ARKIV FÖR MATEMATIK Band $3 \mathbf{n r} 25$

A note on an inequality

By Bo Kjellberg

The following is a supplement to an earlier paper [9], where we have given a "triangular condition" which the exponents must fulfill in order that an inequality

$$
\begin{equation*}
\int_{0}^{\infty} x^{\alpha}|f(x)|^{\beta} d x \leq K\left(\left.\int_{0}^{\infty} x^{\alpha_{1}}|t|\right|^{\beta_{1}} d x\right)^{\alpha_{1}}\left(\int_{0}^{\infty} x^{\alpha_{2}}|f|^{\beta_{2}} d x\right)^{\alpha_{2}} \tag{1}
\end{equation*}
$$

should hold true. A number of authors have discussed the best possible value for K.

In this note we observe that the simple method we used in a special case in the cited note [9] gives-in the general case also-the extremal function and so the value of K.

By the transformations $x \rightarrow x^{p},|f| \rightarrow x^{q}|f|^{r}$ we first bring (1) into the form

$$
\begin{equation*}
\int_{0}^{\infty}|f| d x \leq K\left(\alpha, \beta_{1}, \beta_{2}\right)\left(\int_{0}^{\infty} x^{\alpha}|f|^{\beta_{2}} d x\right)^{\alpha_{1}}\left(\int_{0}^{\infty} x^{\alpha}|f|^{\beta_{2}} d x\right)^{\alpha_{1}} . \tag{2}
\end{equation*}
$$

For brevity we here do not consider the simplest case $\beta_{1}=\beta_{2}$. To satisfy the conditions in [9] we must have $\alpha \geq 0$; but $\alpha=0$ corresponds to Hölder's inequality and thus is of no interest in this connection.

Set $\varphi=|f|$ and form

$$
\begin{equation*}
L(\varphi)=\varphi-\lambda x^{\alpha} p^{\beta_{1}}-\mu x^{\alpha} \phi^{\beta_{2}}, \tag{3}
\end{equation*}
$$

where λ and μ are positive parameters at our disposal. Take the maximum of $L(\varphi)$ for fixed x and variable φ; let it be attained for $\varphi=\varphi_{0}(x)$. If we put $\int_{a}^{b} x^{\alpha} \varphi_{0}^{\beta_{2}} d x=A_{1}$ and $\int_{a}^{b} x^{\alpha} \varphi_{0}^{\beta_{2}} d x=A_{2}$, it is evident that among all functions φ giving the same values to these integrals the function $\varphi_{0}(x)$ gives the maximum of $\int_{a} \varphi d x$. The maximum of $L(\varphi)$ for fixed x is either $0=L(0)$ or positive; in the latter case φ_{0} is a solution of the equation

$$
\begin{equation*}
1-\lambda \beta_{1} x^{\alpha} \varphi_{0}^{\beta_{1}-1}-\mu \beta_{2} x^{\alpha} \varphi_{0}^{\beta_{2}-1}=0 \quad \text { or } \quad \lambda \beta_{1} \phi_{0}^{\beta_{1}-1}+\mu \beta_{2} \varphi_{0}^{\beta_{2}-1}=x^{-\alpha} . \tag{4}
\end{equation*}
$$

In the case $1 \leq \beta_{1}<\beta_{2}$ (3) and (4) yield that the extremal function $\varphi_{0}(x)$ is continuous and steadily decreasing from $+\infty$ to 0 in ($0, \infty$). After having taken φ_{0} as the independent variable, the integrals of (2), and thus the constant K, can be explicitly expressed in terms of Γ-functions. The expression for K is given by Levin [10].

We then consider the remaining case $\beta_{1}<1<\beta_{2}$. As is seen by a glance at (3), it holds true for x not too large that $L(\varphi)$ (for φ in ($0, \infty$)) first decreases from 0 to a negative minimum, then increases up to a positive maximum $L\left(\varphi_{0}\right)$ and then decreases again. Thus $\varphi_{0}(x)$ is the largest of the two solutions of eq. (4) which now exist. For x exceeding a certain value x_{0}, easy to calculate, the maximum of $L(\varphi)$ is obtained for $\varphi=0$. The extremal function $\varphi_{0}(x)$ thus steadily decreases in the interval ($0, x_{0}$) from $+\infty$ to the positive value $\varphi_{0}\left(x_{0}\right)$; at x_{0} there is discontinuity, since $\varphi_{0}=0$ for $x>x_{0}$. After the same substitutions as in the first case, it is again possible to obtain an explicit but now complicated expression for K.

REFERENCES

1. F. Carlson : Une inégalité. Arkiv för mat., astr. och fysik, vol. 25 B, N:o 1, 1934.
2. G. H. Hardy : A note on two inequalities. Jour. London Math. Soc. 11, 1936.
3. R. M. Gabriel : An extension of an inequality due to Carlson. Jour. London Math. Soc. 12, 1937.
4. A. Beurlina : sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionelle. Neuvième congrès des mathématiciens scandinaves 1938, Helsingfors 1939.
5. W. B. Caton : A class of inequalities. Duke Math. Jour., vol. 6, 1940.
6. Béla v. Sz. Nagy: Úber Carlsonsche und verwandte Ungleichungen. Mat. fiz. Lap. 48, 1941.
7. B. Kjellberg: Ein Momentenproblem. Arkiv för mat., astr. och fysik, vol. 29 A, N:o 2, 1942.
8. R. Bellman : An integral inequality. Duke Math. Jour., vol. 10, 1943.
9. B. Kjellberg : On some inequalities. Comptes rendus du dixième congrès des mathématiciens scandinaves, Copenhague 1946.
10. V. J. Levin : Exact constants in inequalities of the Carlson type. Doklady Nauk SSSR (N.S.) 59, 1948.
