A theorem concerning the least quadratic residue and non-residue

By Lars Fjellstedt

The purpose of this paper is to prove the following
Theorem: Denote by $\psi^{*}(p ; 2)$ the least odd prime number which is quadratic non-residue modulo the prime p. Then for $p>p_{0}$

$$
\psi^{*}(p ; 2)<6 \cdot \log p
$$

Denote by $\pi^{*}(p ; 2)$ the least odd prime number which is quadratic residue modulo the prime p. Then for $p>p_{0}$

$$
\pi^{*}(p ; 2)<6 \cdot \log p
$$

We shall require the following result which we do not prove:
Lemma. If the system

$$
x \equiv b_{1}\left(\bmod m_{1}\right), \quad x \equiv b_{2}\left(\bmod m_{2}\right), \ldots, \quad x \equiv b_{k}\left(\bmod m_{k}\right), \quad b_{i} \geqq 0
$$

is solvable, its positive solutions are given by

$$
x=b_{1}+m_{1} t_{1}+\frac{m_{1} m_{2}}{d_{1}} t_{2}+\cdots+\frac{m_{1} m_{2} \cdots m_{k-1}}{d_{1} d_{2} \cdots d_{k-2}} t_{k-1}+\frac{m_{1} m_{2} \cdots m_{k}}{d_{1} d_{2} \cdots d_{k-1}} t
$$

where

$$
\begin{aligned}
d_{1}=\left(m_{1}, m_{2}\right), \quad & d_{i}=\left(\frac{m_{1} m_{2} \cdots m_{i}}{d_{1} \cdots d_{i-1}}, m_{i+1}\right), \quad i=2,3, \ldots, k-1 \\
& 0 \leqq t_{i}<\frac{m_{i+1}}{d_{i}}
\end{aligned}
$$

and $t \geqq 0$ an integer.
Proof of the theorem. If we assume $\psi^{*}(p ; 2)=p_{n}, p_{m}$ denoting the m th prime in the sequence $2,3,5,7, \ldots, p$ satisfies

$$
\begin{equation*}
\left(\frac{3}{p}\right)=\left(\frac{5}{p}\right)=\cdots=\left(\frac{p_{n-1}}{p}\right)=+1, \quad\left(\frac{p_{n}}{p}\right)=-1 \tag{1}
\end{equation*}
$$

L. fjellstedt, The least quadratic residue and non-residue

Thus

$$
p \equiv 1,11(\bmod 12), \quad p \equiv 1,4(\bmod 5), \text { etc. } \ldots
$$

Putting $N=3 \cdot 5 \cdot 7 \cdots p_{n}$, there exist $\nu=\varphi(N) / 2^{n-1}$ integers a_{i} with

$$
0<a_{i}<4 N, \quad\left(a_{i}, 4 N\right)=1, \quad i=1,2, \ldots, v
$$

and with the property that every prime p satisfying (1) belongs to one of the arithmetical progressions

$$
4 N t+a_{1}, \quad 4 N t+a_{2}, \ldots, 4 N t+a_{v}
$$

If we choose for each of the primes $p_{i}, i=2,3, \ldots, n$, one of the possible congruence conditions modulo p_{i} or $4 p_{i}$, we get exactly one residue class modulo $4 N$ which is therefore one of the numbers a_{k}. Let us assume that we have chosen $x_{0}, 0<x_{0}<4 N$, such that

$$
x_{0} \equiv b_{2}\left(\bmod p_{2}^{*}\right), \quad x_{0} \equiv b_{3}\left(\bmod p_{3}^{*}\right), \ldots, \quad x_{0} \equiv b_{n}\left(\bmod p_{n}^{*}\right), \quad b_{i}>0,
$$

where

$$
p_{i}^{*}=\left\{\begin{aligned}
& p_{i} \text { for } p_{i} \equiv 1(\bmod 4), \\
& 4 p_{i} \text { for } p_{i} \equiv 3(\bmod 4)
\end{aligned}\right.
$$

We may of course assume that this system is solvable. Putting $b=$ Min $\left(b_{2}, b_{3}, \ldots, b_{n}\right)$ and assuming that $b_{i_{1}}, b_{i_{2}}, \ldots, b_{i_{k}}$ are all the integers b_{i} for which

$$
b_{i_{1}}=b_{i_{2}}=\cdots=b_{i_{k}}=b,
$$

and putting also

$$
P=p_{i_{1}} \cdot p_{i_{2}} \cdots p_{i_{k}}
$$

and

$$
P^{*}=\left\{\begin{array}{l}
P \text { if } p_{i_{m}} \equiv 1(\bmod 4), \quad m=1,2, \ldots, k \\
4 P \text { otherwise }
\end{array}\right.
$$

we have

$$
x_{0} \equiv b\left(\bmod P^{*}\right)
$$

If we put $P \cdot Q=N$ when $Q>1$, and define

$$
Q^{*}=\left\{\begin{array}{l}
Q \text { if } p_{j} \equiv 1(\bmod 4) \text { when } p_{j} / Q \\
4 Q \text { otherwise }
\end{array}\right.
$$

we also have, according to the lemma,

$$
x_{0} \equiv a\left(\bmod Q^{*}\right),
$$

where a is an integer such that $b<a<Q^{*}$. Using the lemma once more we get

$$
\begin{cases}x_{0}=b+P^{*} t_{0}, & 0<t_{0}<\frac{Q^{*}}{\left(P^{*}, Q^{*}\right)} \\ x_{0}=a+Q^{*} t_{1}, & 0 \leqq t_{1}<\frac{P^{*}}{\left(P^{*}, Q^{*}\right)}\end{cases}
$$

If $t_{1}>0$ it follows from
that

$$
P Q=4 N \cdot\left(P^{*}, Q^{*}\right)
$$

$$
\begin{equation*}
x_{0}>\sqrt{4 N} \tag{2}
\end{equation*}
$$

If $t_{1}=0$ we proceed in the following way. The number k of different prime factors in P is either $\geqq n / 3$ or it is $<n / 3$. If $k \geqq n / 3$, we have for $s=[n / 3]$

$$
\begin{equation*}
x_{0}>P^{*} \geqq p_{1} p_{2} \cdots p_{s} \tag{3}
\end{equation*}
$$

Assuming next that $k<n / 3$ we define for all possible combinations of r different prime factors $p_{i_{\mu_{Q}}}, q=1,2, \ldots, r$, of Q

$$
Q\left(i_{\mu_{1}}, i_{\mu_{2}}, \ldots, i_{\mu_{r}}\right)=\frac{Q}{p_{i_{\mu_{2}}} \cdot p_{i_{\mu_{2}}} \cdots p_{i_{\mu_{r}}}}
$$

and

$$
Q^{*}\left(i_{\mu_{r}}, \ldots, i_{\mu_{r}}\right)=\left\{\begin{array}{l}
Q\left(i_{\mu_{1}}, \ldots, i_{\mu_{r}}\right) \text { if this integer has only prime divisors } \equiv 1 \\
(\bmod 4), \\
4 Q\left(i_{\mu_{1}}, \ldots, i_{\mu_{r}}\right) \text { otherwise } .
\end{array}\right.
$$

For these integers $Q^{*}\left(i_{\mu_{1}}, \ldots, i_{\mu_{r}}\right)$ we have the congruences

$$
x_{0} \equiv c\left(i_{\mu_{1}}, \ldots, i_{\mu_{r}}\right)\left(\bmod Q^{*}\left(i_{\mu_{r}}, \ldots, i_{\mu_{r}}\right)\right), \quad 0<c\left(i_{\mu_{1}}, \ldots, i_{\mu_{r}}\left(<Q^{*}\left(i_{\mu_{1}}, \ldots, i_{\mu_{r}}\right)\right.\right.
$$

and ask for the least integer r with the property that for one $c\left(i_{\mu_{1}}, \ldots, i_{\mu_{r}}\right)$ at least

$$
\begin{equation*}
x_{0}>c\left(i_{\mu_{r}}, \ldots, i_{\mu_{r}}\right) \tag{4}
\end{equation*}
$$

It is easy to see that $r \leqq[(n-k) / 2]$. In fact, suppose we have two congruences

$$
\left\{\begin{array}{ll}
x \equiv a(\bmod A), & 0<a<A \tag{5}\\
x \equiv b(\bmod B), & 0<b<B
\end{array} \quad a \neq b\right.
$$

where A and B are products of different primes and $(A, B)=1$, and suppose that

$$
\begin{equation*}
x \equiv c(\bmod A B), \quad \max (a, b)<c<A B \tag{6}
\end{equation*}
$$

If the total number of prime factors in $A B$ is m, one of the integers A and B contains $\leqq[m / 2]$ prime factors. If we cancel, in all possible ways, [$m / 2$] prime factors of $A B$, thus obtaining new integers $A^{*}, B^{*},\left(A, B^{*}\right)=\left(A^{*}, B\right)=1$, then for at least one such pair we cannot have

$$
x \equiv c\left(\bmod A^{*} B^{*}\right), \quad 0<c<A^{*} B^{*}
$$

with the same integer c as in (6). Since we may assume $x_{0}>p_{n}$ (otherwise we should have $p>x_{0}+4 N$), this argument obviously applies in our case.

L. FJELLSTEDT, The least quadratic residue and non-residue

Thus it follows that for a modulus $Q^{*}\left(i_{\mu_{1}}, \ldots, i_{\mu_{r}}\right)=Q^{* *}$ with the property (4) we have

$$
x_{1}=c^{*}+T \cdot Q^{* *}, \quad T>0 .
$$

Since the number of different prime factors in $Q^{* *}$ is at least

$$
n-k-r>\frac{n}{3}-1
$$

we have, for $s=[n / 3]$,

$$
\begin{equation*}
x_{0} \geqq p_{1} \cdot p_{2} \cdots p_{s} \tag{7}
\end{equation*}
$$

It results from (2), (3) and (7) that in all cases

$$
x_{0}>R=p_{1} \cdot p_{2} \cdots p_{s}
$$

If we had $Q=1, p$ would be $>4 N$.
From

$$
\log R=\vartheta\left(p_{s}\right)>\frac{2}{3} p_{s}>\frac{2}{3} s \log s>\frac{1}{5} n \log n>\frac{1}{6} p_{n}, \quad n>n_{0},
$$

we get

$$
6 \cdot \log p>6 \cdot \log x_{0}>p_{n}
$$

Hence the first part of our theorem is proved.
Starting from

$$
\left(\frac{3}{p}\right)=\left(\frac{5}{p}\right)=\cdots=\left(\frac{p_{n-1}}{p}\right)=-1, \quad\left(\frac{p_{n}}{p}\right)=+1
$$

instead of starting from (1) the second part is obtained in exactly the same way.

The best results previously obtained concerning this question are the following:

$$
\psi^{*}(p ; 2)<p^{\lambda}(\log p)^{2}, \quad \lambda=\frac{1}{2 \sqrt{e}}, \quad p \equiv \pm 1(\bmod 8) \quad \text { and } p>p_{0}
$$

This was proved by Vinogradov [1] in 1927. A. Brauer [2] and T. Skolem [6] proved using elementary methods

$$
\psi^{*}(p ; 2)<C \cdot p^{2 / 5}, \quad p \equiv \pm 3,-1(\bmod 8), \quad C \text { a constant. }
$$

In 1954 Ankeny [3] proved

$$
\psi^{*}(p ; 2)<p^{\varepsilon}, \quad \varepsilon>0, \quad p \equiv 3(\bmod 4) \text { and } p>p_{0}
$$

Using the extended Riemann hypothesis several authors, Linnik, Erdös, Ankeny etc., have obtained bounds for $\psi^{*}(p ; 2)$. The best one of these results is, as far as I know, the following (Ankeny [4]):

$$
\psi^{*}(p ; 2)=0\left((\log p)^{2}\right) .
$$

On the other hand it has been proved by Salié [5] and others that

$$
\begin{aligned}
& \psi^{*}(p ; 2)>c \cdot \log p \\
& \pi^{*}(p ; 2)>c \cdot \log p
\end{aligned}
$$

for infinitely many primes p. Hence our result is in a sense the best possible. Actually Salié proves only the first inequality. It is however easy to see that the second one can be proved by the same method.

REFERENCES

1. Vinogradov, On the bound of the least non-residue of nth powers. Trans. Amer. Math. Soc. 29, 218-226 (1927).
2. Brauer, A., Uber den kleinsten quadratischen Nichrest. Math. Zeitschrift 33, 161-176 (1931).
3. Ankeny, N. C., Quadratic residues. Duke Math. J. 21, 107-112 (1954).
4. ——The least quadratic non-residue. Ann. of Math. (2) 55, 65-72 (1952).
5. Salie, H., Über den kleinsten positiven quadratischen Nichtrest nach einer Primzahl. Math. Nachr. 3, 7-8 (1949).
6. Skolen, T., On the least odd positive quadratic non-residue modulo p. Det Kongel. Norske Vid. Selsk. Forh. 27: 20 (1954).
