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1. Summary

The main object of this paper is to find a criterion for comparison of two tests
for non-parametric hypotheses, taking advantage of the qualitative information that
may exist. After a detailed analysis of the problem and some earlier suggestions for its
solution (sections 2—4), a criterion is suggested in section 5. In order to apply it o
a concrete case, a location problem is specified in section 6. The rank tests to be
compared are analyzed in section 7, and the comparison by way of the criterion is
carried out in section 8. It turns out that sign tests, sometimes slightly modified, are
very often optimal according to the criterion used.

2. Statistical hypotheses testing

The general problem of testing statistical hypotheses can be described in the
following way. We are interested in the distribution F of a stochastic variable X,
which may generally be thought of as a vector {X;, X,, ..., X,} the elements of
which may correspond to different dimensions of the variable and/or to several
observations on the same variable. Let us make the following basic assumptions.
In the sample space there is a g-algebra of subsets (X). All probability measures are
defined on (X). All functions introduced in the following are measurable (X¥), and all
sets belong to (X).

We know that Fe£2, a class of probability distributions. After drawing a sample,
i.e. observing a sample point z, we want to decide to which of a number of mutually
exclusive sub-classes wy, w,, ..., w,, of £ we shall refer F. In the most common cases,
m = 2. The problem is then often stated to be the testing of the null hypothesis H:
Few,, against the alternative hypothesis H,: Few,. If w, is not topologically equiv-
alent to a finite-dimensional Euclidean space, H, is said to be a non-parametric
hypothesis.! In the following, we shall be mainly concerned with such hypotheses.

! The name is not a very good one, as w; is often characterized by a parameter. As an example,
w; may contain all F the marginal distributions of which, with respect to all Xj, have positive

medians. The term seems to have been first used by Worrowrrz (1942) for the truly non-para-
metric two-sample problem where w, contains all F that are invariant with respect to all per-
mutations of X, ..., X , while w, contains all F invariant only to permutations within' each

of the sequences X, ..., X, and X, ., ..., X, but not between them.
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E. RUIST, Non-parametric hypotheses

Let us denote the decision to accept H; by d, (i =1, 2). It is then required to con-
struct a test @, i.e. a function ¢ (x) of the sample point z, such that 0 <g(z)<1,
indicating for every sample point the probability with which decision d, should be
made. By the size of the test we shall mean

a=sup P (d;|g, F)=sup [ ¢ (2) 4 F (2)

where the integral is to be taken over the entire sample space. If P(d,|p, F) =«
for all Few, the test is said to be similar with respect to w,. Usually, with each test
@ (x) there is associated a real-valued function v (z) such that

[1 if p)>c
1) pley=y p if pE)=c
10 if p)<c

where ¢ and p are parameters, 0 < p < 1. The choice of ¢ and p determines the value
of a. By changing ¢ and p any value of a (0 <o < 1) can be obtained. To every value
of « there is only one relevant combination of ¢ and p (if P {y(z) =c|Few,} =0,
the value of p is irrelevant). Thus y(z) may be said to generate a family of tests
® = {@(z)} where to each value of « corresponds one, and only one, (z). If necessary,
we shall denote this member of the family by @, According to this definition,
the ¢ test is a test family, generated by '

T—m

¥ (x)= n—1.

Another type of tests which is of interest in the present context is obtained if ¢
and p are replaced by functions ¢(z) and p(x) of the sample point. This is the case
with the invariance tests investigated by LEAMANN and STEIN (1949). Denote by
2D, 2@, 2™ the sample points obtained from z by attaching in all possible ways
plus and minus signs to the absolute values of the components of z, and let the
order among the sample points be defined by

p ()2 p @)= - 2p ).

Then we define ¢ (x) = (x1+*)) where [M «] denotes the largest integer less than
or equal to M. The value of p(z) is determined so as to give to the test the desired

1
size «. A simple example is the following test of symmetry around 0: Let " (x) =1,

the sample mean. Suppose that the sample values are 6, 3, — 1, 4, 2, 3, so that y(z) =
=17. If we choose o =0.05, we get [Ma] =3. Further, y(x®) =19, p(z®) =17,
p(@®) =15, p(z'4) =13, so c(z) =13, and since p(z) >c(z) we find @(z) =1, ie.
we reject the hypothesis of symmetry.

For this type of tests also, any value of x could be obtained by the use of one y (x).
Thus, this function generates one family of tests when ¢ is a parameter, independent.
of z, and another family when ¢ () takes values depending on z in the way described
above. We may call them the fixed-limit test family and the permutation test family
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generated by v (). It is clear that any strictly increasing function of y (z) will generate
the same families as p(z). HorrrpIng (1952) has shown that, subject to certain
restrictions, the two families generated by a function y () are asymptotically equiva-
lent for increasing n. In this paper we shall be concerned with these types of tests
exclusively, and by “a test” we shall mean a test belonging to a fixed-limit or a
permutation test family.

A test family may be said to be distribution-free in a class w of distributions, if
the distribution of ¢ (x) is the same for all Few. This means, in the cases considered
here, that the probabilities P{@(z)=1}, P{p(z)=p}, and P {p(x) =0} are the
same for all Few. Thus, the ¢ test family is distribution-free in the class of normal
distributions with mean m. When testing a non-parametric hypothesis H,, it is often
convenient to use a test from a family that is distribution-free in the corresponding
;. Accordingly, these tests are usually called non-parametric. As they are also used
in other cases, and as they often test the value of some parameter, the name is mis-
leading, and the term distribution-free will be used here.

There is a simple relation between similar tests and distribution-free test families
as is seen from the following

Theorem 1. A test family is distribution-free in w,, if and only if all tests be-
longing to it are similar with respect to ;.

Proof: For the sake of clarity, denote ¢ and p by ¢, and p,. Then, for any given
o and F, let

7y (o, F) =P{p(x)=1|a, F} =P {y(x) >ca|F}
Ry (o, F) =P {p(x) =py |, F} =P {y(x) = co| F}
ng(, F) =P{p@) =0|a, F} =P {p(x) <c.|F}.

3
By definition,i?_,1 7 (o, ) =1 and 7, {a, F) + py 725 (20, F) = o for all Few,. Now suppose
that for two distributions F', F" €w,; the inequality ,(x, F’) +7,(«, F'') is true
at least for some 7 and for some «, say «,. Then define a, =7, («;, F') and

ag =y (0, F') + 7ty (e, F').
To reach these sizes for F’, we must make

Cq, = Cqy, = Cq,

Py, =0  pa, =1
But, as the test is similar,
72y (o, F'') = 781 (1, F'') =m (o, F') =ay
705 (%5, F"') =m0y, F') =ag —ay

(g F') =7, (o, F') =0ty
and

7y (g, F') = my(ay, F) T g T oy

oy, F') =mg(oy, ') =1 —ap.
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E. RUIST, Non-parametric hypotheses

Thus, the probabilities must be equal for any value of «, and the test family is
distribution-free, which completes the proof of the first part of the theorem. As the
converse of this is trivial, the second part follows.

3. Optimality criteria

The choice among all possible tests in a given situation is guided by the general
aim of keeping the probability of a wrong decision as small as possible. For a test ¢,
the probability of wrongly making decision d, is at most «, and the probability of
wrongly making decision d, is P(d, | s, FE€w,). Its complement, P(d, | @o, FEw,) =
=1—P(d,| ¢u, FEw,) = f @« (z)d F (x) is called the power of the test, and is a function

of F. Several criteria have been suggested for discriminating between the tests.
Some of these pick out one test as the best one, weighting in some way the seriousness
of the different kinds of wrong decisions. Others point out the test family to be used,
leaving the size of the test to be determined subjectively. These criteria are based
on the power function only. Sometimes the choice of size is supposed to be made
prior to the choice of a test family, but this is generally equivalent to using the
reverse order, as in most cases all tests of a family have the same optimality proper-
ties.

Suppose first that the size of the test is chosen subjectively. Then in the simple
case when @, and w, each contain only one distribution, say F, and F,, it is clearly
desirable to use a test family which for any given « maximizes P(dy|@a, F5), ie.
most powerful tests. Even in more general cases there sometimes, though rarely,
exists a uniformly most powerful test family, the tests ¢ of which satisfy

P(d,| go, F) = n;a,x P(dy| @ss F) forall Few,.
(-3

When no uniformly most powerful tests exist, the choice between several test families
is not so obvious. If, however, two tests of size o satisfy

P(dy| @as F) > P(ds| @a, F) for all Few,
P(dy| @a F) > P(dy| o, F) for some Few,

@, is said to be uniformly more powerful than @, (Warp, 1942), and @y is clearly pre-
ferred to @,. A test for which no uniformly more powerful test exists may be called
a-admissible (LEHMANN, 1947, called such a test admissible). A test that is more
powerful than any other test of the same size for at least one Few, is obviously
«-admissible. A test family all tests of which are a-admissible may be called admissible.
Test families that are not admissible are usually undesirable.

For the choice between admissible test families some additional criterion, more
or less subjectively chosen, is necessary. It may have the effect of disqualifying a
class of test families having a property that is regarded as undesirable. An example
of such a property is bias, which means that there exists a F'€w, for which
P(dy| po, F') <a. If all biased families are excluded from the class of admissible
test families, there may sometimes be only one left, the uniformly most powerful
unbiased test family.

Another method of choosing between admissible families is to take special regard
to the power against some specific F€w,. Thus, for the case where w, contains only
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one element, and w, is a parametric family of distributions, thus £ being a finite-
dimensional parameter space, NEYMAN and PEarsoN (1936) suggested that among
all unbiased tests of size a, the test with the steepest power function in the vicinity
of w, should be regarded as best. They knew that the criterion could be criticized,
since usually a wrong decision d, is not so serious when F is close to w, as when
it is far from it. They hoped, however, that a good test according to this criterion
would also behave well farther away from w,.

WaLp (1942) suggested another criterion, saying that a test g, is most siringent,
if it minimizes

max [sup P (dy | ga, F)— P (d,] (,v;,'F)].

Fews g

Thus, the criterion takes account of the maximal deviation from the envelope power
function.

From an intuitive point of view, an optimality criterion should preferably take
account of the whole of the power function. LinpLEY (1953) tried to do this, saying
essentially that a test is optimal, if it minimizes a weighted average probability of a
wrong decision. Thus, he considered not only P(d, | ¢, Few,) but also P(d,| ¢, F€w,)
and accordingly he obtained a unique optimal test, not a test family. In the situation
described above, if w, is a one-parameter family {F (0)}, a test is optimal according
to Lindley if it minimizes

v, Pdy| g, Few)+ [v,(0) P(d,]p, F©)dO

few,

where v, and v, (0) are fixed weights. The weights are derived by a combined evalua-
tion of the belief in the plausibility of the distribution and the seriousness of com-
mitting the corresponding error. It seems very difficult to determine such weights in
a given situation, and hence the applicability of the criterion is restricted.

WaLp (1950) attacked the problem differently, but he also introduced numerical
weights, first to all Few,, indicating the seriousness of, or the loss suffered from,
making decision d, when the true distribution is F. Considerations of symmetry
led to the introduction of corresponding weights in w;, indicating for any Few,
the seriousness of making the wrong decision d,. Let us denote the weight function
by W(F, d;). For completeness, let W (F, d;) =0 for Few, (i=1, 2). Now, for any ¢
and any F, the expected loss equals r(p, F) =r,(p, F) + ry{p, F) where

r(p, F) =P(d;|p, F) W(F, d,).
A test ¢’ is said to be uniformly better than ¢ if

(g, F) <r(p, F) for all Fef2, and
(¢, F)<r(p, F) for some Fef2

which is in this case equivalent to

P(dil ¢, F)>P@d;|p, F) forall Few,; 1=1, 2, and
Pd,|¢, F)>Pd,|p, F) forsome Few,.

This concept is seen to be related to the concept ‘“uniformly more powerful”, but is
more general, since it admits a comparison of two tests of different sizes, and stronger,
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since it takes account of w, as well as of w,. A test for which no uniformly better
test exists is called admissible. This is a stronger concept than o-admissibility.
Admissibility implies a-admissibility, but the contrary is not necessarily true.

For the choice between admissible tests, WALD introduced the minimaz principle,
saying that the test ¢’ is optimal in the minimax sense if

sup r(¢’, F)=min sup r (¢, F).
Fe2 @ FeQ

By this criterion also, we do not get a family of tests of different sizes, but usually

only one test, owing to the fact that we have evaluated the relative seriousness of

committing the two possible kinds of error. According to a theorem of SVERDRUP

(1952), a minimax test is admissible, if it is unique, but not necessarily otherwise.
For any test ¢, the distribution F’ for which

r (g, F,)=§B:.P r(p, F)

is, if it exists, called a least favorable distribution with respect to ¢p. WALD showed
that, subject to rather mild restrictions, the minimax test ¢’ satisfies

r(¢', F')y=min r (p, F')
v

if F' is a least favorable distribution with respect to ¢’. Thus, a minimax test is
optimal for its least favorable distributions, meaning inter alia that if F'e€w,, ¢’ is
more powerful relative to F’ than any other test of the same size.

Let, as above, w, contain only one element and w, be a parametric family, and
W(F,d,) =k, for F¢w,. Then, for all unbiased tests,

7'1((?, F) <k1(1 _“)3

but if the power function is continuous, r,(p, F)—~k,(1 —«) as F—>w,. Thus, the
maximum risk in w, is k, (1 —a) +¢& where ¢—0. In w, the risk r, is always = k,o.
Then, a test is minimax if it is optimal for ¥ —w,, and of size « so that k(1 —a) =

=kyo, i.e. o = . Such a test has higher power in the close vicinity of w,, i.e.

1
ky+k,
steeper power function in that vicinity, than any other test, and is thus optimal
according to the Neyman-Pearson criterion. This is a slight modification of a theorem
by SvErRDRUP (1953, p. 85).

The minimax approach is applicable to any set £ and is thus of great generality.
It has, however, been subjected to some criticism. Thus, it is said not to be practical
to let the worst possible situation guide one’s behavior. Nor is it usually possible to
define the absolute value of the loss for different F, i.e. the weight function. Speci-
fically, the effect of wrongly making decision d; may be of a kind quite different from
that of wrongly making decision d,. Thus, the choice of a test within the “best”
test family cannot be made on the basis of quantitative judgement. The practical
applicability of the minimax principle to non-parametric problems is limited also
by the fact that the problem of finding the minimax test for a given situation has
so far been solved only for some special cases.

HorrrFpING (1951) has used the minimax criterion in a way slightly different from
WaLp’s. Thus, he agrees with the second part of the criticism cited above, that it is
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often impossible to introduce a weight funection in £, and to compare the two kinds
of wrong decisions. Consequently, he restricts himself to defining a weight function
W{Z, d,) in w, only. We might call such a weight function incomplefe. HOEFFDING
defines a test @, of given size « as being of minimax risk if

sup 7; (ps, ¥)=min sup 7, (p,, F).

Few, @y Few,
He further points out that although it may not be realistic to give numerical weights
to different F€w,, it is usually possible to rank all pairs F,, F,€w, according to
whether the weight of F, should be greater than, equal to, or smaller than that of F,.
This is equivalent to partitioning w, into disjoint sets £ (a) where a is a real valued
parameter such that

W(Fy,d)<W(F, d))if F,eQ(a,) and F,eQ(a,) where a, <a,,
and W (F,, d)) =W (Fy, d,) it F,, FeQ(a).

We may call such a weight function a-ordered incomplete.
Now, HoeEFrpING has shown that if a test (p; satisfies the condition

inf P(dy|@ae, F)=max inf P (d,]p, F) for all a

Fe2(a) 9y Fef2(a)

it minimizes, among all tests of size a, the maximum risk r, (9o, F') with respect to
all a-ordered incomplete weight functions. Thus, HoEFFDING’s criterion gives tests
that are optimal in a great many situations, but it does not, like WaLD’s, choose a
test, only a test family. HoEFFDING gives examples of such test families of maximin
power with respect to {Q2(a)}. As in the case of complete weight functions, we may
speak of F'cw, as a least favorable distribution in w, relative to a test family @,
if for any «

71 (Qor F'y= Sup 7y (Pa, F).

By restricting F to £2(a) we get by the same definition a least favorable
distribution in 2 (a). Since W (F, d,) is constant within £ (a), the condition is
in this case equivalent to

P (d,| s, F') =, inf P (d, | pas F).

So far there is no general way of establishing the existence of such a test family
of maximin power in a given situation, nor of finding it, if it exists. Thus, even after
the introduction of HOEFFDING s criterion, it is not always possible to find an optimal
test. This is especially true when 2 is a non-parametric class of distributions, i.e.
when little or nothing is known of the functional form of F.

The main results in finding optimal tests with respect to non-parametric classes
of distributions are due to LEEMANN and StEiN (1949). They found that if w, contains
all distributions invariant with respect to permutations of the variables X;, X,, ..., X,
and w, contains only one element, say F’, the most powerful test family is a permuta-
tion family with y(x) = f’(z), the density function of F’. By a theorem of HuNT
and STEIN, they extended the results to some cases where w, is a parameter space.
The results are very important, as the invariance hypothesis tested is a very common
one, including as special cases the two-sample problem and the problem of symmetry.
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However, the computational work necessary for the tests obtained is prohibitive
unless the sample is very small, say less than 10. Further, the tests’ property of being
uniformly most powerful is retained only as long as w, is a very wide class of distri-
butions.

Thus, in this case as well as in others where no optimal test has been found, it is
necessary to use less powerful tests, and to decide which of two given tests is to be
considered the better.

4. Comparing two tests or test families

Of course, the criteria referred to above are capable of picking out the better of
two tests as well as of finding a best test. Thus, if one test is uniformly more powerful
than another, it should generally be preferred to the second one. If none of the tests
is uniformly more powerful than the other one, we have to apply some other criterion,
which is sometimes difficult if £ is not a parametric space. For several distribution-
free tests, such comparisons have been made, based on different criteria, the choice
between these generally depending more upon what is possible than on what is
desirable. To understand the background of these comparisons, it is necessary to
remember under what circumstances distribution-free tests are being used.

Besides being distribution-free, these tests have often the property of being very
simple to compute, and that is the reason why they are applied in two distinctly
different situations: :

1. When the number of observations is large, and computational ease may be
worth some loss of power. Even if the form of the distribution is unknown, most of
the standard tests could have been applied in this case, as the y(x) corresponding to
them are often asymptotically normaily distributed for almost any F.

2. When the number of observations is small, and the functional form of the dis-
tribution is unknown. The standard tests could not be applied, as the sample size
is too small for the asymptotic normality to be relied uporn. This is very often the
case in statistical problems relating to the social sciences.

For the first case, it is of course of interest to see how much power is lost by not
using the most powerful test. It is quite enough for this purpose to make the inves-
tigation under the assumption that F is normal in some sense, and that the number
of observations is so large that asymptotic results may be used. The comparison is
ordinarily made in terms of relative efficiency. The efficiency of test g, relative to
@e is said to be e, if the power of g, using # observations is in some sense equivalent
to the power of g,/, using e n observations. If @ is a uniformly most powerful test,
e may be called the absolute efficiency of @g. The first to compute the efficiency
of a distribution-free test seems to have been CocrrAN (1937), who used a sign
test (see below, p. 147) for testing Student’s hypothesis, and found its efficiency
(relative to the uniformly most powerful unbiased ¢ test) to tend to 2/x as n increased
infinitely. By his definition the powers are equivalent if their slopes are equal in
the near vicinity of w,. This measure of efficiency is of course related to the Neyman-
Pearson definition of an optimal test, referred to above, and may be called asymptotic
local efficiency (BLom@vist, 1950). The same measure was obtained for Wilcoxon’s
one-sample test (cf. p. 147) by PrrMan (1948), who found it to be 3/x. Thus, according
to Neyman-Pearson’s criterion, Wilcoxon’s test should be preferred to the sign test
when w, contains only normal distributions and the sample is large. PrTman applied
the same technique to Wilcoxon’s two-sample test, whose asymptotic local efficiency

140



ARKIV FOR MATEMATIK. Bd 3 nr 9

relative to the ¢t test was found to be 3/7x =0.96 if w, contained normal distri-
butions, 1 for rectangular distributions, and 81/64 for a I'(3) distribution, giving a
rough indication of the applicability of the test for big samples.

It was felt, however, that the local efficiency of the distribution-free tests decreases
when the sample size increases, and thus it was of interest to compute the relative
local efficiency of some tests also for small samples. vaAN bER VaarT (1950) computed
the first two derivatives of the power function of the Wilcoxon two-sample test
for w, normal and » < 6, and compared them with the corresponding measures for
the ¢ test with the same number of observations. He did not work out the value of
the relative efficiency as defined above, but approximate calculations based on his
results indicate that the local efficiency of Wilcoxon’s test relative to the ¢ test is
at least 0.95 for these sample sizes.

However, it seemed necessary to look not only for local properties of the tests,
but for more general properties of the power functions. WaLsH (1946, 1949) made
extensive calculations for different tests when £ is a class of normal distributions,
and when the power for different F€w, depends only on one parameter, say 6.
He chose to introduce a new definition of equivalence of power functions and obtained
what may perhaps be called average efficiency. According to WaLsH’s definition, two
power functions are equivalent if the integral of their difference over the range of 6
corresponding to w, is equal to 0. This definition is obviously closely related to
LinpLEY’s optimality criterion, except that WaLsH gives the same weight to all
Few,.

In the examples given above, the power efficiency in some sense was computed
for very restricted w,, mainly normal ones. Where, moreover, only asymptotic
expressions were derived, they point mainly to the usefulness of the tests in case 1,
and may serve as rough guides only for case 2.

Without assuming normality or some other functional form of the distribution,
very few results on the power of distribution-free tests exist. HoErrDING (1952)
has shown that under certain restrictions the tests belonging to the permutation
family generated by a function yp(z) have asymptotically the same power against a
certain w, as the corresponding tests of the fixed limit family generated by w(z)-

Sometimes, it is possible to define a partition {Q2(a)} such that the power for certain
tests is constant within every £2(a). If so, the methods used for parametric problems.
can be directly applied. LErMaNN (1953) found such a partition and a corresponding
class of tests for the two-sample problem. Thus, within this class the tests may be
compared using, say, WaLSH's method. It is, however, rarely possible to find such a
partition. Thus, there does not seem to be any attempt so far to develop a general
method for comparing two distribution-free tests when the reason for their use is
the second one listed above. Curiously enough, little has been done even for the
development of optimal tests except on a very general or a very specified level.
This may be the reason for the common complaint that too much information is
lost when using a distribution-free test. Therefore standard tests are applied even
when the conditions for their strict validity are not satisfied. Very often, the informa-
tion “lost” never existed, but there may be some information regarding the distri-
bution, e.g. that it is symmetric, unimodal, etc. This information is usually lost
when using a distribution-free test, since most of them are distribution-free with.
respect to very general classes of distributions. To increase the applicability of distri-
bution-free tests, it seems important to find optimal tests with respect to more
restricted classes 2, or in any case to rank given tests with respect to such classes.
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For the comparison of tests, the minimax principle seems very well fitted. The
criticism against it (cf. p. 138) may to some extent be taken into account. If Horrr-
DING's method of arranging the elements of w, according to their distance from w,
is used, no numerical weights have to be given to them. If moreover, £ is restricted
to include only those distributions that are relevant, using all a priori information,
the method of looking primarily to the least favorable of these cannot be criticized
as much as when £ is too wide. The following section is devoted to the development
of the theoretical set-up necessary for a comparison based on these principles.

5. The new criterion

In consequence with the minimax principle, we may define a test ¢’ as being
betier in the minimazx sense than another test ¢ with respect to a given weight function,
if

sup 7 (¢, F)<sup r (p, F).
Feg . (‘P ) Feg ((p )

Of course, the best test according to this criterion is identical with the minimax
test defined on p. 138.

Specifically, we may compare all tests p€@ and find the best one among these
in the minimax sense. Let us call it p!™. Then, by definition,

sup  (p, F) = min sup 7 (p, F).

FeQ

Different weight functions will usually yield different ¢!™. If for two families @’
and @ the ¢'‘™ relative to any weight function belonging to a given class is better
than the corresponding ¢'™, @ may be said to be superwr to @ in the minimax
sense with respect to that class.

As in the case of optimal tests, we may take regard to r, only, and compare tests
of the same size. Thus, g, may be said to be conditionally better than @, in the minmax
sense if

sup 7y (@a> (F) < sup 1, (po, F).

Now, by an obvious extension of Hokrrping’s (1951) theorem 1 on optimal tests,
we have the following

Theorem 2. If for two tests of size «,

2) inf P (d,|@a, F)> mf P (42| @or F) for all a,

Fe(a)

then @, is conditionally better than @ in the minimax sense with respect to
any a-ordered incomplete weight function.
The proof is analogous to Horrrping’s: If (2) is true, then

{3) sup Wa sup P (d, | pa, F)<sup W, sup P(d, |9, F)
a Fef(a) a Fef2(a)

where W, is the constant value of W (F, d,) for all FeQ (a).
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(3) may also be written

sup sup W (F,d,) P(d,| s, F)<51;1p Fsegg)W (F,dy) P (d,| @u, F)

a  Fef2{a)

which is by definition equivalent to
sup y (pq, F)<sup 7 (s, F)
Few, Few,

and @y is conditionally better than ¢, in the minimax sense.

Now, if for all « the tests of a family @’ are conditionally better than those
of another family @ with respect to all a-ordered incomplete weight functions,
then @' may be said to be conditionally superior to @ in the minimax sense
with respect to {2 (a)}.

A weight function where W (F, d,) is a-ordered and where

V for all Few,
W&, dy-1
(¥, d) L0 forall Few,

where V is a constant, may be called an a-ordered complete weight function. Using
such a weight function, we have for all tests of distribution-free families

79(@a, F) =P (dy|@y, F) W(F, dy) =V for all Few,.

Further r =7, +ry, and r,(p, F) =0 for Fé¢w,. Thus, if @' is conditionally superior
to @ with respect to the corresponding a-ordered incomplete weight function, it
follows that

. <
s;:g r(@o, F) < ggg 7 (@q, F') for any o,

ie. @ is at least as good as ¢, in the minimax sense. Now, let @™ be of
size o, Then @, must be at least as good as @™, and a fortiori ¢'™ is also

at least as good as @™ for any a-ordered complete weight function. Thus, we
have established

Theorem 3. If two test families @' and @ are distribution-free with respect to w,,
and if @’ is conditionally superior to (or equivalent to) @ in the minimax sense with
respect to {£(a)}, then @’ is never inferior to @ in the minimax sense with respect
to the class of a-ordered complete weight functions.

As a corollary to Theorems 2 and 3 we may state:

A test family @’ of maximin power with respect to {£2(a)} is conditionally superior
to any other test family, with the exception of other test families of maximin power
which, if they exist, are equivalent to @’ in the minimax sense, with respect to any
a-ordered incomplete weight function. If @’ is distribution-free, it is furthermore
superior (or equivalent) to any other distribution-free test family, but not necessarily
to any other test family, with respect to any a-ordered complete weight function.

The consequence of the theorems is that for distribution-free test families, if (2)
is satisfied for all , @’ is better than @ according to rather general optimality criteria,
whether it is adequate to compare the two kinds of wrong decisions or not. For test
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families that are not distribution-free, the relation between the tests can be assured
to hold only for each size a separately, but even so, this way of comparing two tests
seems attractive. Thus we may very often reduce the problem of comparing two
test families to the following steps:

a) fix w; and w,,

b) find a partition {Q(a)} of w, such that F, may be said to be further away
from w, than F, if F,e€Q(a,), F,€2(a,), and a, > a,,

c) for arbitrary fixed a and «, find out which test has the bigger lower limit of its
power function, and

d) see if this relation is independent of @ and o.

It may, of course, happen that one test is better for some a or «, and worse for
others. In that case, the weight function has to be specified numerically in order
to get a discrimination between the tests, and the use of the minimax principle may
be more severely criticized. In the following sections, however, we shall be able to.
show that there are interesting cases where the relation between the tests is inde-
pendent of a and «, and thus a fairly unambiguous choice between them can be made.

Before going over to the examples it is important to notice that the properties of
superiority and conditional superiority depend rather heavily on the choice of £.
If © is very wide, the test family @' may be superior to @, but if ©Q is narrowed
down, corresponding to an increase of a priori information, @ may well become
superior to @’. If this is the case, it would be of interest to find out when this change:
takes place.

6. Location tests

In the remaining part of the paper, the general principles, given in the previous
section, of comparing two test families, are applied to the problem of testing the:
value of the median y in a one-dimensional distribution. The discussion is confined
to the one-sided case of testing p = 0 against . > 0. The sample is assumed to consist.
of n independent observations drawn from the population to be tested.

In order to be able to introduce successively increasing information (by decreasing:
£2) symmetrically into w, and w,, we shall use the following notation:

Let F denote the distribution of the one-dimensional variable, and

F(X) the cumulative distribution function belonging to it,

M, the class of all one-dimensional distributions with @ =0,

M, the class of all one-dimensional distributions with p >0,

o a class of one-dimensional distributions being considered, e.g. distributions:
with symmetrical density functions,

W, =M, N5
W, =M,n
Q2 =w, U w,.

By different choices of £2' the problem may be given different degrees of generality..
If £ contains only normal populations, it is the classical Student problem of testing
the mean of a normal population with unknown variance. For changing £’, or equiva-
lently, changing degrees of information, the order between the tests according to.
our optimality criterion will probably change. We shall be concerned with a com-
parison of tests at a gradual decrease of £2' from the most general case to more spe-
cific ones.
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Like HorrrpING, we shall define a partition of w,, and say that of two distribu-
tions in w,, that one is farther away from w, which has the bigger a =% — F(0).
Besides being mathematically simple, this seems to be a relevant measure in several
kinds of applications. F(0) will be denoted by ¢. For convenience, we shall write
wy(g) for (% — q), and g-ordered for (3 — g)-ordered weight functions.

In the following comparison of tests, rank tests will play a predominant part, and
it seems appropriate first to examine this type of tests.

7. Rank test families

A rank test family may be defined in the following way. Let the sample point be
T = {zi} = {Siyi} (i = ]-’ 2: ey n),

where y, = |z,| and &, = sgn z,. We shall assume that the distributions are continuous,
so that P {x,=0} =0, and P {y, =y,} =0 for i =j. The observations may then be
ordered in such a way that

Y1<Ys< " <Yy

If y(x) is a function of {¢;} only, the fixed limit test family and the permutation test
family generated by y(x) coincide and constitute a rank test family. Any sequence
£y, Eg, +- -, £, defines a region in the sample space. There are M = 2™ such basic cells
(WaLsH, 1949). Let us denote them by B;(j =1, ..., M).

For distributions with density functions symmetrical around 0,

1
P{xij|FEw1}=JT{[ for any j.

Thus, all rank test families are distribution-free in the class of such symmetrical
distributions.

Any y defines an ordering of the B;, say By, By, ..., B;,,, in the sense that
P (Be) =y (By) = Zy(B;,). A rank test family is completely defined by the
sequence iy, iy, ..., ty. Thus, any strictly increasing function of y will generate
the same rank test family as .

An alternative way of describing certain rank test families was pointed out by
WaLsH (1949), who arranged the observations in increasing order of magnitude.
Let us call the :*" observation in that order x), so that

x(l) < 2y < ... < Z(ny-

Then he suggested the tests

1 if min [} (xe, +20), ¥ (@ +20), .- 1>0
@ (x)= .
0 otherwise

where 4,4, k, I,... are determined so as to give the desired size to the test.
Warse showed that an increase in one or several of the 4, 4, k, [,... amounts
to increasing the region where ¢ (x)=1 by one or more basic cells. This means,
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in the present notation, that to each test family of WaLsg’s type corresponds
an ordering of the B;, or equivalently, a function ¢ (). The opposite is not
true, at is easily seen by an example: Take for simplicity »=25. Then, if
5
p(x)= > &1, for c=4 we get P{y (x)=c}=0 and oc=%g. Here,p(+ — —+ +)=
i=1
=p(++++ —)=5. In order to get @(x)=1 for these sequences also in
WaLsH’s formulation, we can at most require min [ (z@, + %), %] >0 but that
is also satisfied by the sequences (— + -~ + —), and (+ — 4 — +) with ¢ (x) =3,
and by (+ — + + —) with p (z)=1. WaLs#’s formulation of the tests is, how-
ever, very simple in numerical applications and could profitably by used when-
ever possible. )
The most powerful rank test family for the case when w, contains one distribution
F’ only is generated by the function

v (B;) =P{x€Bi|F/}

{cf. LEERMANN and StEIN, 1949, and HorrrpINg, 1951).

When working exclusively with rank tests we may introduce slightly modified.
admissibility concepts. Thus, a test is a-admissible among rank tests if no uniformly
more powerful rank test exists, and it is admissible among rank tests if no uniformly
better rank test exists. These two concepts are, however, equivalent. It is trivial
that admissibility among rank tests implies a-admissibility among rank tests, and the
converse is proved by

Theorem 4. A rank test that is «-admissible among rank tests is also admissible
among rank tests for any weight function.

Proof: Let ¢, be «-admissible among rank tests. Now suppose the theorem
were not true. Then there would exist a rank test ¢, that is uniformly better
than g, '

a) Suppose first that a,>«,. But then

P (d,| ps,, F)> P (dy| @a, F) for all Feow,

and ¢, cannot be uniformly better than g,.
b) I o; =ay,

P(d,| s, F)<P(d,| @z, F) for all Few,
and
P (dy| @uy F)= P (dy| pu, F) for all F e,

with the inequality sign true for at least one F €. But since the tests are
similar and of the same size,

P (dy| @u, F) =P (dy| 0, F) =0, for all Feawy.
Thus, the inequality sign must hold for some F €w, But that would imply
that @, is uniformly more powerful than g, which is impossible, since g, is

a-admissible among rank tests.
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¢) If ay<a;, we may compare @, with the test of size «; from the same
family. As the power with respect to any absolutely continuous F €w, is an
increasing function of «,

P(dzlgvaz, F)<P(d2|¢pul, F) for all F cw,.
Thus, if

P (dy| uyy F)=P(dy| ey, F) for all Few,

®a, Would be uniformly more powerful than ¢,, which is impossible by defini-
tion. This completes the proof.

A family of rank tests, all members of which are admissible among rank tests,
may be called rank-admissible. Although we may perhaps, because of its simplicity,
accept a rank test family that is not admissible, we would hardly do 80, were it not
rank-admissible.

For later reference, we list a few rank test families below:

1. The sign test family, apparently first mentioned by FISHER (1925) and inves-

tigated by Dixox and Moop (1946). It is generated by y(z z &

In a sense, the sign tests are quite crude, as y has the same value for several B;.
It will be convenient in this connection to introduce another notation. Let 7', be
the totality of all B, with ¢ (B ) = k. To point out which B;¢ T, they will occasmnally
be numbered B,,, Bk2> - . Since P (T, |w,) will be rather big, the tests depend
heavily on the outcome of the random experiment determining the decision when
@ (z) = p. HEMELRIIK (1950 a, b) pointed out, however, that a sign test may be
regarded as basic to every other test in this situation. Thus, any test for the median
of a symmetrical distribution may be considered as a combination of a sign test
and a conditonal two-sample test, testing whether or not the positive and the negative
observations come from identical populations. The functions generating these tests
may be called v, (x) for the sign tests and wy,(zx) for the two-sample tests. Then,
the combined test family is generated by a function y(y,, v,). HEMELRUIK suggested
a rule for the construction of this function, but gave no justification for it. However,
in analyzing different tests, it may sometimes be convenient to discuss separately
the choice of y, and the construction of p. As an example of this, we shall describe
below three test families which are based on the same y,, but where the construction

of y is different. The common vy, is y, = Z g; i, and the test families are:

2a. Wilcoxon’s one-sample lest ]‘amzly, proposed by Wircoxon (1945). It has
p =1,. This test may be regarded as the rank analogue of the permutation test
family generated by y(x) = &, suggested by FisHEr (1935).

2b. The Wilcoxon-Hemelrijk test family. The principle of constructing ¢ given by

HEMELRIIK is easily expressed in the present notation. Let B, ; be numbered so that
for all k

Ya (Bkl) 2'!/12 (Bk2) > 21/)2 (Bkmk)-
Then, for k=1, (Bx:)>0,
P )—{ L5 it 9y (Bis) > 9a (Brav)
ki) = . .
1/(7’ +r) if Y2 (Bri) =yy (Brgsn)=- =Y, (Brg+n) =, (Brasr+n)-
For k <0, y is not defined.
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2¢. The Wilcozon-sign test family. Here, y = ny, + y, which means that ¢ (B,,) >
>y(By;) if k>1, and the value of y, is of relevance if k¥ =/ only. This is a sign test
family, modified so as to make the influence of the random experiment smaller.

To make the difference between test families 2a—c clear, we give an example of
the orders, defined by the different y, of the B; when n = 5.

Order among Bj

Y,=2&a y,=Xe&1 2a 2b 2c
Ty: By + + + + + 5 15 1 1 1
Ty: By~ ++ + + 3 13 2 2,3 2
Byt — + + + 3 11 3 4,5 3
Byt + — + + 3 9 4,5 6 4
By + + +— + 3 7 6,7 7,8,9 5
By + + +— 3 5 89,10 10 6
Ty: By~ — + + + 1 9 4,5 2,3 7
By~ +— ++ 1 7 6,7 45 8

B—++ -+ 1 5 8,8,10 7,8,9 9,10

Byt ——++ 1 5 8,9,10 78,9 9,10

ete.
Given a rank test family, F is a least favorable distribution in w, (¢) relative to it, if

;;P(Bt‘IF’)= min > P (B, |F) for all s=1,2,..., M.

Fews(g) i=1

Thus, P (B;|F’) should, as far as possible, be a decreasing function of y (B).
The value of the minimum power depends on the restrictions expressed by the

size of €. Under all circumstances, however, for all F €w,(q), and for all
n—k n+k

mk n-k n+k
Bii€Ty, > P(Bxi|F)=q 2 (1—gq) 2. This means that if for a rank test family
i1
generated by a function o (y;, ) With w, (Br1) = 9y (Bis) =---= 9, (Bkmk),
.ZlP(BkilF) is minimized by the same distribution F’ for all s and %, then F”

is a least favorable distribution in w,(g) relative to all tests with the same y,,
irrespective of the form of y. Thus, the search for a least favorable distribu-
tion can most profitably start by considering each 7, separately.

As the rank tests make no use of the absolute magnitudes of the y’s, any topo-
logical transformation of the y scale does not affect the test. By choosing a suitable
transformation the calculations may be made easier. For instance, the positive
side of the distribution may be made rectangular over the range (0, 1 — ¢). The same
transformation is then applied to the absolute values of the negative side. As in
this way the positive side is made identical for all distributions with common g,
only the negative side will be of relevance in the following discussion. The transfor-
mation is defined by

' =[F(|z|)—¢] sgnz.
The transformed cumulative distribution function becomes
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0 for 2’ <q—1
P @) F[—-F1'(g—2)] g —1<2'<0
)=
! ' +q 0<z'<l—q
1 z'=21—gq.

The density function is most easily expressed in terms of x:

J 0 for ' <g—-1

_dF@) _ @ i

f@)-| aF(-m j(-m 170
l 1 0<a'<l—gq
l 0 z=1l—gq.

It should be noted that for ¢=3}, i.e. F €w,, Fr is for all symmetrical distribu-
tions rectangular (— 4, ). Thus, if Q' contains only symmetrical distributions,
w, is reduced to one element.

As an example of the effect of the transformation for F € w,, let us regard
1
the Cauchy distribution with F (x)=4%+ 1a,rc tg (x—a) where ¢g=4%— - are tga.
7
and Few,(q). For ¢g~1<2"<0, we get

Fl(g—a)=at+tg(g—a —})
"Fra)=3%- ;El arc tg 2a+tg mig—z' — )

and, after some calculation,

fr@)=[1+2a(a—a cos 2mx’ —sin 2mwz')]"".

. . .. , g—1 . . .
This function has a minimum for 2" = QT’ and is symmetrical around this

point with fz(g—1)=fr(0)=1.
For the normal distribution, the explicit expression for Fr(z’) is difficult to
obtain, but by expressing fr(2’) in terms of z, it is possible to obtain its value

in some points. Thus, for N (}, ¢°), where o® has to be determined so as to
make F (0)=gq,

/T(x’)=exp{%} for g—1<2'<0.

As 2'=g—1 corresponds to z= - oo and z'=0 to =0, we get fr(¢g—1)=0
and fr(0)=1.

We can also express df;:’s) in terms of z, and get
d{:ﬂf,x ) = constant - exp {51;_2(%2 +3z+ i): for g—1<a'<0.
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Thus, for ' =q —1, or x = — oo, the derivative is infinite. As  and 2’ increase to 0,
it is first decreasing, then increasing, but is always positive.

Generally, for any distribution with symmetrical and unimodal density function,
f(x)/f(— z) can never exceed 1 for x <0, as long as ¢ < $, and accordingly fr(z) <1
for ' < 0.

A large group of transformed distributions have symmetrical equivalents in €',
as is shown by

Theorem 5. To every J (z') satisfying

=0 for 2’ <q—1
strictly increasing
, for g—1<a’'<0
(4) J) §<z'+1—¢q
=z'+q for 0<z2'<1l—gq
=1 for '>1—g¢q

there corresponds at least one symmetrical distribution for which Fr(z') =J (/).

Proof: Let F have u=3. Then, according to the symmetry,
(5) F)=1-F(1—2).
Now, take in the interval (0, 1) an arbitrary increasing function F, (x), satis-
fying
Fy,(0)=q and F,(3)=1.

Then, define F (x) successively in the following way:

Fi(x) for 0<z<}
1—F, (1—z) 1<z<l
J{—F, {—=z)+q] —3<x<0

Fx)=1J[g—1+F, (1+x)] —1<z< -1
1-J[g—F,(z—1)] 1<zx<1i
1-J[g—1+F,(2-2)] 1i<z<2
ete.

using the recursive formula

jJ[q—F(—x)] . for <0

©) F@=\1_ra-o for z>0.

By construction, F(z) satisfies the symmetry condition (5). It remains to show
that F{x) is a cumulative distribution function, i.e. that it is non-decreasing, and
that F(— o0) =0, and F(o0) =1.
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In the recursive formula (6), it is seen that F (z) is increasing within any interval
of the left-hand side if it is increasing in the corresponding interval of the right-hand
side. Thus, since F,(z) is increasing, F(x) is increasing within any interval where
the formula is applied. But we must also demand that the value of F(z) for x >0

within one interval (s, ¢ + 1) shall be greater than that obtained in the previous
interval (¢ — 1, 3), thus

(7) Fxy>Fx—1) fori <z<i+1, 4=1,2,...
But according to (6),
Flzy=1-F(1—2)=1-J[g— F(z—1)].
Put ' =¢ — F(x — 1). Then (7) becomes
1-J@)>qg—a fora’ <0
or J(&')<a'+1—g¢q.

This condition is satisfied for ¢ —1 <2’ <0 according to (4), and F(z) is increasing
in the whole of the interval 0 < F'(x) < 1. Thus, F(x) is a cumulative distribution
function.

A consequence of theorem 5 is that to any class 27 of Fr with cumulative distri-
bution functions satisfying (4), there corresponds a class Q' of symmetrical distri-

butions, and to a certain extent we may in the following discussion consider the
classes ' and Q7 interchangeably.

8. Comparison of location tests

A. We are now in a position to make the comparison between test families outlined
in section 6 above. For {2’ =the class of all absolutely continuous distributions,
HoxrrpiNg (1951) proved that the sign test family is of maximin power with respect
to {w,(g)}. Thus, according to the corollary to our Theorems 2 and 3, it is condition-
ally superior to any other test family and superior to any other rank test family
with respect to ¢g-ordered weight functions, in both cases with the possible exception
of other test families of maximin power. However, if there exists another family
of maximin power, its tests may be uniformly more powerful and uniformly better
than the sign tests, in which case the sign test family will not be admissible or even
rank-admissible. HoEFrDING did not discuss this possibility. We shall study it in
subsections B and E below.

B. Let us now reduce £2’ to distributions with symmetrical density functions
and call this class 2%. Then the mean of the distribution is, if it exists, equal to the
median, and the tests may be considered as tests of the mean. We shall see that the

situation is not changed from A above. For let Few, and Gew,(q) be two distri-
butions with density functions

_1-2¢ g \H=h
=0 =y (E)

g(x)=(1_2q>(iz_q)l[x]l
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where [2] means the largest integer <, also for x<0. Thus,
|l#]|=[|z|] for >0, and for all integer z, and
[[#]|=[|z|[]+1 for non-integer z<O.

Now, since P {r=an integer}=0, we get

n g(xf) n, n n
AT _on g (1 — )"+
Hi@ #0090
where n_ and n, are the number of negative and positive among the n observations.
For fixed » and ¢, this is obviously a function of »,_ only. By Neyman-Pearson’s
lemma, a test family generated by y(x) =n,, or, equivalently, by y(x) =n,_—n_,
is most powerful for the case when w, = F and w,(q) = @. This family is the sign
test family. As a special case of Horrrping’s {1951) theorems 1 and 2, a similar
test @, is of minimax risk 7, with respect to any g-ordered incomplete weight func-
tion, if for any fixed q it is most powerful for a case where w; = F’ and w,(q) = F/,
and
P(dy| ¢, F)=P (dy| pas Fg') for all F€w,(g).

In other words, F; should be a least favorable distribution in w,(g) to @4 As the
equality sign holds true for all tests of the sign test family, it is, according to our
previous results, conditionally superior or equivalent (since there may be more than
one test family of minimax risk) to any other test family and superior or equivalent
to any other rank test family, with respect to any g-ordered weight function.

The transform of @, as well as of the distribution used by Horrrpine (1951, p. 91)
to demonstrate the optimality of the sign test family, has the density function
fr@) =7

? for g — 1 <2’ <0. For reference purposes it may be convenient to give

a name to this distribution, and we are going to call it the bi-rectangular distri-
bution. It gives equal probabilities to all sequences B, , belonging to one 7',. Thus,
in the case when w, contains this distribution only, all tests with y = ky, +p,,
where k >max |,|, are equivalent and most powerful rank tests. Let us call test
families generated by such functions modified sign fest families. The tests belonging
to such a family are essentially sign tests, but the random order between the B,
within a 7', that is characteristic for the sign test family is replaced by a more or less
complete order. The Wilcoxon-sign test family, described above, is an example
of a modified sign test family.

We shall now state two important theorems on modified sign test families. These
theorems will be fundamental to the following discussion.

Theorem 6. If the bi-rectangular distribution belongs to w; (¢), no rank test family
that is not a modified sign test family can be superior in the minimax sense to the
sign test family with respect to all g-ordered weight functions.

Theorem 7. The sign test family is not rank-admissible if there exists a modified
sign test family, the tests of which are uniformly more powerful than those of the
sign test family. Such modified sign test families are all equally good in the minimax
sense and also as good as the sign test family, but superior to any other rank test
family.
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Proof of Theorem 6: The tests belonging to a family that is not a modified sign test
family must be uniformly less powerful than (or exceptionally as powerful as) those
of the sign test family against the bi-rectangular distribution. Since the sign tests
have the same power against all distributions in w,(g), the theorem follows.

Theorem 7 is true by definition.

It seems intuitively reasonable to assume that the sign test family is rank-admis-
sible when £’ is wide, say at least equal to 2%. This has not yet been proved, but no
common test family is superior to the sign test family. No modified sign test families
seem to have been suggested in the literature. However, if we construct such families
by using for v, the ¢ of the most common one-sided rank tests, the sign test family
will be superior to all of them. This is so because all such families, including the
Wilcoxon-sign test family, satisfy

Yo ler, &g ok — o E0) Sp ey, &y, o — + 00, En)

where all & are identical in the two sequences except that a plus sign and a
neighboring minus sign have changed places. A distribution satisfying

d .f T (xl) ’

P <0 for g—1<2'<0
will give high probability to the basic cells with small y, and vice versa. Thus, the
tests will for almost all « be less powerful than the corresponding sign tests against
that distribution. In Q% therefore, no test family has so far been proved to have
tests that are uniformly more powerful than those of the sign test family.

C. As the proofs above are still true, if fr(z') <1 for ¢ —1 <2’ <0, nothing in
the above discussion is changed when £’ is reduced to unimodal, symmetrical distri-
butions.

D. When further reducing £, it may seem natural to do away with some patho-
logical distributions by asking that

v=P{z, > —x,|2, >0, 2, <0} > L

The class of distributions satisfying this condition will be called 5. The condition
may also be written P(— +) > P{+ —), since

P(—+)
P(—+)+P(+-)

P =

For w,, v is always } according to the symmetry, and the reduction is effective in
@, only. In the transform, the condition may be written

1
q(1—q)

0
f(l—q—i—x')dFT ()=},
q-1

or
0

1 , , 1—-
é fx dFT(x)Z-——~§£-

a~-1
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This condition implies that the mean of the negative side of the transformed distri-
bution must not be situated to the left of the midpoint of the interval (¢ —1, 0)
which is its range. As the transformed density function of Cauchy’s distribution and

g—1

of the bi-rectangular distribution are both symmetrical around , it is clear that

v = } for these distributions. Thus, they belong to the class but are border-line cases.

As the bi-rectangular distribution belongs to 27, the sign test family is of maximin
power. But it is not rank-admissible for all » and « in this class. For P(— +) >
P(+ —). If n =2, the y,-values of the two sequences are equal, and any test of size
o =} belonging to a modified sign test family, satisfying y,(— +) >y,(+ —), is
uniformly more powerful than the sign test of the same size.

E. Next, define 2% as the class of all distributions, the transformed densities of
which are non-decreasing in (¢ — 1, 0). This implies that the mean of the negative

side is at least , and it follows that 2% is a subclass of 2}, Tt is also effectively a

subclass, since obviously the Cauchy distribution does not belong to 2%.
We shall prove that in Q25

P(Eb £y, A — e, 8n)SP(£1, Egy svr— A eee, £4)

where all ¢; are identical in the two sequences except that a plus sign and a neigh-
boring minus sign have changed places. Denote by s, the y-number of the r*! nega-
tive observation, i.e. of (»_41.i. Let the y-number of the specified negative sign
be s; =4 + 1 in the left hand side of (8) and s; =4 in the right hand side. We shall
assume that fr(z’) is twice continuously differentiable, which means no essential
restriction to the class. We may write the two sides of (8) in the form of multiple
integrals

ry z

0 n-1
[ [ m@l i) fr @) by @iz, oo 20) ot o daf (LES)
g—1 ¢—-1 ¢g-1
and
0 %1 ‘”;1 1
f ff by (@1, ooy Fia) fr (&) By (240, oo, 2n) Aol .. dwn (RHS)
g—1 ¢—1 g-1
where
i—-1 n_ ,
h1= EIIT (xsk) h2 =kl:;._|;_1f7' (.’Esk).

If the relation (8) is to hold for any combination of signs
&1y €9y «eey Ei15 Eit2y <oy Eny

ie. for any h, and h,, the following must hold identically in ai_;:

’;—1 % 71
[ [ tr@o) B @) dai dains [ [ fria) H (@) dal dal
g-14¢-1 g-1q¢-1

where
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xt'+1 ”;—1 v
H(xi)= ff ho (%12, «nnr Tn) A Tiys ... d2n.
@71 ¢t1
This is clearly fulfilled if for all z;
$1; ﬁi
[ fr @) H @) dafa < fr (@) [ H (@) doin
e-1

e-1

and, as both sides are =0 for z =¢—1, this is in turn true if the derivatives
with respect to z; fulfill the same relation for all z; :

£
’ ’ d ; ’ ’ 14 ’
fr (@) H () < L;-gi—) f H (@141) doia + fr () H ().
S .
As H (x)=0, this means that
9) 6%20 for g—1<2'<0

which is the definition of the class, and the relation (8) is fulfilled for all
distributions belonging to it.

"Q%F is also easy to express in terms of the original distributions. For (9)
may be written

d f(x) dz
d_xf(-—x)'dx'zo for z<O.
As 4% f '
8 a—;—f(—x) for z, ' <0, we get
df(—=) df (x)
S PRy Pl
>0 for x<O.
(f(==))?

As f{—x)=0, the condition becomes

dlog f(z) _ dlog {(—2)
dx - dx

for x<O.

Now put f,(x)=f(x+a) where a is the point of symmetry. Then the condi-
tion may be written

dlog fy(z—a) _dlog f(—z~a)
dz o dx

This relation should hold for any ¢ < {, i.e. for any @ >0, and for any x <0. That
is possible if and only if

155



E. RUIST, Non-parametric hypotheses

Flogh@ _,
dz*
i.e. if and only if the logarithm of the density function is concave downwards.
To get an idea of what kind of distributions are contained in the class, let us see
for some simple cases if the condition is satisfied.
For the normal distribution we get

h@) = ke
d? log f, (x)

e =—-2c2<0.

Thus, the normal distribution belongs to the class. For Student’s distribution,
we geb
n+1l

f @) =c¢, (1+ %)_T

X

Plogfx)  n+l =%
2 - ' 2\ 2

dx 2 (1+:_v_)

n

This is <0 only when 22 < n, and Student’s distribution belongs to the class only
when n = oo, and we get the normal distribution again. Thus, the class is fairly
restricted in the sense that distributions with too heavy tails are not included.

It should be noted, however, that the bi-rectangular distribution is included in
0%, although on the border-line. Thus, as a consequence of Theorem 6, we need only
consider modified sign test families. We shall give special attention to a certain type
of such families, the tests of which will be shown to be uniformly more powerful
than the corresponding sign tests.

Theorem 8. The tests of a modified sign test family with a y, satisfying
(10) Paler, Eas oo T = oo, &) SYPolEr, 855 .00 — F .0 &)

with the inequality sign true in some cases, are uniformly more powerful than (or
exceptionally as powerful as) the corresponding sign tests.

Proof: Since the sign test family gives the same value of y, to all basic cells in
a T, the theorem is true if it is impossible to find a distribution for which

(11) iéP(Bk‘)<tqn— (1""q)"+

for at least one ¢. The proof will consist of four parts.
1. Let s, denote the y-number of the u'® negative observation in the sequence.
Suppose first that ¢, (B,,) is a decreasing function of s, only, and P (B,,) a decreasing
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function of s, only. It is no essential restriction to assume % < v». Denote the value
of P(By;|s, = k) by p,. The number of cells with s, = ¢ and s, = & is

=72 (7920 (2 7)

and we want to compute the average probability of the -cells with s,=g¢:

n-n_+v
Z a’gh ph
h=g+v—u
n-n_+v )
a
h=g+v—-u

gh

The coefficient for p, is obtained as

n—g)"l »h—-g—l) (n—h ]
" — U, v—u—1) \n_—v
If g is increased to (g+ 1), the coefficient for p, (h>g-+v—u) is multiplied by

(h—g—v+u) (n—g)
(h—g—1) (n—n_—g+u)

and it is seen that this ratio increases with A, or is unchanged. The coefficient for
Po+v-u becomes 0. Since p, is assumed to be a decreasing function of %, this implies
that the average probability of the cells with s, =g does not increase as g increases, or

1 ¢ n n
;iZ P(Byi)zq" - (1—q)"+

-1

and (11) cannot be true.

2. Now, let, as before, y, be a function of s, only, but P depend on more than one
8;, only not on s,. If this change has any effect on the average probability, it is in-
creasing, and (11) cannot hold.

3. Let P depend on s, only, as in 1, and let p, depend on more than one s;, but
not on s,. The effect is the same as in 2. .

4. If P and y, depend on some common s,, it is obvious that the power will increase,
and (11) cannot hold. The theorem is proved.

If we can find a modified sign test family satisfying (10) that is also rank-admissible,
this is the best we can do, as long as we restrict ourselves to rank tests. A test is
clearly admissible among rank tests if it is more powerful than any other rank test
for an arbitrary F€w,. In order to construct such a test, let us find the most powerful

rank test for a series of distributions converging to the bi-rectangular distribution.
Thus, define

g(L+e) (1—g+2)"
A—g"=

fr(@')=

for g—1<2a’'<0
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where ¢, is a positive parameter. As ¢;—>0, fr{2')— i—z——q— fr(z’) is never de-

creasing, so the distribution belongs to 2%.

q(1+¢)
Let Co = '(1—)“1_0;
s;=the y-number of the ' negative observation, and
$=0.

‘The probability of a sequence g, &, ..., &, is equal to

1-¢1-¢ l-gn_
P=ntg-f [ f [1(1~g—)" dai-day =
[ . ’ 1=

%1 %n-
_ nle- (1—g)" " - g (-g"(Qte)
£ - , , S n_—i1+1
(=8 )T TI [—j+D+em-—i+1)] I TI (1+01 “—-——)
T=1 j=5; 141 To1 =g q+1 n—j+1

‘Thus, for ¢, =0, we get correctly P=¢"- (1 -¢)"+. Taking logarithms, we get

n n n_—i+1
log P=log ¢"- (1L —¢)*+ (1 +¢;)"~ — Z Z log (1-1—617_—7.—_-'_—{)‘

i=17=s;_q+1

3
Now, log (1+a)=a— 5 + % —---. For z very small, we may disregard all terms

beyond the first one. Thus, for ¢, small enough,

—i+1

log P~log ¢~ (1-g)" (1+¢)"-—¢,3 5 == :
—j+ 1

‘The most powerful rank test for the case when w,(g) contains only this distri-

bution is obtained by letting y equal a strictly increasing function of P, say

1 .

o log P. From the above expression it is seen that for ¢,, ¢, and = fixed, the
1

first term is a function of n, only, and is an increasing function of ¢, =n, —n_.
Making ¢, small enough, and taking

12) pom -3 3, (ZZ it 1)_1

n—j+1

we get a rank-admissible modified sign test family that is uniformly more powerful
for all o than the sign test family, and superior in the minimax sense to any family
that is not a modified sign test family.

Another modified sign test family satisfying (10) is the Wilcoxon-sign test family.
It may be intuitively suggested that it is also rank-admissible, but the proof is still
lacking. Computationally, it is more convenient than (12). As none of these tests
have been discussed in the literature, Tables 1 and 2 give the values of ¢ and p
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n_ 8 - . + 1 -1
Table 1. The modified sign test family generated by y, = (Z Bt ) .

=1 J'=si2__1+1 n—j+1

! ' & =0.05 a=0.01

| . o @ =11 o@—-p P 1t @) =p

where | . . where
either or if

p= p=

either or if

| 5 [n_=0 ~ n=1 0.60
5 Y= 5
: 6 -0 fn_=1 n_=1

n_= “P225 v 0.20

040 [ n_=0 - 0.28

3
I
]

_840 | 980 |n_=0 0.56

<
-
|

1400

3
I
[

n_=2
2520

=1 n_=1
2520 - = { -
- 0.20 | n_=0 { - 1 0.24
3240
n_=3
27720

i
Y2 = 50410

Ya Yo =

22704 = 9625

l
{
{ {
= ;
O e T PP
=
[z

n_=3 n_=2 n_= 2
27720 040 | n_<1 27720 27720 | (.48

ki - 21720
Y2 = 30660 | | ¥ 30723 < 11970

n_=3 n_=3 n_=2 n_=2
12 |n_ <2 27720 27720 080 | n <1 i 27720 27720 .98
_< - . < V.= =

for « = 0.05 and 0.01, and for » =5, 6, ..., 12 (test family (12)), and = =5, 6, ..., 15
(Wilcoxon-sign test family) respectively. For large values of n, the Wilcoxon v, was
shown by MaNN and WHITNEY (1947) to be approximately normally distributed
within each 7T, with mean }(n, —n_) (» + 1) and variance }n, n_(n +1). If the
normal approximation is used for 11 <x <15, the actual size of the test will be:

n = 11 12 13 14 15

o =0.05 0.053 0.050 0.049 0.051 0.049
o« =0.01 0.0103 0.0105 0.0098 0.0106 0.0103.

Thus, the approximation is very close already for these sample sizes, and can prof-
itably be used.

159



E. RUIST, Non-parametric hypotheses

n
Table 2. The Wilcoxon-sign test family, generated by v, = zz £ 5.
=1

o =0.05 o =0.01

n @ (x)=1if ¢x)—p @ (x)=1if @(x)=p i
either or if where etther or if Whe_re ‘
r= P= i
5 |n_=0 - {”—= L1 060 |
¥, =13 i
6 B {n_— 1 {n_= 1 !
n=0| {4 s17 va=15 | 020
. {n_—l {n_ 1 - {n_ .
n_=0 v, 218 v, =16 040 | n_=0 - ¥, ~26 0. :
g {n_= 2 {n_— 2 _ {n_—— 1 ln_—- 1 0.56 |
n_<1 v, 28 wo=26 | 090 =01 (. 34 v, =32 sl
‘n_—2 {n_—2 ~ {n_=1 {n_=l o |
» [n-=? Yy 229 y, =27 0.90 | n=0 Y, 237 Yy =35 0.1 I
o . {n_= 2 ‘n_= 2 i ‘n_ 1 (n_=1 0.94
n-= P, 225 P, =23 0.60 | n=0 ;=37 l'I’z—'35 ) ‘
" R {n_= 3 {n_— 3 {n_= 2 {n_—- 2 6 5
n_< s =40 po=38 | 044 |n_<1 va =54 p=52 | 083}
12 9 {n_= 3 {n_= 3 1 {n_— 2 [n_= 2 o059 |
n_< v, > 38 v, =36 0.05 | n_< v, 256 v, = 54 . :
13 {n__= 4 ‘n_— 4 {n_= 2 {n_—- 2 0.64 |
n_<3 ¥y 259 v, =57 042 | n_<1 s =53 ve =51 . ;
" {n_= 4 :n_ 4 {n_ 3 {n_ 3 035'
n_<3 v, =53 - 064 | n_<2 v, 275 ve =73 . ,
s {n_= 4 {n_= 4 \ {n_= 3 {n_= 3 | oes 5

n_<3 v, =46 wa =44 059 [n_< v, 276 vy =4 .

As an example of the use of the tables and of the approximation, take
the sequence with n=12, n,=9, and #.=3: + — — + 4+ —++ ++ + +.
For the Wilcoxon-sign test family ¢,=1—-2—-3+4+5-6+7+8+9+10+11+

~1 y
+12=>56, and for test family (12) y,= (1 + 2 + 3) = % The tables

7 10 11
show that according to both test families, the sequence is significant at the
5 % level but not at the 1 % level.

Let us also compute the normal approximation of Wilcoxon’s test for « =0.05.
From binomial tables or by easy calculation, we find that the basic cells with
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Pla|%,F;)
1

0,5} A\

<}
wi
=

The Wilcoxon test family
------ The Wilcoxon-Hemelrijk test family
— — — — The Wilcoxon-sign test family (or any other modified
sign test family, or the sign test family).

Diagram 1. (l-power) against the bi-rectangular distribution as a function of the size, for test
families using the Wilcoxon ¢,.

n_=0, 1, and 2 give a combined probability of 4—70%_6 = 0.0193. The missing

0.0307 have to be taken from cells with n_=3, the total probability of which is

29

4—0; 6 =0.0537. Thus the conditional probability within 7'; {where n_ = 3) should be
0.0307 L o o

0.0537 =0.572, which in the normal distribution corresponds to a deviation from

the mean of 0.18 standard deviations. Since
E(y,) =4-6-13 =39, and D?*(p) =1-9-3-13 =117, D(y,) = 10.8,

we get the approximate value of ¢ to be 39 —0.18-10.8 = 37.1. Since the observed
value of p, =56 is greater than 37.1, we get @(z) =1, i.e. the hypothesis of zero
mean is rejected on the 59 level. )

As a corollary to theorem 8, all test families with y, satisfying (10) have the bi-
rectangular for least favorable distribution. This is true of the Wilcoxon tests 2a,
b, and ¢. By Theorem 7, the Wilcoxon-sign test family is superior to the others, and
since the pure Wilcoxon test is closer to the y;-order, it is superior to the Wilcoxon-
Hemelrijk test family. As an example, Diagram 1 gives P(d,|p,, F7) as a function
of o for n =5, ¢ = }, and F7 = the bi-rectangular distribution.
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In order to give some illustration to the question of what the restriction to rank
tests means, it is of interest to compare the pure Wilcoxon test family with the
permutation test family generated by w(z) =& (“Fisher’s tests”). These were in-
vestigated by LEEMANN and SteEIN (1949), and as a special case of their results,
Fisher’s tests are uniformly most powerful among permutation tests (including rank
tests) when ' contains only normal distributions. According to HoEFFDING (1952),
they are also asymptotically as powerful as the ¢ tests in the same class. However,
in 2%, neither Wilcoxon’s tests nor Fisher’s tests are for all « uniformly more powerful
than the others. For take any distribution that has the bi-rectangular for its trans-
form. Then the scheme of p. 148 may be extended in a slightly modified form to
Fisher’s test family, still considering only the case n=>5.

Take first o =5/32. From p. 148 it is seen that Wilcoxon’s test (2a) will have
@{x) =1 for By, B,,, B,,, By, and B,,. In Fisher’s test, By, B,,, Bs,, and By, will
always have @(z) =1, irrespective of the absolute values of the observations. The.
fifth basic cell with @(z) =1 will be B, if y; + ¥, <y,, otherwise B,, will take its.
place. Thus, since P(B,|F) > P(B,,|F) for all F with the bi-rectangular distri-
bution as transform, Fisher’s test is more powerful for these distributions than
Wilcoxon’s test. On the other hand, take « =10/32. Both tests have ¢(x) =1 for
By, By, Byy, By, Byy, By, and By, The following scheme will show which other
cells enter the region where p(z) =1.

Wilcoxon’s Fisher’s

test test
If max [(y;+y,), ¥s] <min (4, + 2+ ¥a), (Y2 + )] By By
max [(y; +ya+Ys)s Ys] <1+ Yy By, By
Yoty <min [(y; + ¥y, + ¥3), 5] By By
max [(y; +y,), (41 + Y.+ y3)] <min[(y; +¥,), ¥s] By - By
max [(y; +¥y), Y] <1+ Y21 Ys B, By
max{(y;+v,), (W1 +v2+ 1) <ys B,y By,

max [(y; + Y2 + %), Ysl <91+ Yy By, By
Yo+ Ys<y1+Ys By, B,,
Yty <ysty; By, By;

The events within each group are complementary. It is seen that for some sample
points (which have positive probability) Fisher’s test takes basic cells from a 7',
with lower k, and thus with smaller probability according to the bi-rectangular
distribution, than does Wilcoxon’s test. As for any g-ordered incomplete weight.
function the bi-rectangular distribution is least favorable relative to the Wilcoxon.
test family, Fisher’s test of size « = 10/32 cannot be conditionally better in the mini-
max sense than Wilcoxon’s. As a consequence, Fisher’s test family is not superior-
to Wilcoxon’s test family with respect to such weight functions, and a fortiori not.
superior to the admissible modified sign test families.

Summing up the results of this section, the sign test family is, according to the.
criterion adopted here, better than any other test taken into consideration, if it is.
not known that P(— +) = P(+ —). On the other hand, if the distribution is known.
to have a density function that is logarithmically concave downwards, a modified
sign test family satisfying (10) is best among rank test families. This strong position.
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of the modified sign test families is rather unexpected, as they have not, to the:
author’s knowledge, been investigated before. Their optimality property is destroyed
if £ is further reduced in such a way that the bi-rectangular distribution is left
out. Only in very rare cases, however, does the information permit such a reduction,
except when the functional form of the distribution is known, and in that case
ordinary parametric tests should be used.
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