On the uniform convexity of L^{p} and l^{p}

By Olof Hanner

Clarkson defined in 1936 the uniformly convex spaces [2]. The uniform convexity asserts that there is a function $\delta(\varepsilon)$ of $\varepsilon>0$ such that $\|x\|=1,\|y\|=1$, and $\|x-y\| \geqq \varepsilon$ imply $\left\|\frac{1}{2}(x+y)\right\| \leqq 1-\delta(\varepsilon)$, where x and y are elements of the space. Clarkson proved that the well-known spaces L^{p} and l^{p} are uniformly convex if $p>1$. The purpose of this note is to give the best possible function $\delta(\varepsilon)$ for these spaces, i.e. to find for each $p>1$ and $\varepsilon>0$

$$
\inf \left(1-\left\|\frac{x+y}{2}\right\|\right)
$$

under the conditions $\|x\|=1,\|y\|=1,\|x-y\| \geqq \varepsilon$. We need two inequalities, which are given in Theorem 1, formula (1). I have been informed that the left-hand side inequality of this formula was proved by Beurling at a seminar in Uppsala in 1945, but it does not seem to be in print. The right-hand side inequality is proved by Clarkson ([2] p. 400) and Boas ([1] p. 305). We give here a reconstruction of Beurling's proof and also for completeness a simple proof of the other inequality.

Let the functions in L^{p} be defined over $0 \leqq t \leqq 1$. The norm of $x=x(t)$ is then given by

$$
\|x\|^{p}=\int_{0}^{1}|x(t)|^{p} d t
$$

In l^{p} the norm of $x=\left(x_{1}, x_{2}, \ldots\right)$ is given by

$$
\|x\|^{p}=\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}
$$

Theorem 1. For $p>2$ the following inequalities hold

$$
\begin{equation*}
(\|x\|+\|y\|)^{p}+|\|x\|-\|y\||^{p} \geqq\|x+y\|^{p}+\|x-y\|^{p} \geqq 2\|x\|^{p}+2\|y\|^{p} \tag{1}
\end{equation*}
$$

For $1<p<2$ these inequalities hold in the reverse sense.
The equality sign holds for $L^{p}\left[\right.$ for $\left.l^{p}\right]$ in the left-hand side of (1) if and only if $x=0$, or $y=0$, or there is a number $a>0$ such that $(x(t)-a y(t))(x(t)+$ $+a y(t))=0$ for almost every t [such that $\left(x_{i}-a y_{i}\right)\left(x_{i}+a y_{i}\right)=0$ for every $\left.i\right]$, and in the right-hand side of (1) if and only if $x(t) y(t)=0$ for almost every $t\left[x_{i} y_{i}=0\right.$ for every i].

o. hanner, On the uniform convexity of L^{p} and l^{p}

It is easy to show that for given $\|x\|$ and $\|y\|$ each of these conditions for equality can be satisfied by suitable x and y. Hence the inequalities in Theorem 1 give the maximum and the minimum of $\|x+y\|^{p}+\|x-y\|^{p}$ for fixed $\|x\|$ and $\|y\|$.

Remark. For $p=2$ the three terms in (1) are equal for any x and y. This is the relationship

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

well known in the theory of Hilbert spaces.
Proof. A. The left-hand side of (1). Let $1<p<2$ and consider L^{p}. We have to prove that

$$
\begin{equation*}
\int_{0}^{1}|x(t)+y(t)|^{p}+|x(t)-y(t)|^{p} d t \geqq(\|x\|+\|y\|)^{p}+|\|x\|-\|y\||^{p} \tag{2}
\end{equation*}
$$

Let us first show that it is sufficient to prove (2) for non-negative functions. Consider

$$
\begin{equation*}
d=\left|z_{1}+z_{2}\right|^{p}+\left|z_{1}-z_{2}\right|^{p} \tag{3}
\end{equation*}
$$

where z_{1} and z_{2} are complex numbers. Let $\left|z_{3}\right|$ and $\left|z_{2}\right|$ be fixed and let us calculate the minimum of d. If $z_{1}=0$ this minimum is $2\left|z_{2}\right|^{p}$ and if $z_{2}=0$ this minimum is $2\left|z_{1}\right|^{p}$. Take $\left|z_{1}\right|=a>0$ and $z_{2}=z_{1} a^{-1} b e^{i \varphi}, b>0$. Then

$$
d(\varphi)=\left|a+b e^{i \varphi}\right|^{p}+\left|a-b e^{i \varphi}\right|^{p}=\left(a^{2}+b^{2}+2 a b \cos \varphi\right)^{\frac{p}{2}}+\left(a^{2}+b^{2}-2 a b \cos \varphi\right)^{\frac{p}{2}}
$$

The minimum of $d(\varphi)$ is $(a+b)^{p}+|a-b|^{p}$ and is reached for $\varphi=0, \pi$. Thus

$$
\begin{equation*}
\left|z_{1}+z_{2}\right|^{p}+\left|z_{1}-z_{2}\right|^{p} \geqq\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{p}+\left|\left|z_{1}\right|-\left|z_{2}\right|\right|^{p}, \tag{4}
\end{equation*}
$$

where equality holds if and only if z_{1} and z_{2} have a real quotient or one of them is zero. Let $x^{*}(t)=|x(t)|$ and $y^{*}(t)=|y(t)|$. Put $z_{1}=x(t)$ and $z_{2}=y(t)$ in (4) and integrate.

$$
\begin{equation*}
\int_{0}^{1}|x(t)+y(t)|^{p}+|x(t)-y(t)|^{p} d t \geqq \int_{0}^{1}\left|x^{*}(t)+y^{*}(t)\right|^{p}+\left|x^{*}(t)-y^{*}(t)\right|^{p} d t . \tag{5}
\end{equation*}
$$

Here equality holds if and only if for almost every t such that $x(t) \neq 0$ and $y(t) \neq 0$, the quotient of $x(t)$ and $y(t)$ is real. Because of (5), since $\|x\|=\left\|x^{*}\right\|$ and $\|y\|=\left\|y^{*}\right\|$, we only have to prove (2) for the non-negative functions $x^{*}(t)$ and $y^{*}(t)$.

Now introduce

$$
\zeta(u, v)=\left(u^{\frac{1}{p}}+v^{\frac{1}{\bar{p}}}\right)^{p}+\left|u^{\frac{1}{\bar{p}}}-v^{\frac{1}{\bar{p}}}\right|^{p}, \quad u \geqq 0, v \geqq 0
$$

and let $f(t)=\left(x^{*}(t)\right)^{p}$ and $g(t)=\left(y^{*}(t)\right)^{p}$. Then (2) may be written

$$
\begin{equation*}
\int_{0}^{1} \zeta(f(t), g(t)) d t \geqq \zeta\left(\int_{0}^{1} f(t) d t, \int_{0}^{1} g(t) d t\right) \tag{6}
\end{equation*}
$$

We shall show below that ζ is convex. (6) is an immediate consequence of this fact. For the three integrals in (6) are the w-, u-, and v-coordinates of the center of gravity for the distribution of mass given by $u=f(t), v=g(t), 0 \leqq t \leqq 1$ on the surface $w=\zeta(u, v)$. Hence we only have to prove the convexity of ζ. We have
(a) $\zeta(u, v)=\zeta(v, u)$,
(b) $\zeta(0,0)=0$,
(c) $\zeta(t u, t v)=t \zeta(u, v)$ for $t \geqq 0$.

Thus $w=\zeta(u, v)$ is a cone with its center in the origin. The convexity of $w=\zeta(u, v)$ will therefore follow from the convexity of $w=\zeta(u ; 1)$. But for

$$
\eta(u)=\zeta(u, 1)=\left(1+u^{\frac{1}{p}}\right)^{p}+\left|1-u^{\frac{1}{p}}\right|^{p}
$$

the second derivative is

$$
\eta^{\prime \prime}(u)=\frac{p-1}{p} u^{\frac{1}{p}-2}\left(\left|1-u^{\frac{1}{p}}\right|^{p-2}-\left|1+u^{\frac{1}{p}}\right|^{p-2}\right)
$$

which is strictly positive for every $u>0$. For $u=1$ we have $\eta^{\prime \prime}=\infty$, but η^{\prime} is continuous. Thus $\eta(u)$, and therefore also $\zeta(u, v)$, are convex. This proves (2).

In order to get equality in (2) we must have equality in both (5) and (6). Since $\eta^{\prime \prime}$ is never 0, equality in (6) holds if and only if the point ($f(t), g(t)$) for almost every t lies on one single line through the origin in the $u v$-plane, i.e. $f(t)=0$ for almost every $t, g(t)=0$ for almost every t, or there is a positive number, say a^{p}, such that for almost every t we have $f(t)=a^{p} g(t)$, i.e. $x^{*}(t)=$ $=a y^{*}(t)$. Combined with the condition for equality in (5) this gives the condition in Theorem 1.
The case $p>2$ is proved similarly. For these p-values $d(\varphi)$ reaches its maximum for $\varphi=0, \pi$ and ζ is concave.

The proof for l^{p} is analogous.
B. The right-hand side of (1). Let $p>2$ and consider L^{p}. We have to prove that

$$
\begin{equation*}
\int_{0}^{1}|x(t)+y(t)|^{p}+|x(t)-y(t)|^{p} d t \geqq \int_{0}^{1} 2|x(t)|^{p}+2|y(t)|^{p} d t \tag{7}
\end{equation*}
$$

Introduce as before d by (3). Then the minimum of $d(\varphi)$ is $2\left(a^{2}+b^{2}\right)^{\frac{p}{2}}$ and is reached for $\varphi= \pm \frac{\pi}{2}$. But, since $t^{\frac{p}{2}}$ is a convex function ($a>0, b>0$),

$$
\left(a^{2}+b^{2}\right)^{\frac{p}{2}}>a^{p}+b^{p}
$$

Hence

$$
\begin{equation*}
\left|z_{1}+z_{2}\right|^{p}+\left|z_{1}-z_{2}\right|^{p} \geqq 2\left|z_{1}\right|^{p}+2\left|z_{2}\right|^{p} \tag{8}
\end{equation*}
$$

where equality holds if and only if at least one of z_{1} and z_{2} is 0 . Put in (8) $z_{1}=x(t)$ and $z_{2}=y(t)$ and integrate. This proves (7). It also shows, that equality in (7) holds if and only if $f(t) g(t)=0$ for almost every t.

The remaining cases are proved similarly.
Theorem 2. Let x and y be two elements of L^{p} or of l^{p}. Suppose that

$$
\|x\|=1, \quad\|y\|=1, \quad\|x-y\| \geqq \varepsilon
$$

where $0<\varepsilon<2$. Then

$$
\begin{equation*}
\left\|\frac{x+y}{2}\right\| \leqq 1-\delta(\varepsilon) \tag{9}
\end{equation*}
$$

where $\delta=\delta(\varepsilon)$ is determined in the following way:

$$
\begin{aligned}
& \text { when } 1<p<2: \quad\left(1-\delta+\frac{\varepsilon}{2}\right)^{p}+\left|1-\delta-\frac{\varepsilon}{2}\right|^{p}=2, \\
& \text { when } p \geqq 2: \quad \delta=1-\left(1-\left(\frac{\varepsilon}{2}\right)^{p}\right)^{\frac{1}{p}} .
\end{aligned}
$$

For each ε, we can chose x and y such that equality holds in (9).
Proof. Put $x^{*}=\frac{1}{2}(x+y)$ and $y^{*}=\frac{1}{2}(x-y)$. Thus

$$
\begin{equation*}
x=x^{*}+y^{*} \text { and } y=x^{*}-y^{*} . \tag{10}
\end{equation*}
$$

A. $\mathbf{l}<p<2$. Let

$$
\xi(u, v)=(u+v)^{p}+|u-v|^{p}
$$

for $u \geqq 0, v \geqq 0$. Then ξ is symmetric in the variables u and v, and if one of these remains fixed, $\boldsymbol{\xi}$ is strictly increasing in the other one. The left-hand side inequality of Theorem 1 may be written

$$
\begin{equation*}
\|x+y\|^{p}+\|x-y\|^{p} \geqq \xi(\|x\|,\|y\|) \tag{11}
\end{equation*}
$$

Apply this formula on x^{*} and y^{*}. Then

$$
\begin{equation*}
2 \geqq \xi\left(\left\|x^{*}\right\|,\left\|y^{*}\right\|\right) \geqq \xi\left(\left\|x^{*}\right\|, \frac{\varepsilon}{2}\right) \tag{12}
\end{equation*}
$$

Since $\xi(1,0)=2$, we get $\xi\left(1, \frac{\varepsilon}{2}\right)>2$ and $\xi\left(0, \frac{\varepsilon}{2}\right)<2$. Thus there is a positive uniquely determined solution δ of

$$
\xi\left(1-\delta, \frac{\varepsilon}{2}\right)=2
$$

Hence, because of (12),

$$
\left\|x^{*}\right\| \leqq 1-\delta
$$

The last two formulas prove formula (9) for $1<p<2$.
To get equality in (9) we may take in L^{p}

$$
\begin{aligned}
& x^{*}(t)=1-\delta \quad \text { for } \quad 0 \leqq t \leqq 1, \\
& y^{*}(t)=\frac{\varepsilon}{2} \quad \text { for } \quad 0 \leqq t \leqq \frac{1}{2}, \\
& =-\frac{\varepsilon}{2} \quad \text { for } \quad \frac{1}{2}<t \leqq 1 .
\end{aligned}
$$

Then $\left\|x^{*}\right\|=1-\delta,\left\|y^{*}\right\|=\frac{\varepsilon}{2}$. Let x and y be defined by (10). Hence $\|x\|=\|y\|$. By Theorem 1 (or by simple calculation) we have equality in (ll) for these x^{*} and y^{*}, and we get

$$
\|x\|^{p}=\|y\|^{p}=\frac{1}{2} \xi\left(\left\|x^{*}\right\|,\left\|y^{*}\right\|\right)=\frac{1}{2} \xi\left(1-\delta, \frac{\varepsilon}{2}\right)=1
$$

In l^{p} we may take

$$
\begin{aligned}
& x^{*}=2^{-\frac{1}{p}}(1-\delta, 1-\delta, 0,0,0, \ldots) \\
& y^{*}=2^{-\frac{1}{p}}\left(\frac{\varepsilon}{2},-\frac{\varepsilon}{2}, 0,0,0, \ldots\right)
\end{aligned}
$$

B. $p \geqq 2$. We have by Theorem 1 (and the remark following the theorem)

$$
\begin{equation*}
\left\|x^{*}+y^{*}\right\|^{p}+\left\|x^{*}-y^{*}\right\|^{p} \geqq 2\left\|x^{*}\right\|^{p}+2\left\|y^{*}\right\|^{p} \tag{13}
\end{equation*}
$$

Hence

$$
\begin{gathered}
2 \geqq 2\left\|x^{*}\right\|^{p}+2\left\|y^{*}\right\|^{p} \geqq 2\left\|x^{*}\right\|^{p}+2\left(\frac{\varepsilon}{2}\right)^{p} \\
\left\|x^{*}\right\|^{p} \leqq 1-\left(\frac{\varepsilon}{2}\right)^{p}
\end{gathered}
$$

Put

$$
\delta=1-\left(1-\left(\frac{\varepsilon}{2}\right)^{p}\right)^{\frac{1}{p}}
$$

Then

$$
\left\|x^{*}\right\|^{p} \leqq(1-\delta)^{p}
$$

which implies (9).
To get equality in (9) we may take in L^{p}

$$
\begin{array}{rlrl}
x^{*}(t) & =2^{\frac{1}{p}}(1-\delta) & & \text { for } \\
& & 0 \leqq t \leqq \frac{1}{2} \\
& =0 & & \text { for }
\end{array} \quad \begin{aligned}
& \frac{1}{2}<t \leqq 1
\end{aligned}
$$

o. hanner, On the uniform convexity of L^{p} and l^{p}

$$
\begin{aligned}
y^{*}(t) & =0 & & \text { for } 0 \leqq t \leqq \frac{1}{2} \\
& =2^{\frac{1}{p}} \frac{\varepsilon}{2} & & \text { for } \frac{1}{2}<t \leqq 1 .
\end{aligned}
$$

Then $\left\|x^{*}\right\|=1-\delta,\left\|y^{*}\right\|=\frac{\varepsilon}{2}$. Let x and y be defined by (10). Hence $\|x\|=\|y\|$. By Theorem 1 (or by simple calculation) we have equality in (13) for these x^{*} and y^{*}. Thus

$$
\|x\|^{p}=\|y\|^{p}=\frac{1}{2}\left(2(1-\delta)^{p}+2\left(\frac{\varepsilon}{2}\right)^{p}\right)=1 .
$$

In l^{p} we may take

$$
\begin{aligned}
& x^{*}=(1-\delta, 0,0,0, \ldots) \\
& y^{*}=\left(0, \frac{\varepsilon}{2}, 0,0, \ldots\right)
\end{aligned}
$$

Remark. For fixed $\varepsilon \lim _{p \rightarrow 1} \delta(\varepsilon)=0$ and $\lim _{p \rightarrow \infty} \delta(\varepsilon)=0$. For small $\varepsilon>0$ we have

$$
\begin{array}{ll}
\delta(\varepsilon)=\frac{p-1}{2}\left(\frac{\varepsilon}{2}\right)^{2}+\cdots & \text { for } 1<p<2 \\
\delta(\varepsilon)=\frac{1}{p}\left(\frac{\varepsilon}{2}\right)^{p}+\cdots & \text { for } p \geqq 2
\end{array}
$$

REFERENGES

1. Boas, R. P., Jr., Some uniformly convex spaces, Bull. Amer. Math. Soc. 46, 304-311 (1940). 2. Clarkson, James A., Uniformly convex spaces, Trans. Amer. Math. Soc. 40, 396-414 (1936).
