Some groups of order $\boldsymbol{p}^{\boldsymbol{r}} \boldsymbol{q}^{\boldsymbol{s}}$ with Abelian subgroups of order \boldsymbol{p}^{r} contained in the central

By Erik Götlind

The group of order $p^{r} q^{s}$ where p and q are different prime numbers may be generated by $\mathrm{A}_{i} B_{j}$ where A_{i} runs through all elements of a subgroup of order p^{r} and B_{j} all elements of a subgroup of order q^{s}. There are $p^{r} q^{s} A_{i} B_{j}$ and they are all different. Hence they exhaust the group $G_{p} r_{q} s$. (Here and in the following " G_{n} " denotes a group of order n.) This means that if under certain conditions every A_{i} must be permutable with every B_{j} and if a pair of groups, $G_{p} r, G_{q} s$, fulfils these conditions, there is one and only one group of order $p^{T} q^{s}$ with just these groups as subgroups, because the relations between A_{i} and B_{1} are completely determined in this case. If under these conditions one of the groups in the pair, say $G_{p} r$, is Abelian, $G_{p} r$ is contained in the central of the group $G_{p} r_{q} s$.

It has been shown that if $p>q^{s}$ and $p \equiv 1(\bmod q)$ and $G_{p} r$ is a cyclic subgroup of $G_{p} r_{q} s$, then $G_{p} r$ must be contained in the central of $G_{p} r_{q} s$. This also means that there can only be as many abstract groups of a given order $p^{r} q^{s}$ with these conditions fulfilled as there are different groups of order $q^{5} .{ }^{1}$ In the following the case where $G_{y} r$ is an Abelian group generated by two elements will be considered and the theorem to be deduced is:

Theorem: If $G_{p} r$ is an Abelian subgroup of $G_{p} r_{q} s$ generated by two elements of different order and $p>q^{s}$ and $p \neq 1(\bmod q)$, or if $G_{p} r$ is an Abelian subgroup of $G_{p} r_{q} s$ generated by two elements of the same order and $p>q^{s}$ and $p^{2} \equiv 1(\bmod q)$, then $G_{p} r$ must be contained in the central of $G_{p} r_{q} s$.

The proof requires some lemmas.
Lemma 1. When $p>q^{s}$, there is only one subgroup of order p^{r} of the group $G_{p} r_{q} s$.

Suppose $G_{p} r$ and $G_{p}^{\prime} r$ were two different subgroups of $G_{p} r_{q} s$. Then $G_{p}^{\prime} r$ would contain at least some element, say A^{\prime}, not contained in $G_{p} r$ and of order p^{v}, where $v \neq 0$. $\left(A^{\prime}\right)^{n} A_{i}$ would then produce p^{r+1} different elements, when n takes the values $1,2, \ldots, p$, and A_{i} runs through all elements of $G_{p} r$. They are all different, because if $\left(A^{\prime}\right)^{m} A_{i}=\left(A^{\prime}\right)^{n} A_{j}$ we would have $\left(A^{\prime}\right)^{m-n}=A_{i} A_{i}^{-1}$ and A^{\prime} would be an element of $G_{p} r$ if $m \neq n$, contrary to the assumptions, because in this case $m-n \neq 0(\bmod p)$.

[^0]When $m=n$ we get $A_{i}=A_{j}$ as the only possibility. Hence there are p^{r+1} different elements of the type $\left(A^{\prime}\right)^{n} A_{i}$ all belonging to the group $G_{p} r_{q} s$. But when $p>q^{s}, p^{r+1}$ is greater than $p^{r} q^{s}$ and in this case p^{r+1} different elements of $G_{p} r_{Q} s$ is an impossibility. This means that when $p>q^{s}$ there cannot exist more than one subgroup of order p^{r}, and this group must be self-conjugated.

Lemma 2. When $p>q^{s}$ and $p \equiv 1(\bmod q)$, an element $B(\neq E)$ in a subgroup $G_{q} s$ of the group $G_{p} r_{q} s$ cannot be non-permutable with one and only one of the base elements of an Abelian subgroup $G_{p} r$ of $G_{p} r_{q} s$.

Let $A_{1}, A_{2}, \ldots, A_{n}$ be the base elements of $G_{p} r$, and let A_{1} be an element not permutable with the given B, A_{i} is of order $p^{\boldsymbol{7}_{i}}$. Transformation of A_{i} with B gives:

$$
\begin{gather*}
B A_{1} B^{-1}=A_{1}^{t} A_{2}^{w_{2}} \ldots A_{n}^{w_{n}} \tag{1}\\
B A_{i} B^{-1}=A_{i} \quad(i=2,3, \ldots, n) \tag{2}
\end{gather*}
$$

where $t=1$ and $w_{i}=0$ for all i do not both hold. (We know that a relation of type (1) must hold when $p>q^{s}$ because in this case $G_{p} r$ is self-conjugated, as was shown above.) Iterated transformation of A_{1} using (1) and (2) gives

$$
\begin{equation*}
B^{m} A_{1} B^{-m}=A_{1}^{t_{1}^{m}} A_{2}^{w_{2}+w_{2} t+\cdots+w_{2} t^{m-1}} \ldots A_{n}^{w_{n}+w_{n} t+\cdots+w_{n} t^{m-1}} \tag{3}
\end{equation*}
$$

However, B is an element in $G_{q} s$ and hence of order q^{u} where $u \neq 0(B \neq E)$. Substituting q^{u} for m in (3) we get

$$
B^{q^{u}} A_{1} B^{-/}=E A_{1} E=A_{1}=A_{1}^{t^{q^{u}}} A_{2}^{w_{2}+w_{2} t+\cdots+w_{2} t^{u}-1} \cdots A_{n}^{w_{n}+w_{n} t+\cdots+w_{n} t t^{u^{u}-1}}
$$

Hence

$$
\begin{equation*}
t^{q^{u}} \equiv 1\left(\bmod p^{r_{1}}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{i}+w_{i} t+\cdots+w_{i} t^{q^{u}-1} \equiv 0\left(\bmod p^{\tau_{i}}\right) \tag{5}
\end{equation*}
$$

From the number theory we know that

$$
\begin{equation*}
t^{\varphi\left(p^{r_{1}}\right) \equiv 1\left(\bmod p^{r_{1}}\right)} \tag{6}
\end{equation*}
$$

and (4) together with (6) gives

$$
\begin{equation*}
\varphi\left(p^{r_{1}}\right) \equiv 0(\bmod q) \tag{7}
\end{equation*}
$$

when $t \neq 1\left(\bmod p^{r_{1}}\right)$. But p and q are different prime numbers. Hence (7) implies

$$
p-1 \equiv 0(\bmod q)
$$

When $p-1 \neq 0(\bmod q)$ the only possibility is that $t \equiv 1\left(\bmod p^{r_{1}}\right)$ which gives $t=1$ and in that case (5) is reduced to

$$
q^{u} w_{i} \equiv 0\left(\bmod p^{r_{i}}\right) \quad(i=2,3, \ldots, n)
$$

and since $(p, q)=1$

$$
w_{i} \equiv 0\left(\bmod p^{r_{i}}\right)
$$

which gives $w_{i}=0$. This means that when $p-1 \neq 0(\bmod q)(1)$ takes the form $B A_{1} B^{-1}=A_{1}$ and Lemma 2 is proved.

Lemma 3. When $p>q^{s}$ and $p \neq 1(\bmod q)$, an element $B(\neq E)$ in a subgroup $G_{q} s$ of the group $G_{p} r_{q} s$ cannot be non-permutable with both of two base elements generating an Abelian subgroup $G_{p} r$ and being of different order.

Let A_{1} of order p^{t} and A_{2} of order p^{u} be two base elements together generating $G_{p} r$, and let $p^{t}>p^{u}$. It is assumed in the following that $p>q^{s}$.

Suppose we have

$$
\begin{align*}
& B A_{1} B^{-1}=A_{1}^{m} A_{2}^{n} \tag{8}\\
& B A_{2} B^{-1}=A_{1}^{v} A_{2}^{w} \tag{9}
\end{align*}
$$

where $m=1$ and $n=0$ do not both hold and $v=0$ and $w=1$ do not both hold. (The transformation of A_{1} and A_{2} with B gives elements contained in $G_{p} r$ when $p>q^{s}$ according to Lemma l.)

The proof of Lemma 3 will proceed in three steps ($3 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{c}$).
3 a. If there were an element A_{i} in $G_{p} r$ with which B were permutable, it could not be of the highest order (in $\left.G_{p} r\right)$ if $p \neq 1(\bmod q)$.
A_{i} belongs to $G_{p} r$ and hence must be of the form

$$
A_{i}=A_{1}^{h} A_{2}^{k}
$$

because A_{1} and A_{2} generated $G_{p} r$. If A_{i} should be of the highest order (which is p^{t}) in $G_{p} r$, it must hold that

$$
\begin{equation*}
h \neq 0(\bmod p) \tag{10}
\end{equation*}
$$

because otherwise A_{i} could not be of higher order than p^{t-1}. But when (10) is fulfilled A_{i} and A_{2} form a base for $G_{p} r$. Then we would have a base consisting of one element permutable with B, A_{i}, and one not permutable with B, A_{2}. However, this is impossible according to Lemma 2 when $p \neq 1(\bmod q)$. Hence A_{i} cannot be of the highest order when $p \neq 1(\bmod q)$.

3 b . If there were an element B of order $q^{m}(m \neq 0)$ fulfilling (8) and (9), every element of the highest order $\left(p^{t}\right)$ in $G_{p} r$ would be contained in a cycle (produced through iterated transformations with B) of $q^{i}(1 \leq i \leq m)$ different elements all of the highest order, provided that $p \neq 1(\bmod q)$.

The transformation of an element of the highest order with B will give a new element contained in $G_{p} r$ (according to Lemma 1 because it is assumed that $p>q^{s}$) and of the same order as the transformed element. Let A_{10} be an element of the highest order (p^{t}), and let $A_{1 i}$ be defined thus:

$$
\begin{equation*}
B^{i} A_{10} B^{-i}=A_{1 i} \tag{11}
\end{equation*}
$$

But B is of order q^{m}. Hence

$$
B^{q^{m}} A_{10} B^{-q^{m}}=E A_{10} E=A_{10}=A_{1_{q}}
$$

E. GÖtlind, Some groups of order $\boldsymbol{p}^{\boldsymbol{r}} \boldsymbol{q}^{s}$

This means that there can be at most q^{m} different elements in the cycle of elements of the highest order constructed through repeated transformation with B and starting from a given element of the highest order in $G_{p} r$. However, two elements, say $A_{1 i}$ and $A_{1 j}($ where $i \neq j)$, of such a cycle cannot be equal if $i-j \neq 0(\bmod q)$ and $p \neq 1(\bmod q)$ because, if they were, we would have

$$
B^{i} A_{10} B^{-i}=B^{j} A_{10} B^{-j}
$$

according to (11) and hence

$$
\begin{equation*}
B^{i-j} A_{10}=A_{10} B^{i-j} \tag{12}
\end{equation*}
$$

But (12) is impossible when $p \neq \mathrm{I}(\bmod q)$ because then 3 a holds, and A_{10} which is of the highest order cannot be permutable with B^{v} where $v \equiv 0(\bmod q)$ since this implies that A_{10} is permutable with B. (When $v \neq 0(\bmod q)$ there is a k such that $v k \equiv 1\left(\bmod q^{m}\right)$ and k iterated transformations of A_{10} with B^{v} will give $B^{v k} A_{10}=$ $=A_{10} B^{-v k}$ and hence $B A_{10}=A_{10} B$.) Hence $i-j \equiv 0(\bmod q)$ if two elements $A_{1 i}$ and $A_{1 j}$ in the cycle are alike and the number of different elements in the cycle is $\equiv 0(\bmod q)$.

3 c. When two cycles contain some element in common they contain all elements in common.

If there were an element $A_{2 j}$ belonging to a cycle C_{2} contained in the cycle C_{1} constructed on A_{10}, then for some i :

$$
\begin{equation*}
B^{i} A_{10} B^{-i}=A_{2 j} \tag{13}
\end{equation*}
$$

But then $B^{v} A_{2 j} B^{-v}$ will also belong to C_{1} for all $v\left(B^{v} A_{2 j} B^{-v}=B^{v+i} A_{10} B^{-v-i}\right.$ according to (13)), and since the cycle C_{2} may be constructed on $A_{2 j}$ (as on every other element belonging to the cycle C_{2}) we get that $C_{1}=C_{2}$.
$3 \mathrm{a}, 3 \mathrm{~b}$ and 3 c then give that when $p>q^{s}$ and $p \neq 1(\bmod q)$ every element of the highest order in $G_{p} r$ belongs to one and only one cycle of the type described. Hence the number N of elements of the highest order in $G_{g} r$ must be a multiple of q, because in every cycle the number of different elements is a multiple of q (according to $\mathbf{3 b}$). The number of highest-order elements in $G_{p} r$ is

$$
N=p^{u} \varphi\left(p^{t}\right)=p^{u+t-1}(p-1)
$$

(which means A_{2}^{i} for all i combined with the A_{1}^{j} where $\left(j, p^{t}\right)=1$).
Hence

$$
p^{u+t-1}(p-1) \equiv 0(\bmod q)
$$

But since $(p, q)=1$ we get

$$
p-1 \equiv 0(\bmod q)
$$

which contradicts the assumption that $p \neq 1(\bmod q)$. This means that no $B(\neq E)$ can be non-permutable with both A_{1} and A_{2} when $p>q^{s}$ and $p \neq 1(\bmod q)$. Thus Lemma 3 is proved.

Lemma 4. When $p>q^{s}$ and $p^{2} \neq 1(\bmod q)$, an element $B(\neq E)$ in a subgroup $G_{q} s$ of the group $G_{p} r_{q} s$ cannot be non-permutable with both of two base elements generating an Abelian subgroup $G_{p} r$ and being of the same order.

4a. Like 3a with the difference that when $p^{t}=p^{u}, A_{i}\left(=A_{1}^{h} A_{2}^{k}\right)$ is of the highest order provided that h or k or both are incongruent 0 modulo p.

4 b . Like 3b.
4 c . In this case the value of N is

$$
N=p^{t} \varphi\left(p^{t}\right)+\left(p^{t}-\varphi\left(p^{t}\right)\right) \varphi\left(p^{t}\right)=p^{2(t-1)}\left(p^{2}-1\right)
$$

Hence because N must be a multiple of q

$$
p^{2(t-1)}\left(p^{2}-1\right) \equiv 0(\bmod q)
$$

and since $(p, q)=1$ we get

$$
p^{2}-1 \equiv 0(\bmod q)
$$

Hence we get that in this case no $B(\neq E)$ can be non-permutable with both A_{1} and A_{2} when $p>q^{s}$ and $p^{2} \neq 1(\bmod q) . ~\left(p^{2} \neq 1(\bmod q)\right.$ implies that $p \neq 1(\bmod q)$, which is a condition needed for the proof.)

Lemmas 2, 3 and 4 immediately give the theorem.
A consequence of the theorem, together with the result mentioned in the beginning, is that when $p>q^{s}$ and $p^{2} \equiv 1(\bmod q)$ there are only as many abstract groups of order $p^{2} q^{s}$ as twice the number of abstract groups of order q^{s}, because in this case there are only two groups of order p^{r}, the Abelian groups (2) and (1,1) and each of them determines one and only one group of order $p^{2} q^{3}$ together with a given group of order q^{s}. For instance, when $p>q^{4}$ and $p^{2} \equiv 1(\bmod q)$, there are 30 groups of order $p^{2} q^{4}$.

Uppsala Universitet.

[^0]: 1 E. Götlind: Nagra satser om grupper av ordningen $p^{r} q^{s}$. (Some lemmas about groups of order $p^{r} q^{s}$.) Norsk Matematisk Tidsskrift, 1948, p. 11, together with a correction note to this paper: Not till uppsatsen "Nagra satser om grupper av ordningen $p^{\top} q^{s "}$, the same journal, 1949, p. 59.

