Communicated 14 April 1954 by T. NAGELL

Some groups of order $p^r q^s$ with Abelian subgroups of order p^r contained in the central

By Erik Götlind

The group of order $p^r q^s$ where p and q are different prime numbers may be generated by $A_i B_j$ where A_i runs through all elements of a subgroup of order p^r and B_j all elements of a subgroup of order q^s . There are $p^r q^s A_i B_j$ and they are all different. Hence they exhaust the group $G_p r_q s$. (Here and in the following " G_n " denotes a group of order n.) This means that if under certain conditions every A_i must be permutable with every B_j and if a pair of groups, $G_p r$, $G_q s$, fulfils these conditions, there is one and only one group of order $p^r q^s$ with just these groups as subgroups, because the relations between A_i and B_j are completely determined in this case. If under these conditions one of the groups in the pair, say $G_p r$, is Abelian, $G_p r$ is contained in the central of the group $G_p r_q s$.

It has been shown that if $p > q^s$ and $p \equiv 1 \pmod{q}$ and $G_p r$ is a cyclic subgroup of $G_p r_q s$, then $G_p r$ must be contained in the central of $G_p r_q s$. This also means that there can only be as many abstract groups of a given order $p^r q^s$ with these conditions fulfilled as there are different groups of order $q^{s.1}$ In the following the case where $G_p r$ is an Abelian group generated by two elements will be considered and the theorem to be deduced is:

Theorem: If $G_p r$ is an Abelian subgroup of $G_p r_q s$ generated by two elements of different order and $p > q^s$ and $p \equiv 1 \pmod{q}$, or if $G_p r$ is an Abelian subgroup of $G_p r_q s$ generated by two elements of the same order and $p > q^s$ and $p^2 \equiv 1 \pmod{q}$, then $G_p r$ must be contained in the central of $G_p r_q s$.

The proof requires some lemmas.

Lemma 1. When $p > q^s$, there is only one subgroup of order p^r of the group $G_p r_q s$.

Suppose $G_p r$ and $G'_p r$ were two different subgroups of $G_p r_q s$. Then $G'_p r$ would contain at least some element, say A', not contained in $G_p r$ and of order p^v , where $v \neq 0$. $(A')^n A_i$ would then produce p^{r+1} different elements, when n takes the values $1, 2, \ldots, p$, and A_i runs through all elements of $G_p r$. They are all different, because if $(A')^m A_i = (A')^n A_j$ we would have $(A')^{m-n} = A_j A_i^{-1}$ and A' would be an element of $G_p r$ if $m \neq n$, contrary to the assumptions, because in this case $m - n \equiv 0 \pmod{p}$.

¹ E. GÖTLIND: Några satser om grupper av ordningen $p^r q^s$. (Some lemmas about groups of order $p^r q^s$.) Norsk Matematisk Tidsskrift, 1948, p. 11, together with a correction note to this paper: Not till uppsatsen "Några satser om grupper av ordningen $p^r q^s$ ", the same journal, 1949, p. 59.

When m = n we get $A_i = A_j$ as the only possibility. Hence there are p^{r+1} different elements of the type $(A')^n A_i$ all belonging to the group $G_n r_o s$. But when $p > q^s$, p^{r+1} is greater than $p^r q^s$ and in this case p^{r+1} different elements of $G_p r_q s$ is an impossibility. This means that when $p > q^s$ there cannot exist more than one subgroup of order p^r , and this group must be self-conjugated.

Lemma 2. When $p > q^s$ and $p \equiv 1 \pmod{q}$, an element $B \neq E$ in a subgroup $G_q s$ of the group $G_p r_q s$ cannot be non-permutable with one and only one of the base elements of an Abelian subgroup $G_p r$ of $G_p r_q s$. Let A_1, A_2, \ldots, A_n be the base elements of $G_p r$, and let A_1 be an element not permut-

able with the given B. A_i is of order p^{r_i} . Transformation of A_i with B gives:

$$BA_1 B^{-1} = A_1^t A_2^{w_1} \dots A_n^{w_n}$$
 (1)

$$BA_i B^{-1} = A_i \qquad (i = 2, 3, ..., n)$$
⁽²⁾

where t = 1 and $w_i = 0$ for all *i* do not both hold. (We know that a relation of type (1) must hold when $p > q^s$ because in this case $G_p r$ is self-conjugated, as was shown above.) Iterated transformation of A_1 using (1) and (2) gives

$$B^{m}A_{1}B^{-m} = A_{1}^{t^{m}}A_{2}^{w_{1}+w_{2}t+\cdots+w_{2}t^{m-1}}\dots A_{n}^{w_{n}+w_{n}t+\cdots+w_{n}t^{m-1}}.$$
 (3)

However, B is an element in $G_q s$ and hence of order q^u where $u \neq 0$ $(B \neq E)$. Substituting q^u for m in (3) we get

$$B^{q^{u}}A_{1}B^{-} = E A_{1}E = A_{1} = A_{1}^{tq^{u}}A_{2}^{w_{2}+w_{2}t+\cdots+w_{2}tq^{u}-1}\cdots A_{n}^{w}A_{n}^{w}+w_{n}t+\cdots+w_{n}tq^{u}-1.$$

Hence

$$t^{q^u} \equiv 1 \pmod{p^{r_1}} \tag{4}$$

and

$$w_i + w_i t + \dots + w_i t^{a^u - 1} \equiv 0 \pmod{p^{r_i}}.$$
 (5)

From the number theory we know that

$$t^{\varphi(p^{r_1})} \equiv 1 \pmod{p^{r_1}}$$
 (6)

and (4) together with (6) gives

$$\varphi\left(p^{r_1}\right) \equiv 0 \pmod{q} \tag{7}$$

when $t \equiv 1 \pmod{p^{r_1}}$. But p and q are different prime numbers. Hence (7) implies

$$p-1\equiv 0 \pmod{q}$$

When $p-1 \equiv 0 \pmod{q}$ the only possibility is that $t \equiv 1 \pmod{p^{r_1}}$ which gives t=1 and in that case (5) is reduced to

$$q^u w_i \equiv 0 \pmod{p^r i}$$
 $(i = 2, 3, ..., n)$

166

and since (p, q) = 1

$$w_i \equiv 0 \pmod{p^{r_i}}$$

which gives $w_i = 0$. This means that when $p - 1 \equiv 0 \pmod{q}$ (1) takes the form $BA_1B^{-1} = A_1$ and Lemma 2 is proved.

Lemma 3. When $p > q^s$ and $p \equiv 1 \pmod{q}$, an element $B \ (\neq E)$ in a subgroup $G_q s$ of the group $G_p r_q s$ cannot be non-permutable with both of two base elements generating an Abelian subgroup $G_p r$ and being of different order.

Let A_1 of order p^t and A_2 of order p^u be two base elements together generating $G_p r$, and let $p^t > p^u$. It is assumed in the following that $p > q^s$.

Suppose we have

$$BA_1B^{-1} = A_1^m A_2^n (8)$$

$$BA_2 B^{-1} = A_1^v A_2^w \tag{9}$$

where m = 1 and n = 0 do not both hold and v = 0 and w = 1 do not both hold. (The transformation of A_1 and A_2 with B gives elements contained in $G_p r$ when $p > q^s$ according to Lemma 1.)

The proof of Lemma 3 will proceed in three steps (3a, 3b, 3c).

3 a. If there were an element A_i in $G_p r$ with which B were permutable, it could not be of the highest order (in $G_p r$) if $p \equiv 1 \pmod{q}$.

 A_i belongs to $G_p r$ and hence must be of the form

 $A_i = A_1^h A_2^k$

because A_1 and A_2 generated $G_p r$. If A_i should be of the highest order (which is p^i) in $G_p r$, it must hold that

$$h \equiv 0 \pmod{p} \tag{10}$$

because otherwise A_i could not be of higher order than p^{t-1} . But when (10) is fulfilled A_i and A_2 form a base for $G_p r$. Then we would have a base consisting of one element permutable with B, A_i , and one not permutable with B, A_2 . However, this is impossible according to Lemma 2 when $p \equiv 1 \pmod{q}$. Hence A_i cannot be of the highest order when $p \equiv 1 \pmod{q}$.

3 b. If there were an element B of order q^m $(m \neq 0)$ fulfilling (8) and (9), every element of the highest order (p^i) in $G_p r$ would be contained in a cycle (produced through iterated transformations with B) of q^i $(1 \le i \le m)$ different elements all of the highest order, provided that $p \equiv 1 \pmod{q}$.

The transformation of an element of the highest order with B will give a new element contained in $G_p r$ (according to Lemma 1 because it is assumed that $p > q^s$) and of the same order as the transformed element. Let A_{10} be an element of the highest order (p^t) , and let A_{1i} be defined thus:

$$B^{i}A_{10}B^{-i} = A_{1i}.$$
 (11)

But B is of order q^m . Hence

$$B^{q^m} A_{10} B^{-q^m} = E A_{10} E = A_{10} = A_{1q^m}.$$

167

E. GÖTLIND, Some groups of order $p^r q^s$

This means that there can be at most q^m different elements in the cycle of elements of the highest order constructed through repeated transformation with B and starting from a given element of the highest order in $G_p r$. However, two elements, say A_{1i} and A_{1j} (where $i \neq j$), of such a cycle cannot be equal if $i - j \equiv 0 \pmod{q}$ and $p \equiv 1 \pmod{q}$ because, if they were, we would have

$$B^{i}A_{10}B^{-i} = B^{j}A_{10}B^{-j}$$

according to (11) and hence

$$B^{i-j}A_{10} = A_{10}B^{i-j} \tag{12}$$

But (12) is impossible when $p \equiv 1 \pmod{q}$ because then 3a holds, and A_{10} which is of the highest order cannot be permutable with B^v where $v \equiv 0 \pmod{q}$ since this implies that A_{10} is permutable with B. (When $v \equiv 0 \pmod{q}$) there is a k such that $vk \equiv 1 \pmod{q^m}$ and k iterated transformations of A_{10} with B^v will give $B^{vk}A_{10} =$ $= A_{10} B^{-vk}$ and hence $BA_{10} = A_{10}B$.) Hence $i - j \equiv 0 \pmod{q}$ if two elements A_{1i} and A_{1i} in the cycle are alike and the number of different elements in the cycle is $\equiv 0 \pmod{q}$.

3 c. When two cycles contain some element in common they contain all elements in common.

If there were an element A_{2j} belonging to a cycle C_2 contained in the cycle C_1 constructed on A_{10} , then for some *i*:

$$B^i A_{10} B^{-i} = A_{2i}. ag{13}$$

But then $B^{\nu}A_{2j}B^{-\nu}$ will also belong to C_1 for all ν ($B^{\nu}A_{2j}B^{-\nu}=B^{\nu+i}A_{10}B^{-\nu-i}$ according to (13)), and since the cycle C_2 may be constructed on A_{2j} (as on every other element belonging to the cycle C_2) we get that $C_1 = C_2$.

3a, 3b and 3c then give that when $p > q^s$ and $p \equiv 1 \pmod{q}$ every element of the highest order in $G_p r$ belongs to one and only one cycle of the type described. Hence the number N of elements of the highest order in $G_p r$ must be a multiple of q, because in every cycle the number of different elements is a multiple of q (according to 3b). The number of highest-order elements in $G_p r$ is

$$N = p^u \varphi(p^t) = p^{u+t-1}(p-1)$$

(which means A_2^i for all *i* combined with the A_1^j where $(j, p^i) = 1$). Hence

$$p^{u+t-1}(p-1)\equiv 0 \pmod{q}.$$

But since (p, q) = 1 we get

$$p-1 \equiv 0 \pmod{q}$$

which contradicts the assumption that $p \equiv 1 \pmod{q}$. This means that no $B \ (\neq E)$ can be non-permutable with both A_1 and A_2 when $p > q^s$ and $p \equiv 1 \pmod{q}$. Thus Lemma 3 is proved.

Lemma 4. When $p > q^s$ and $p^2 \equiv 1 \pmod{q}$, an element $B \neq E$ in a subgroup $G_q s$ of the group $G_p r_q s$ cannot be non-permutable with both of two base elements generating an Abelian subgroup $G_p r$ and being of the same order.

4 a. Like 3a with the difference that when $p^t = p^u$, $A_i (= A_1^h A_2^k)$ is of the highest order provided that h or k or both are incongruent 0 modulo p.

4 b. Like 3 b.

4 c. In this case the value of N is

$$N = p^{t} \varphi(p^{t}) + (p^{t} - \varphi(p^{t}))\varphi(p^{t}) = p^{2(t-1)}(p^{2} - 1).$$

Hence because N must be a multiple of q

$$p^{2(t-1)}(p^2-1) \equiv 0 \pmod{q}$$

and since (p, q) = 1 we get

$$p^2-1\equiv 0 \pmod{q}.$$

Hence we get that in this case no $B \ (\neq E)$ can be non-permutable with both A_1 and A_2 when $p > q^s$ and $p^2 \equiv 1 \pmod{q}$. $(p^2 \equiv 1 \pmod{q})$ implies that $p \equiv 1 \pmod{q}$, which is a condition needed for the proof.)

Lemmas 2, 3 and 4 immediately give the theorem.

A consequence of the theorem, together with the result mentioned in the beginning, is that when $p > q^s$ and $p^2 \equiv 1 \pmod{q}$ there are only as many abstract groups of order $p^2 q^s$ as twice the number of abstract groups of order q^s , because in this case there are only two groups of order p^r , the Abelian groups (2) and (1,1) and each of them determines one and only one group of order $p^2 q^s$ together with a given group of order q^s . For instance, when $p > q^4$ and $p^2 \equiv 1 \pmod{q}$, there are 30 groups of order $p^2 q^4$.

Uppsala Universitet.

Tryckt den 6 oktober 1954

Uppsala 1954. Almqvist & Wiksells Boktryckeri AB