions generating these tests  
m a y  be called ~Pl (x) for the sign tests and ~02 (x) for the two-sample tests. Then, 
the combined test  family is generated by a function ~v (~0 I, ~02). HEMV.LRIJK suggested 
a rule for the construction of this function, but  gave no justification for it. However,  
in analyzing different tests, it may  sometimes be convenient to discuss separately 
the choice of ~o 2 and the construction of ~v. As an example of this, we  shall describe 
below three test  families which are based on the same ~%, but  where the construction 

of ~o is different. The common ~02 is ~P2 = ~ ei i, and the test  families are: 

2a. Wilc, oxon's one-sample test /amily, proposed by WILCOXON (1945). I t  has  
~o = ~02. This test  may  be regarded as the rank analogue of the permutat ion test  
family generated by  ~o (x) = ~, suggested by FISHIER (1935). 

2b. The Wileoxon-Hemelri~k test/amily. The principle of constructing ~o given by  
HEMELmJX is easily expressed in the present notation. Let  B k i be numbered so t ha t  
for all k 

W2 (Bk ~) > ~V2 (Bk ~) > ' - "  > ~v~ (B~ ~ ) .  

Then, for k = ~ l  (B~) > 0 ,  

1/i if ~02 (B~) >Y~2 (B~(~+~)) 

~p (Bz~) = 1/(i + r) if ~2 (Bki) =~V 2 (Bk(i+l)) . . . . .  ~2 (B~(~,r)) >~v2 (Bk(l+r+l)).  

For  k __< 0, ~ is not defined. 

147 



~. RUIST, Non-parametric hypotheses 

2c. The Wilcox(m-sign test/amily. Here, ~0 = n2~01 + yJ~ which means t h a t  ~fl(Bki ) > 
>~0(B~j) if k > l, and the  value of ~% is of relevance if k = 1 only. This is a sign test  

family,  modified so as to make the influence of the r andom exper iment  smaller. 
To make  the difference between test  families 2 a - c  clear, we give an  example of 

the  orders, defined by  the different % of the Bj when n = 5. 

Order among B i 
v2x =~]e~ ~p2 = ~] e4 i 2a 2b 2c 

Ts:  B a x +  + + + + 5 15 1 1 1 
T a: B 3 ~ -  + + + + 3 13 2 2 , 3  2 

B 3 z + -  + + + 3 11 3 4 , 5  3 
Baa+  + - -  + + 3 9 4 , 5  6 4 
Ba~+ + + -  + 3 7 6 , 7  7, 8 , 9  5 
B a s +  + + + -  3 5 8, 9 , 1 0  10 6 

T a: B a x - -  + + + 1 9 4 , 5  2 , 3  7 
B a s -  + -  + + 1 7 6 , 7  4 , 5  8 
B ~ 3 -  + + -  + 1 5 8, 9 , 1 0  7, 8 , 9  9, 10 
B x , + - -  + + 1 5 8, 9 , 1 0  7, 8 , 9  9 , 1 0  

e t c .  

Given a r ank  test  family,  F '  is a least favorable distr ibution in w~ (q) relative to it, if 

P(Bq]F')= rain ~ P ( B q I F )  for all s = l ,  2 , . . . , M .  
t = l  F~eo2(q) i = 1  

Thus,  P (Bs ]F ' )  should, as far  as possible, be a decreasing funct ion  of ~0 (Bs). 
The  value of the  min imum power depends on the  restrict ions expressed by  the  
size of ~ ' .  Under  all circumstances,  however,  for all F E 092 (q), and  for all 

m k n--I t  n + k  

Bkf e Tk, ~ P(BktIF) =q 2 ( l - - q )  z . This means t h a t  if for a r ank  test  family  
t = l  

genera ted  by  a funct ion ~0 (YJl, ~02) with YJ2 (Bkl) --> yJ~ (Bk2) >-- "'" --> ~02 (Bkmk), 

~ P  (BkllF) is minimized b y  the same dis tr ibut ion F '  for all s and  k, then  F '  

is a least favorable  dis t r ibut ion in eo z (q) relative to all tests with the  same ~P2, 
irrespective of the  form of ~o. Thus,  the search for a least favorable distr ibu- 
t ion  can most  prof i tably  s tar t  by  considering each Tk separately.  

As the rank  tests make  no use of the absolute magni tudes  of the y's,  any  topo- 
logical t ransformat ion  of the  y scale does not  affect the  test.  B y  choosing a suitable 
t ransformat ion  the calculations m a y  be made  easier. For  instance, the  posit ive 
side of the dis t r ibut ion m a y  be made rectangular  over the  range (0, 1 - q). The same 
t ransformat ion  is then applied to  the absolute values of the  negative side. As in 
this way  the positive side is made  identical fo r  all distr ibutions with common  q, 
only  the negat ive side will be of relevance in the  following discussion. The transfor-  
mat ion  is defined by  

x '  = I F  (J x l) - q] sgn x. 

The  t ransformed cumulat ive  dis tr ibut ion funct ion becomes 
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0 

IF, I-F-' 
+q 

The densi ty funct ion is mos t  easily expressed in terms of x :  

l r  (:~') = 

0 

d F (x) / (x) 
d ~ ' ( - z )  

1 

[ 0 

l ( - x )  

for x' < q-- I 

q - - l _ x ' < 0  

0 < _ x ' < l - q  

x '> l - q .  

for x' < q - 1 

q - - l _ < x ' < 0  

0 < _ x ' < l - q  

x'>_ 1--q. 

I t  should be noted tha t  for  q =  ½, i.e. F Eco I, FT is for  all symmetr ica l  distribu- 
t ions  rec tangular  ( -  ½, ½). Thus,  if ~ '  contains only symmetr ica l  distr ibutions,  
co 1 is reduced to one element.  

As an example  of the effect of the t ransformat ion  for F E co2, let us regard  

the  Cauchy distr ibut ion wi th  F (x)=  ½ + 1 - arc tg  ( x -  a) where q = ½ - 1 are tg  a, 

and  FEc%(q) .  For  q - l < _ x ' < 0 ,  we get  

F -1 ( q - x ' ) = a +  tg  ( q - x ' -  ½) 

1 
• FT (x') = ½ - - arc tg (2 a + tg 7~ (q - x '  - ½)) 

7~ 

and,  after  some calculation, 

/T (X') = [1 + 2 a (a -- a cos 2 7~ x'  -- sin 2 ~ x')] -1. 

This funct ion has a min imum for x '= q -  1 2 , and is symmetr ica l  a round  this 

po in t  with / r  ( q -  1) = / r  (0) = 1. 
For  the  normal  distribution, the explicit expression for F r  (x') is difficult to  

obtain,  bu t  b y  expressing [ r  (x') in terms of x, i t  is possible to obtain  its value 
in some points.  Thus, for N(½, a2), where a S has to  be de termined so as to 
make  F (0) = q, 

/ r  (x') = exp{ a~ } for q -  1 ~ x ' < 0 .  

As x ' = q - 1  corresponds to x = - ~  and x ' = 0  to x=O, we get /T(q--1)=O 
and  [ r  (0) = 1. 

d / r (X ' )  in terms of x, and get  We can also express dx' 

d/r(x ')  c°nstant 'exp ( i } dx' • 2a - -~(x~+3x+~)  for q - l _ x ' < 0 .  
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Thus, for x" = q - 1, or x = - ~ ,  the derivative is infinite. As x and x'  increase to 0, 
i t  is first decreasing, then increasing, but  is always positive. 

Generally, for any  distribution with symmetrical  and unimodal density function, 
/ ( x ) / / ( -  x) can never exceed 1 for x < 0, as long as q < ½, and accordingly/T(X') <_ 1 
for x' < O. 

A large group of t ransformed distributions have symmetrical  equivalents in ~ ' ,  
as is shown by  

T h e o r e m  5. To every J(z') satisfying 

(4) J(x') 

= 0  for x '<_q-1 

strictly increasing~ for q - l < x ' < 0  

< x ' + l -  q J 
= x ' + q  for 0 < x ' <  1 - q  

= 1  for x ' > l - q  

there corresponds a t  least one symmetrical  distribution for which F r ( x ' ) = J ( x ' ) .  

P r o o f :  Let  F have /z = ½. Then, according to the symmetry,  

(5) F ( x ) = I - F ( 1 - x ) .  

Now, take 
fying 

in the interval (0, ½) an arbi t rary  increasing function F 1 (x), saris- 

F1 (0) = q and F 1 (½) = ½. 

Then, define F (x) successively in the following way:  

F (x) = 

FI  (x) 

1 - F  1 (1 - x )  

J [ - F  1 ( - x ) + q ]  

J [ q -  1 + F  1 (1 +x)]  

1 - J [ q -  F1 ( x -  1)] 

1 - J [q - 1 + FI  (2 - x)] 

etc. 

for 0_<x< ½ 

½ < x < l  

- ½ < _ x < 0  

- l _ < x <  - ½  

l < x < 1 ½  

1 ½ < x < 2  

using the recursive formula 

J [ q - F ( - x ) ]  for x < 0  

(6) F(x)= 1 - F ( 1 - x )  for x > 0 .  

By construction, F(x) satisfies the symmet ry  condition (5). I t  remains to show 
tha t  F(x) is a cumulative distribution function, i.e. t ha t  it is non-decreasing, and 
tha t  F ( -  oo) = 0 ,  and F(c¢)  = 1. 
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In  the recursive formula (6), it is seen that  F (x) is increasing within any interval 
of the left-hand side if it is increasing in the corresponding interval of the right-hand 
side. Thus, since F t (x) is increasing, F(x)  is increasing within any interval where 
the formula is applied. But  we must also demand that  the value of F (x) for x > 0 
within one interval (i, i + 1) shall be greater than that  obtained in the previous 
interval (i - 1, i), thus 

(7) F ( x ) > F ( x - 1 )  f o r i  _ < x _ < i + l ,  i = 1 , 2 , . . .  

But  according to (6), 

F(x)  = 1 - $'(1 - x )  = 1 - J [ q  - F ( x  - 1)]. 

Pu t  x' =q - F ( x  - 1). Then (7) becomes 

1 - J ( x ' ) > q - x '  for x' < 0 

or J ( x ' ) < x '  + l - q .  

This condition is satisfied for q - 1 < x' < 0 according to (4), and F (x) is increasing 
in the whole of the interval 0 < F(x)  < 1. Thus, F(x)  is a cumulative distribution 
function. 

A consequence of theorem 5 is that  to any class g2T of FT with cumulative distri- 
bution functions satisfying (4), there corresponds a class g2' of symmetrical distri- 
butions, and to a certain extent we may in the following discussion consider the 
classes g2' and g2~ interchangeably. 

8. Comparison o f  locat ion  test s 

A. We are now in a position to make the comparison between test families outlined 
in section 6 above. For g2 '=  the class of all absolutely continuous distributions, 
HOEF]~DINO (1951) proved that  the sign test family is of maximin power with respect 
to {0) 2 (q)}. Thus, according to the corollary to our Theorems 2 and 3, it is condition- 
ally superior to any other test family and superior to any other rank test family 
with respect to q-ordered weight functions, in both cases with the possible exception 
of other test families of maximin power. However, if there exists another family 
of maximin power, its tests may be uniformly more powerful and uniformly better 
than the sign tests, in which case the sign test family will not be admissible or even 
rank-admissible. HOE•FDING did not discuss this possibihty. We shall study it in 
subsections B and E below. 

B. Let us now reduce g2' to distributions with symmetrical density functions 
and call this class D~. Then the mean of the distribution is, if it exists, equal to the 
median, and the tests may be considered as tests of the mean. We shall see that  the 
situation is not changed from A above. For let FEw1 and GEo:~(q) be two distri- 
butions with density functions 

1-2q  ( q '~[1~11 
/ (~) - 2 (1 - q) \ V - - q /  

q ~l[x]l 
g (x) = (1 -- 2 q) ~,i -- q/ 
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where Ix] means the largest integer <_x, also for x <  0. Thus, 

] [x]] = [] x l] for x > 0, and for all integer x, and 

[I z I] + 1 for non-integer x < 0. 

Now, since P {x = an integer} ---- 0, we get 

t I~l g = 2" q"- 
(x,) 

(l-q)"+ 

where n_ and n+ are the number of negative and positive among the n observations. 
For fixed n and q, this is obviously a function of n+ only. By Neyman-Pearson's  
lemma, a test family generated by ~(x) = n+, or, equivalently, by y~(x) = n +  - n ,  
is most powerful for the case when wx = F and w2 (q) = G. This family is the sign 
test family. As a special ease of HOEFFDr~G'S (1951) theorems 1 and 2, a similar 
test 9o" is of minimax risk r 1 with respect to any q-ordered incomplete weight func- 
tion, if for any fixed q it is most powerful for a case where eo 1 = F '  and co 2 (q) = F~', 
and 

P (d219O~, F) _> P (d, [ 9~, F'q') for all F e e0~ (q). 

In  other words, F'~' should be a least favorable distribution in co 2 (q) to 9O~. As the 
equality sign holds true for all tests of the sign test family, it is, according to our 
previous results, conditionally superior or equivalent (since there may be more than 
one test family of minimax risk) to any other test family and superior or equivalent 
to any other rank test family, with respect to any q-ordered weight function. 

The transform of G, as well as of the distribution used by I-IoEFFI)ING (1951, p. 91) 
tO demonstrate the optimality of the sign test family, has the density function 

[r(X') = ~ for q - 1 _< x' < 0. For reference purposes it may be convenient to give 

a name to this distribution, and we are going to call it the bi-rectangular distri- 
bution. I t  gives equal probabilities to all sequences B k ~ belonging to one T k. Thus, 
in the case when co2 contains this distribution only, all tests with ~v = k ~  + ~P2, 
where k > max [ Y~2 [, are equivalent and most powerful rank tests. Let us call test 
families generated by such functions modi]ied sign test ]amilies. The tests belonging 
to such a family are essentially sign tests, but  the random order between the Bk~ 
within a T k that  is characteristic for the sign test family is replaced by a more or less 
complete order. The Wilcoxon-sign test family, described above, is an example 
of a modified sign test family. 

We shall now state two important  theorems on modified sign test families. These 
theorems will be fundamental to the following discussion. 

T h e o r e m  6. If  the bi-rectangular distribution belongs to ~o 2 (q), no rank test family 
that  is not a modified sign test family can be superior in the minimax sense to the 
sign test family with respect to all q-ordered weight functions. 

T h e o r e m  7. The sign test family is not rank-admissible if there exists a modified 
sign test family, the tests of which are uniformly more powerful than those of the 
sign test family. Such modified sign test families are all equally good in the minimax 
sense and also as good as the sign test family, but  superior to any other rank test 
family. 
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P r o o f  of T h e o r e m  6: The tests belonging to a family tha t  is not a modified sign tes t  
family must  be uniformly less powerful than  (or exceptionally as powerful as) those 
of the sign test  family against the bi-rectangular distribution. Since the sign tests 
have the same power against all distributions in w~ (q), the theorem follows. 

Theorem 7 is t rue by  definition. 
I t  seems intuitively reasonable to assume tha t  the sign test  family is rank-admis- 

sible when Y2' is wide, say at  least equal to tg~. This has not yet  been proved, but  no 
common test  family is superior to the sign test family. No modified sign test  families 
seem to have been suggested in the literature. However, if we construct such families 
by  using for Y~2 the ~v of the most  common one-sided rank tests, the sign test  family 
will be superior to all of them. This is so because all such families, including the 
Wileoxon-sign test  family, satisfy 

~ ( %  e2, "'" -4- . . . .  , e~)  < ~ ( %  e2, "'" - + ' " ,  e~)  

where all s~ are identical in the two sequences except tha t  a plus sign and a 
neighboring minus sign have changed places. A distribution satisfying 

d/r (x') 
d x '  

- -  < 0  for q - l < x ' < 0  

will give high probabil i ty to the basic cells with small v22 and vice versa. Thus, the 
tests will for almost all ~ be less powerful than the corresponding sign tests against  
t h a t  distribution. In  ~ therefore, no test  family has so far been proved to have 
tests tha t  are uniformly more powerful than  those of the sign test  family. 

C. As the proofs above are still true, if [r(x') _< 1 for q - 1 < x'  < O, nothing in 
the above discussion is changed when ~ '  is reduced to unimodal, symmetrical  distri- 
butions. 

D. When further reducing z~', i t  may  seem natural  to do away with some patho- 
logical distributions by  asking tha t  

= P {xl  > - z~ I z l  > 0, x~ < o}  _> ½. 

The class of distributions satisfying this condition will be called Y2D. The condition 
m a y  also be written P ( - + ) _ P ( + - ), since 

P ( - + )  
p ( -  + ) + p ( + - )  

For wl, v is always ½ according to the symmetry,  and the reduction is effective in 
e% only. In  the transform, the condition may  be writ ten 

0 

i f  q ( 1 - q )  (1-q+x')dEr(x')>_½, 
q-1 

o r  
0 

1 fx'  1-q 
d ~ ' ~ ,  (~') >_ - 2 " 

q - 1  

1 5 3  
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This condition implies tha t  the mean of the negative side of the t ransformed distri- 
bution must  not be situated to the left of the midpoint  of the interval  ( q -  1, 0) 
which is its range. As the transformed density function of Cauehy's distribution and 

of the bi-rectangular distribution are both symmetrical  around ~ l ,  it is clear t ha t  

= ½ for these distributions. Thus, they belong to the class but  are border-line cases. 
As the bi-rectangular distribution belongs to ~D, the sign test  family is of maximin 

power. But  it is not  rank-admissible for all n and ~ in this class. For  P ( -  + )  > 
P ( + - ). I f  n = 2, the yh-values of the two sequences are equal, and any  test  of size 
c¢ = ½ belonging to a modified sign test  family, satisfying YJ2 ( - + ) > ~P2 ( + - ), is 
uniformly more powerful than  the sign test  of the same size. 

E. Next,  define ~ as the class of all distributions, the t ransformed densities of 
which are non-decreasing in ( q -  1, 0). This implies tha t  the mean of the negative 

, .  

side is a t  least , and it  follows tha t  zQ~ is a subclass of E2~). I t  is also effectively a 

subclass, since obviously the Cauchy distribution does not belong to E2~. 
We shall prove tha t  in E2~ 

P (e  1, e 2, - ' '  " ~ - -  " - ' ,  g n ) ~  P (E 1, E 2, " ' "  - -F " ' ' ,  e n )  

where all e~ are identical in the two sequences except tha t  a plus sign and a neigh- 
boring minus sign have changed places. Denote by  s, the y-number of the r th  nega- 
t ive observation, i.e. of x(n_+l-O. Let  the y-number of the specified negative sign 
be sj = i + 1 in the left hand side of (8) and sj = i in the right hand side. We shall 
assume tha t  /T(X') is twice continuously differentiable, which means no essential 
restriction to the class. We m a y  write the two sides of (8) in the form of multiple 
integrals 

0 ~; ;~-1  

f f f  • .- h 1 (x~, ..., x~'- 1) f r  (x;+l) h~ (x;+2 . . . .  , x~) d x~.. .  d x= (L.H.S.) 
q--1 q--1 q--1 

and 
0 fi  ~-~ 
f f f  . . . . . .  • .. hl(x~ . . . . .  Xt_l) lT(Xi)h2(xi+e, . . . , xn)  d x l  . . . d x =  (R.H.S.) 

q--1 q--1 q--1 

where 
]--1 n 

hi= 1-II~(~;k) h,= 1-I t, (x;k). 
k = l  k = / + l  

I f  the relation (8) is to hold for any  combination of signs 

81 ,  82~ - - . ~  8t--1~ e i+2:  - - . ,  en~ 

i.e. for any  h I and h,, the following must  hold identically in x[-l :  

f f f f/,(x;)H(x;+,)ax¢ax'+1 
q -1  q - 1  q - 1  q - 1  

where 
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X•+l ~:~-I 
, f / , , , , H (xt+l) d = h2 (x~+~ . . . .  , x~)  d xn. . . .  X i + 2  • . .  

Q - 1  q - 1  

This  is clearly fulfilled if for  all x~' 

f itr (x[+~) H (x/+i) dx[+l < itT (X;) f U (x'+,) dx[+i 
q - 1  q - 1  

and ,  as bo th  sides are = 0 for  x[ = q - 1 ,  this  is in t u rn  t rue  if the  der iva t ives  
w i th  respec t  to  x; fulfill the  same re la t ion  for  all x ; :  

dit~(.;) ( , , 

it~ (~;) H (.:) < d*[ 3 H (x~+,) dx~+, + itr (x[) H (x[). 
q - I  

As H (x) _> 0, this means  t h a t  

(9) ditT(x[) >0 for  q-- l <_x' <_O 
d.; 

which is the  defini t ion of the class, and  the  re la t ion (8) is fulfilled for  all 
d i s t r ibu t ions  belonging to it. 

~ is also easy to express  in t e rms  of the  original  dis t r ibut ions.  F o r  (9) 
m a y  be wr i t t en  

d it (x) d x 
- -  . - - > 0  for  x < 0 .  
d x i t ( - x )  d x ' -  

d x  I 

As ~xx = i t ( - x )  for x, x '< O, we get  

d it ( - x) d it (x) 
it(z) dx + it ( - x )  dx 

(1 ( -  x))3 
_>0 for  x < 0 .  

As  / ( - x) >_ 0, the condi t ion becomes 

d log /(x) > 
dx  - 

d log i t ( - x) 
dx  

for  x < 0. 

N o w  p u t  t1 ( x ) = / ( x +  a) where a is the  po in t  of s y m m e t r y .  Then  the  condi- 
t ion  m a y  be wr i t t en  

d log [I ( x -  a) > d log ta ( - x - a ) .  
dx - dx  

This  relat ion should hold for any  q < ½, i.e. for a n y  a >_ 0, and  for any  x < 0. T h a t  
is possible if and  only if 
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d 2 log/1  (x) < 0 
d x ~ 

i.e. if and  only if the logari thm of the densi ty  funct ion is concave downwards.  
To get  an  idea of what  kind of distr ibutions are contained in the  class, let us see 

for some simple cases if the condit ion is satisfied. 
For  the normal  distr ibution we get  

/1  (Z,) "~- I(" e . . . . .  

d ~ log/1  (x) = _ 2 c ~ < 0. 
d x ~ 

Thus,  the  normal  dis tr ibut ion belongs to  the  class. 
we get  

n + l  

11 (x) = c 1 1 + 

d 2 log / 1  (X) n + 1 

d x ~ 

For  S tudent ' s  dis tr ibut ion,  

X 2 
l - -  - -  

n 

This is < 0 only when x ~ < n, and S tudent ' s  dis tr ibut ion belongs to the  class on ly  
when n = 0% and  we get  the normal  distr ibution again. Thus,  the  class is fair ly 
restr icted in the  sense tha t  distributions with too h e a v y  tails are no t  included. 

I t  should be noted,  however,  t h a t  the bi-rectangular  distr ibution is included in  
~E,  a l though on the  border-line. Thus, as a consequence of Theorem 6, we need only  
consider modified sign test  families. We shall give special a t ten t ion  to a certain t y p e  
of such families, the tests of which will be shown to be uniformly more powerful  
t h a n  the  corresponding sign tests. 

T h e o r e m  8. The tests  of a modified sign test  family  with a ~o 2 sat isfying 

(10) ~/)2(E:l, ~:2 . . . .  -~  - -  " ' ' ,  E n )  ~ 3 2 ( E I '  ~:2' " ' "  - -  ~-  . . . .  e n )  

with the  inequal i ty  sign t rue  in some cases, are uni formly more powerful  than  (or 
except ional ly  as powerful  as) the corresponding sign tests. 

P r o o f :  Since the  sign test  family gives the same value of ~02 to all basic cells in 
a Tk, the  theorem is t rue  if it is impossible to f ind a dis tr ibut ion for which 

t 

(11) ~. P ( B k ~ ) < t q " -  ( l - q ) " +  
iffil 

for a t  least one t. The proof will consist of four  parts.  
1. Le t  s~ denote  the  y -number  of the u th negative observat ion in the  sequence. 

Suppose first t ha t  ~02 (B k ~) is a decreasing funct ion of s~ only, and P (B k i) a decreasing 
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funct ion of s~ only. I t  is no essential restriction to assume u < v. Denote  the  value 
of P ( B k i l s  ~ = h) b y  Ph. The number  of cells with s~ = g and  s~ = h is 

h - g -  n - h  
agh= (g-~l l )  ( v - u - l l )  ( n _ - v )  

and  we wan t  to compute  the average probabi l i ty  of the-cel ls  with su = g :  

rt- ?'t -l- v 
agh Ph h~g'4-v-?.t 

n -n _ + /~  

Ugh 
h~g+v-lt 

The coefficient for  Ph is obta ined as 

\n_  - u~ h - g - n - h (?Z--~It--1 (V- -U- -~)  ( n _ - - v ) "  

I f  g is increased to  (g+  1), the coefficient for Ph ( h > g +  v - u )  is mult ipl ied b y  

( h - g - v + u )  ( n - g )  

( h - g -  1) ( n - n _ - g + u )  

and  it is seen t h a t  this rat io increases with h, or is unchanged.  The coefficient fo r  
Pg+,-u becomes 0. Since pn is assumed to be a decreasing funct ion of h, this implies 
t h a t  the average probabi l i ty  of the cells with s~ =g  does no t  increase as g increases, o r  

1 t 
-~,~ P(Bk , )>_q  "-  ( 1 -  q)"+ 

and  (11) cannot  be true. 
2. Now, let, as before, %0 2 be a funct ion of s~ only, bu t  P depend on more than  one 

si, only no t  on s.. I f  this change has any  effect on the  average probabil i ty ,  it is in- 
creasing, and  (11) cannot  hold. 

3. Le t  P depend on s~ only,  as in 1, and  let %o~ depend on more than  one si, but, 
no t  on s u. The effect is the  same as in 2. 

4. I f  P and  ~0 2 depend on some common s~, it is obvious t h a t  the  power will increase~ 
and  (11) cannot  hold. The theorem is proved. 

I f  we can f ind a modified sign test  family  satisfying (10) t h a t  is also rank-admissible,  
this is the  best we can do, as long as we restrict  ourselves to r ank  tests. A test  is 
clearly admissible among  rank  tests if i t  is more powerful  t han  any  other  r ank  test, 
for an a rb i t ra ry  FEo~ 2. I n  order to const ruct  such a test, let  us find the  mos t  powerful  
r ank  test  for a series of distr ibutions converging to the  bi-rectangular  dis t r ibut ion.  
Thus,  define 

/r  (x') = q (1 +cO (1 - q +  x') ~' for q -  l _ < x ' < O  

157 



"1~. R U I S T ,  Non-parametric hypotheses 

where c x is a positive parameter. As Cl-~0, /r(x')-+ l~o" /T(X') is never de- 

creasing, so the distribution belongs to O~. 

q (1 + cl) 
Let c~ = (1 - q)a+~,' 

s~ = the y-number of the ith negative observation, and 

s0=0.  

3?he probabihty of a sequence ~1, e2 . . . . .  e~ is equal to 

l - q  l - q  l - q  n _  
tt ! Cl t ! __ 

f .-. f I ll-q-  ,l 
0 , i = l  

Z 1 Xn_ 1 

n T c"- - q"- (1 - q)"+ (1 + c l ) " -  • 2 ( l - q )  "+~'" 
" " ( 

(~-s._)!l-i KI [(.-j+l)+c~(=_-i+l)] 1~ YI l+Cl 
t = i  j=st_l+l t-1 j'=~t_l+l \ n - - / ' +  1 ] 

'Thus, for c1=0,  we get correctly P=q"-( l -q)%. Taking logarithms, we get 

" _  si ( n _ - i +  l~. 
logP=logqn-(1-q)'%(l+cx) n - -  ~ ~ log \l+c~~----'-]'v~-'/~-~ 

i = l  I-Si_l+l 

~2 X3 
~qow, log (1 + x )=  x -  ~ + ~ . . . .  . For x very small, we may disregard all terms 

beyond the first one. Thus, for c~ small enough, 

log P,, ,  log q=- (1 - q)'+ (1 + Cl)  n -  - -  C 1 ~ ~ n _ _  - -  i -~ 1 
n - / ' +  1 

'The most powerful rank test for the case when to 2 (q) contains only this distri- 
but ion is obtained by letting W equal a strictly increasing function of P, say 
1 
-- log P. From the above expression it is seen that  for Cl, q, and n fixed, the 

ffirst term is a function of n+ only, and is an increasing function of Wl = n + -  n_. 
Making c 1 small enough, and taking 

(12) = 1 
YJ~= - Z 2  n-- j - -+i  ' or \ n _ i + l ]  

we get a rank-admissible modified sign test family that  is uniformly more powerful 
for  all ~ than the sign test family, and superior in the minimax sense to any family 
that  is not a modified sign test family. 

Another modified sign test family satisfying (10) is the Wilcoxon-sign test family. 
Xt may be intuitively suggested that  it is also rank-admissible, but the proof is still 
lacking. Computationally, it is more convenient than (12). As none of these tests 
have been discussed in the literature, Tables 1 and 2 give the values of c and p 
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[ 8~ • "}- 1 ~ --1 
Table 1. T h e  m o d i f i e d  s i g n  t e s t  f a m i l y  g e n e r a t e d  b y  YJz = [~-Y S "  n_n_Z_ j-~-l- ] -  z / • 

\i=l ]= i - l + l  

~ = 0 . 0 5  ¢z =0.01 

n ~ (x) = 1 if (p (x) = p ~o (x) = 1 if ~o (x) = p 

ei ther or 

10 

11 

12 

ei ther  or 

n _ ~ 0  

I n _ = l  
n - = 0  [ ~p~ > 5 

n - = O  ~ z >  3 

n _ _ < l  

n_<__l ' ~z - - > - -  

n _ ~ l  ~:t - - > - -  

n = 

n _ _ 2  

Tb ~ 

n _ < 2  ~z > 

2 
840 

378 

2 
2520 

where if p = 

n_ 1 0.60 
~ = 5 

~ = 4 0.20 

n _ = l  
~2 = 2 0.40 

n_ = 2 

840 0.80 

38O 

n_ = 2 

2520 0.80 

n _ = 0  

{ n ~ 1 

n - = 0  ~ z =  8 

{ n = 1  

n - = 0  yJ~_>6 ~ g  
1400 1470 

2 n_ = 2 
2520 2520 

3240 3360 

3 n _  = 3 

27720 27720 

22410 22704 

3 n _  = 3 

27720 27720 

~ ' =  3072----3 

0.20 

0.40 

0.80 

{ n = 1  

n-=O ~>_2  

n = 2  
n < 1 27720 

- -  ~P~ > 9625 

I n = 2  

n _ <  1 ~ 27720 
- [ ~o~ > 11970 

where 
if p =  

{ n _ = l  
Y)z = 7 0.28 

n = 1  
~pz = 7 0.56 

n _ = l  
'P2 5 0.12 

{ ~ = 1  
~2 = 1 0.24 

27720 0.48 

9 6 6 0  

n _ = 2  
27720 0.98 

Y~ 12474 

~or  :¢ = 0 .05  a n d  0.01,  a n d  f o r  n = 5, 6, . . . ,  12 ( t e s t  f a m i l y  (12)) ,  a n d  n = 5, 6, . . . ,  15 
( W i l c o x o n - s i g n  t e s t  f a m i l y )  r e s p e c t i v e l y .  F o r  l a r g e  v a l u e s  of  n ,  t h e  W i l c o x o n  yJ~ w a s  
s h o w n  b y  M A ~  a n d  W h I T n E Y  (1947) t o  b e  a p p r o x i m a t e l y  n o r m a l l y  d i s t r i b u t e d  
w i t h i n  e a c h  T k w i t h  m e a n  ½(n+ - n _ )  (n + 1) a n d  v a r i a n c e  ~n+ n_(n  + 1). I f  t h e  
n o r m a l  a p p r o x i m a t i o n  is u s e d  fo r  11 < x < 15, t h e  a c t u a l  s ize  of t h e  t e s t  wi l l  be:  

n = 11 12 13 14 15 

= 0 .05  0 .053  0 .050  0 .049 0 . 0 5 1  0 .049  
= 0.01 0 .0103  0 .0105  0 .0098  0 .0106  0 .0103.  

'Thus ,  t h e  a p p r o x i m a t i o n  is  v e r y  close a l r e a d y  fo r  t h e s e  s a m p l e  s izes,  a n d  c a n  p ro f -  
i t a b l y  b e  u sed .  
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:Table 2. T h e  W i l e o x o n - s i g n  t e s t  f a m i l y ,  g e n e r a t e d  b y  ~o 2 = ~ e~ i. 

= 0.05 :¢ = 0.01 

n ~0(x) = 1 if ~ (x )  =1  if cp(x) =p 

ei ther  or  ei ther  or 

10 

11 

12 

13 

14 

15 

n_=O 

n_ 1 
n - = O  ~o, _>17 

{ n _  = l 

n-=O ~oz -> 18 

n <1 {n_=2 
- - ~ z  _> 28 

n_ 2 
n _ < l  ~2 _>29 

n < 1  {n_=2 
- - ~v 2 _> 25 

n < 2  | i n - =  
3 

- - t ~v z _>_ 40 

n = 3 
n < 2  

- - ~Pz >_ 38 

n < 3  { n  = 4 
- - ~ 2  _> 59 

n < 3  { n-= 4 
- - v/z >_ 53 

n _ < 3  ~P2 >_46 

~(z )  = p  

where  if p =  

v22 = 13 0.60 

n_ 1 
YJ2 = 15 0.20 

n_= 1 
~o 2 = 16 0.40 

n_ ~ 2 
{~P2 = 26 0.90 

n,_ 2 
Y~z = 27 0.90 

{ n_ = 2 
~pz = 23 0.60 

{ n _ =  3 
~z = 38 0.44 

n _ =  3 
~o~ = 36 0.05 

n _ =  4 
~p~ = 57 0.42 

{ n_ ~ 4 
v2~ = 51 0.64 

{ ~ _ =  4 
ys 2 = 44 0.59 

n ~ 0  

n _ =  1 
n_ = 0 tp2 = 34 

{ r~_ = 1 
n _ = 0  ~p~ ->37 

n 1 
n - = 0  W2 >_37 

n < 1  { n _ =  2 
- - ~ v ~  >_ 54 

n_~l {n_= 2 
~o2 >_ 56 

n_ 2 
n__<l  ~v2 > 5 3  

n_ 3 
n _ _ 2  Vz _>75 

n < 2  { n  = 3 
- - Y ~ z  _ > 7 6  

where  
if p =  

{ n_ ~ 1 
~P2 = 26 0.28 

{ n_ ~ 1 
~z = 32 0.56 

{ n _ ~  1 
~ z  = 3 5  0.12 

I n _ = 1  
0.24 

I ~ 2  = 35 

n_ 2 
~z = 52 0.83 

{ n_ ~ 2 
~o2 = 54 0.59 

{ n = 2 
~o 2 = 51 0.64 

n = 3 
Vz = 73 0.35 

y~ 74 0.65 

A s  a n  e x a m p l e  of  t h e  u s e  of  t h e  t a b l e s  a n d  of  t h e  a p p r o x i m a t i o n ,  t a k ~  

t h e  s e q u e n c e  w i t h  n = 1 2 ,  n + = 9 ,  a n d  n _ = 3 :  + - -  + + -  + +  + + + + .  

F o r  t h e  W f l c o x o n - s i g n  t e s t  f a m i l y  ~vz = 1 - 2 - 3 + 4 + 5 - 6 + 7 + 8 + 9 + 10 + 11 + 

(~  2 3 )  -1 2 7 7 2 0  T h e  t a b l e s  
+ 12 = 56,  a n d  f o r  t e s t  f a m i l y  (12) ~vz = + 10  + M = 16064"  

s h o w  t h a t  a c c o r d i n g  t o  b o t h  t e s t  f a m i l i e s ,  t h e  s e q u e n c e  is  s i g n i f i c a n t  a t  t h e  

5 %  l eve l  b u t  n o t  a t  t h e  1 %  leve l .  

L e t  u s  a l s o  c o m p u t e  t h e  n o r m a l  a p p r o x i m a t i o n  o f  W i l c o x o n ' s  t e s t  f o r  :¢ = 0 . 0 5 .  

F r o m  b i n o m i a l  t a b l e s  o r  b y  e a s y  c a l c u l a t i o n ,  w e  f i n d  t h a t  t h e  b a s i c  ce l l s  w i t h  
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% 

\ \  "u. 
\ : . .  

0,2 

- -  T he  W i l e o x o n  t e s t  f a m i l y  
. . . . . .  T h e  W i l e o x o n - H e m e l r i j k  t e s t  f ami ly  

T he  Wi l eoxon- s ign  t e s t  f a m i l y  (or a n y  o the r  mod i f i ed  
s ign  t e s t  f ami ly ,  or  t h e  s ign  t e s t  fami ly) .  

:Diagram 1. ( l~power)  a g a i n s t  t h e  b i - r ec t angu la r  d i s t r i bu t i on  as  a f u n c t i o n  of t he  size, for t e s t  
famil ies  u s i n g  t he  W i l c o x o n  yJ~. 

79 
n_ = 0 ,  1, and 2 give a combined probabi l i ty  of 4096 = 0.0193. Th.e missing 

0.0307 have  to be t aken  f rom cells with n_ = 3, the to ta l  probabi l i ty  of which is 
220 

409--6 = 0.0537. Thus  the condit ional  probabi l i ty  within T 0 (where n_ = 3) should be 

0.0307 
0.572, which in the normal  dis tr ibut ion corresponds to a deviat ion f rom 

0.0537 
~he mean  of 0.18 s tandard  deviations. Since 

E(yJ~) = ½.6-13 = 39, and D20p) = ½.9 .3 .13  = 117, D(~2) = 10.8, 

we get the  approximate  value of c to be 39 - 0.18-10.8 = 37.1. Since the  observed 
value of Y~2 = 56 is greater  t han  37.1, we get ~(x) = 1, i.e. the  hypothesis  of zero 
m e a n  is rejected on the  5 % level. 

As a corollary to theorem 8, all test  families with YJ2 satisfying (10) have the bi- 
rec tangular  for least favorable distribution. This is t rue  of the  Wilcoxon tests 2a,  
b, and c. B y  Theorem 7, the Wilcoxon-sign test  family is superior to the others,  and  
since the pure Wilcoxon test  is closer to  the yJl-order, it is superior to the Wilcoxon- 
Hemelr i jk  test  family.  As an  example, Diagram 1 gives P(d 11cp~, F'T) as a funct ion 
of ~ for n = 5, q ----- ¼, and FT = the bi-rectangular  distribution. 
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In  order to give some illustration to the question of what the restriction to r ank  
tests means, it is of interest to compare the pure Wileoxon test family with the: 
permutation test family generated by yJ(x)=~("Fisher 's  tests"). These were in- 
vestigated by L~H~AN~ and STEn~ {1949), and as a special case of their results, 
Fisher's tests are uniformly most powerful among permutation tests (including rank 
tests) when ~2' contains only normal distributions. According to HOEFFDII~G (1952), 
they are also asymptotically as powerful as the t tests in the same class. However, 
in ~E, neither Wilcoxon's tests nor Fisher's tests are for all 0¢ uniformly more powerful 
than the others. For take any distribution that  has the bi-rectangular for its trans- 
form. Then the scheme of p. 148 may be extended in a slightly modified form to  
Fisher's test family, still considering only the case n = 5. 

Take first ~ = 5/32. From p. 148 it is seen that  Wilcoxon's test (2a) will have: 
~(x) = 1 for Bsl , Bal , B32 , Ba3 , and B u. In  Fisher's test, B51 , Bal , Ba2 , and B33 will 
always have ~ (x) = 1, irrespective of the absolute values of the observations. The: 
fifth basic cell with ~ (x) = 1 will be Bll if Yl + Y2 < Y4, otherwise B~4 will take its. 
place. Thus, since P(B34 I F ) >  P(BllIF) for all F with the hi-rectangular distri- 
bution as transform, Fisher's test is more powerful for these distributions t h a n  
Wilcoxon's test. On the other hand, take a = 10/32. Both tests have ~(x) = 1 for  
Bs~, B3~, B3~, B33, B34 , B11 , and BI~. The following scheme will show which other  
cells enter the region where ~ (x) = 1. 

W i l c o x o n ' s  F i s h e r ' s  
t e s t  t e s t  

If  max [(Yl + Y4), Ys] < min [(Yl + Y~ + Y3), (Y2 ÷ Y4)] B35 Ba5 

max [(Yl ÷ Y2 + Ya), Ys] < Yl + Y4 Ba5 B35 
Y~ ÷ Y4 < min [(Yl + Y~ + Y3), Ys] Ba5 BI~ 

max [(Yl + Y4), (Yl + Y2 + Y3)] < rain [(YI ÷ Y4), Ys] Ba5 Bll 

max [(Yl + Y4), Ys] < Yl + Y2 + Y3 B13 -B13 
max [(Yl + Y4), (Yl + Y2 + Y3)] < Y5 Bla Bla 

max [(Yl + Y2 + Ya), Ys] < Yl + Y4 B1 a B-I~ 

Y2 + Y3 < Yl + Ya B14 B14 

Yl + Y5 < Y2 + Ys B14 B15 

The events within each group are complementary. I t  is seen that  for some sample 
points (which have positive probability) Fisher's test takes basic cells from a Tk, 
with lower k, and thus with smaller probability according to the bi-rectangular. 
distribution, than does Wilcoxon's test. As for any q-ordered incomplete weight. 
function the bi-rectangular distribution is least favorable relative to the Wilcoxon_ 
test family, Fisher's test of size c¢ = 10/32 cannot be conditionally better in the mini- 
max sense than Wilcoxon's. As a consequence, Fisher's test family is not superior 
to Wilcoxon's test family with respect to such weight functions, and afor t ior i  not. 
superior to the admissible modified sign test families. 

Summing up the results of this section, the sign test family is, according to the,: 
criterion adopted here, better than any other test taken into consideration, if it is. 
not known that  P ( - + ) > P ( + - ). On the other hand, if the distribution is known 
to have a density function that  is logarithmically concave downwards, a modified_ 
sign test family satisfying (10) is best among rank test families. This strong positiorL 
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of the modified sign test  families is rather  unexpected, as they have  not, to the. 
author ' s  knowledge, been investigated before. Their opt imali ty  proper ty  is destroyed 
if f2' is further reduced in such a way tha t  the bi-rectangutar distribution is left. 
out. 0n ly  in very rare cases, however, does the information permit  such a reduction, 
except when the functional form of the distribution is known, and in tha t  case, 
ordinary parametric  tests should be used. 
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