
A R K I V  F O R  M A T E M A T I K  B a n d  3 n r  19 

Communicated 9 February 1955 by OT:ro FROSTMAN 

O n  t h e  u n i f o r m  c o n v e x i t y  o f L  ~ a n d  F 

B y  O L O F  H A N N E R  

CLARKSO~ defined in 1936 the uniformly convex spaces [2]. The uniform con- 
vexit.~ asserts tha t  there is a function ~ (~) of s > 0 such tha t  11 x 1] = 1, tl Y ]1 = 1, 
and [Ix - y II => e imply II ~ (x + y)II =< 1 - 6 (e), where x and y are elements of the 
space. CLARKSO~ proved tha t  the well-known spaces L ~ and 1 ~ are uniformly 
convex if p >  1. The purpose of this note is to give the best  possible function 
(~(e) for these spaces, i.e. to find for each p > l  and s > 0  

 n'(1 
reader the conditions ]] x I] = 1,  II y II = 1, II ~ -  y II =>*. We need two inequalities, 
which are given in Theorem 1, formula (1). I have been informed tha t  the 
left-hand side inequality of this formula was proved by  B~tmLI~O at a seminar 
in Uppsala  in 1945, but  it does not seem to be in print.  The r ight-hand side 
inequality is proved by CLARKSON ([2] p. 400) and BoAs ([1] p. 305) .  We give 
here a reconstruction of BEVRLINO'S proof and also for completeness a simple 
proof of the other inequality. 

Let  the functions in L ~ be defined over 0 < t < l .  The norm of x = x ( t )  is 
then given by  

1 

I1~11~= flz(t)l~'dt. 
o 

I n  1 v the norm of x = @ l ,  x~ . . . .  ) is given by  

j l x r =  ix, t 
t = l  

T h e o r e m  1. For p > 2 the /ollowing inequalities hold 

(HxH- t - I l y lD~+l l l x l l - l t y l l l p~ l l x+y l lp+ l l x - yHV~211x l lp+211y[ I  ~. (1) 

For 1 < p < 2 these inequalities hold in the reverse sense. 
The equality sign holds [or L p [[or I p] in the le.{t-hand side of (1) q and only 

i/  x=O, or y=O, or there is a number a>O such that ( x ( t ) - a y ( t ) ) ( x ( t ) +  
+ a y ( t ) ) = O  /or almost every t [such that (x i -ay~) (x~+ayi )=O /or every i], and 
in the right-hand side o/ (1) i/ and only i / x ( t ) y ( t ) = 0 / o r  almost every t[x~y~=O 
/or every i]. 
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I t  is easy  to  show t h a t  for  given Ilxll and  II y ll each of these c o n d i t i o ~  for  
equa l i ty  can be satisfied b y  sui table x and  y. Hence  the  inequalities in Theo- 
r e m  1 give the  m a x i m u m  and the  m i n i m u m  of [[ x + y l[" + [I x -  y I1" for  f ixed 
II ~ll and 11 Y [I- 

B e m a r k .  For  p = 2  the  three  t e rms  in (1) are equal  for  any  x and  y. This  
is the  re la t ionship 

II~+yll~ +l l~-yl l~=211~ll~ + 211yll ~ 

well known in the  theo ry  of Hi lbe r t  spaces. 

P r o o f .  A. The  lef t -hand side of (1). Le t  l < p < 2  and consider L L  We have  
to  p rove  t h a t  

1 

f lx ( t )Wy( t ) [  v + ] x ( t ) - y ( t ) [  ~ d t~ ( l l~ l l+ l l y l l )  ~ ÷ I II~[I -  I[ y Ill ~. 
0 

(2) 

Le t  us first  show t h a t  i t  is sufficient to  p rove  (2) for non-negat ive  funct ions.  
Consider 

d = [ ~  + ~ I ~ + I ~ - ~ I ~, (3) 

where z 1 and  z 2 are  complex numbers .  L e t  I zj] and  ]z 2 [ b e  f ixed and  let us 
calculate  the  min imum of d. I f  z t = O  this m i n i m u m  is 2[z2[ ~ and  if z 2 = 0  this 
m i n i m u m  is 2[ z 1 [P. Take  ]z 1 [ =  a > 0 and  z~= zla -1 b e ~ ,  b > 0. Then  

p p 

d (~0) = [ a + b e' ~ ]~ + I a - b e' v ]v = (a * + b 2 + 2 a b cos ~0) ~ + (a * + b 2 - 2 a b cos ~0) ~. 

The  m i n i m u m  of d (T) is (a + b ) V + l a - b  [" and is reached for T = 0 ,  7I. Thus  

I Z I + Z 2 [ P + I Z I - - Z 2 [ P ~ ( [ Z 1 ] + ] Z 2 [ ) P + [ [ Z  1 [ - - ] Z 2  [[P, (4)  

where equal i ty  holds if and only  if z 1 and  z 2 have  a real quot ient  or  one of 
t h e m  is zero. Le t  x * ( t ) = I x ( t ) ]  and  y* (t) ---- ] y (t) l. P u t  z l = x ( t )  and  z ~ = y ( t )  
in (4) and  integrate .  

1 1 

f I x ( t ) + y ( t ) l ' + t x ( t ) - y ( t ) l V d t ~  f [ x* ( t )+y*( t ) [V+lx* ( t ) - y* ( t ) lVd t .  (5) 
o 0 

Here  equa l i ty  holds if and  only if for a lmos t  every  t such t h a t  x ( t ) # 0  and  
y (t) 4= 0, the  quot ient  of x (t) and  y (t) is real. Because of (5), since II x [[ = [[ x* ]1 
and  IIY II = [I Y* II, we only  have  to  p rove  (2) for  the non-negat ive  funct ions x* (t) 
and  y (t). 

N o w  in t roduce  

1 1 1 1 
~(u, v)=(u~+v~F +lu~-v~[", u>O, v>o,  

240 



/kRKIV FOR MATEMATIK. Bd 3 nr 19 

and  let  / ( t)=(x* (t)) ~ and  g ( t ) = ( y *  (t)) ". Then  (2) m a y  be wr i t t en  

1 1 1 

f ~(f(t), g(t))dt>=~ (f/(t)dt, f g( t )d t ) .  (6) 
0 0 0 

We shall show below t h a t  ~ is convex.  (6) is an immed ia t e  consequence of this 
fact .  For  the  three  integrals  in (6) are the  w-, u-, and  v-coordinates  of the  
center  of g rav i ty  for  the  dis t r ibut ion of mass  given b y  u = f (t), v = g (t), 0 ~_ t <= 1 
on the  surface w = ~  (u, v). Hence  we only have  to p rove  the  convex i ty  of $. 
We have  

(a) ~ (u, v) = $ (v, u), 

(b) $(0,  0 ) = 0 ,  

(c) ~(tu, t v ) = t ~ ( u ,  v) for t ~ 0 .  

Thus  w = ~ (u, v) is a cone with  its center  in the  origin. The  convex i ty  of w = ~ (u, v) 
will therefore  follow f rom the  convexi ty  of w-----~(u; 1). Bu t  for  

1 1 

(u) = ~ (~, 1 ) =  (l + u~)" +11 - ~ I T 

the  second der iva t ive  is 

1 ,~ 1 1 

# "  (u) = p -  1 u~- .  (I 1 - u ~ [~-2 _ [ 1 + u ;  1~-2), 
P 

which is s t r ic t ly  posi t ive for every  u > 0. For  u =  1 we have  ~ " =  ~ ,  b u t  ~ '  
is continuous.  Thus  ~ (u), and  therefore also ~ (u, v), are convex.  This  p roves  (2). 

I n  order  to get equal i ty  in (2) we mus t  have  equa l i ty  in bo th  (5) and  (6). 
Since ~"  is never  0, equal i ty  in (6) holds if and on ly  if the  poin t  (/(t), g (t)) 
for  a lmos t  every  t lies on one single line th rough  the  origin in the  u v-plane, 
i.e. / ( t ) = 0  for a lmos t  every  t, g ( t ) = 0  for a lmost  eve ry  t, or there  is a posi t ive 
number ,  say  a T, such t h a t  for a lmost  every  t we have  ] (t)=aP9 (t), i.e. x* ( t ) =  
=ay* (t). Combined  with  the  condit ion for equal i ty  in (5) this gives the  condi- 
t ion in Theorem 1. 

The  case p >  2 is p roved  similarly. For  these p-values  d (T) reaches  i ts  maxi -  
m u m  for  ~ = 0 ,  7e and  ~ is concave.  

The  proof  for l p is ana]ogous.  
B. The  r igh t -hand  side of (1). Le t  p > 2  and consider L p. We have  to  p rove  

t h a t  
1 1 

f l x ( t )+y ( t ) lP+]x ( t ) - y ( t ) l~d t>= 521x(t)  lP+21y(t) l~dt .  (7) 
0 0 

In t roduce  as before d b y  (3). Then  the  min imum of d (~)  is 2 (a s +b2) ~ and  is 
P 

reached for ~ = + ~ .  But ,  since t ~ is a convex funct ion ( a > 0 ,  b > 0 ) ,  

P 

(a ~ + b2) ~ > a T + b Y. 
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Hence 

I~, +z21 ~ + I z , -  z. I~ ~ 21 zll ~ + 21~,1 ~, (8) 

where equality holds if and only if at least one of zj and z 2 is 0. Pu t  in (8) 
Zl=X (t) and z p = y  (t) and integrate. This proves (7). I t  also shows, that  equality 
in (7) holds if and only if ] ( t )g ( t )=0  for almost every t. 

The remaining eases are proved similarly. 

T h e o r e m  2. Let x and y be two elements o/ L ~ or o/ l p. Suppose that 

where 0 < e < 2. Then  

Ilxll=l, Ilyll=l, IIx-Yll~e, 

where ¢~=d(e) is determined in the /ollowing way:  

when 1 < p < 2 :  l - S +  .~ + 

when p=>2: 8 = 1 -  

e p l - d - }  =2, 

1 

(9) 

For each e, we can chose x and y such that equality holds in (9). 

Proof .  Pu t  x* = ~ (x + y) and y* = 1 (x - y). Thus 

x = x *  +y* and y = x * - y * .  (10) 

A. l < p < 2 .  Let  

~(u, v )=(u+v) '+ lu-v l"  

for u_>_0, v>=0. Then ~ is symmetric in the variables u and v, and if one of 
these remains fixed, ~= is strictly increasing in the other one. The left-hand side 
inequality of Theorem 1 may be written 

Hx+yli'+ilx-yll~>=~:(llxll, 1lull) (u) 
Apply this formula on x* and y*. Then 

2>--~(ll~*ll, Ily*ll)~-~(llx*ll, ~)" (12) 

Since ~ ( 1 , 0 ) = 2 ,  we get ~ ( 1 , 2 ) >  2 and ~ ( 0 , 2 ) < 2 .  Thus there is a positive 

uniquely determined solution d of 
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Hence, because of (12), 

The last two formulas prove formula (9) for 1 < p <  2. 
To get equality in (9) we may  take in L ~ 

x* (t)= 1- (~  for O<t<l, 

e for 0 < t g ~ ,  y* (t)= ~ 

-- 2 for ~ < t < l .  

Then I Ix*11=1-~ ,  Ily*ll= ~- Let • and y be defined b y  (10). Hence Ilxll=llull. 
By Theorem 1 (or by  simple calculation) we have equality in (11) for these 
x* and y*, and we get 

In  l ~ we may  take 
1 

x * = 2 - ~  ( 1 - ~ ,  1 - ~ ,  0, 0, 0, . . .),  1( ) 
o , o  . . . . .  

B .  

IIx* +y* II ~ + IIx* - y *  II ~ >~ 2111* II ~ + 2 II y* II ~- 
H e n c e  

2~-211~*11"+211y*11">=211x*11"+2 ~ , 

Pu t  
1 

Then 

I1~*11" < ( 1 - ~ ) ' ,  
which implies (9). 

To get equality in (9) we may  take in L ~ 

1 
x* (t) = 2 ~ (1 - ~) for 

p > 2. W e  have by  Theorem 1 (and the remark  following the theorem) 

(13) 

oztz~, 

= 0  for ~ < t < l ,  
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y* ( t )=0 for 0 < t < ~ ,  
1 

= 2  ~ ~- for ½ < t < l .  
2 

Then I I ~ * l l = l - ~ ,  Ily*ll = ~. Let • and y be defined by (10). Hence Ilxll=liYll- 

By Theorem 1 (or by simple calculation) we have equahty in (13) for these 
x* and y*. Thus 

8 p 

In l p we may take 

x * = ( 1 - ~ ,  0, 0, 0 . . . .  ), 

Remark .  For fixed e lira ~ (E)= 0 and lim ~ (e)= 0. For small ~ > 0 we have 
p--}l p--} oo 

~ ( e ) =  +-.-  for l < p < 2 ,  

( ~ ) = ~ \ ~ ]  +.~. for p=>2. 
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