ARKIV FÖR MATEMATIK Band 3 nr 26

A note on a problem of Boas

By Bo Kjellberg

Boas has in a paper [1] generalized certain theorems of Plancherel and Pólya [2] concerning simultaneous convergence of

$$
\int_{-\infty}^{+\infty}|f(x)|^{p} d x \text { and } \sum_{-\infty}^{+\infty}\left|f\left(\lambda_{n}\right)\right|^{p}
$$

for entire functions $f(z)$ of exponential type. He also puts the question how to treat corresponding problems for functions regular in a half-plane, especially what may be precisely stated as follows.

Problem. Let $f(z)$ be regular for $x \geq 0, z=x+i y$, and such that, if $z \rightarrow \infty$ in this half-plane,

$$
\begin{equation*}
\lim \sup \frac{\log |f(z)|}{|z|}=c, \quad 0<c<\infty \tag{1}
\end{equation*}
$$

Let $\varphi(t)$ be, for $t \geq 0$, a non-decreasing convex function of $\log t$ with $\varphi(0)=0$. Consider further a sequence of positive numbers $\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$ such that

$$
\begin{equation*}
\inf _{n}\left(\lambda_{n+1}-\lambda_{n}\right) \geq 2 \delta>0 \tag{2}
\end{equation*}
$$

Does then

$$
\begin{equation*}
\int_{0}^{\infty} \varphi\{|f(x)|\} d x<\infty \tag{3}
\end{equation*}
$$

imply

$$
\begin{equation*}
\sum_{0}^{\infty} \varphi\left\{e^{-c \delta}\left|f\left(\lambda_{n}\right)\right|\right\}<\infty ? \tag{4}
\end{equation*}
$$

At first I thought the answer ought to be negative. Therefore the following affirmative proof was not finally elaborated until I heard Professor Lennart Carleson express a contrary opinion: that my original condition (5) was superfluous.

By means of an example Boas shows that the factor $e^{-c \delta}$ in (4) cannot be dropped. It signifies a number arbitrarily close to 1 since-as soon as (2) is fulfilled- δ may be chosen arbitrarily close to 0 .

The proof is given in two steps.
bo kjellberg, A note on a problem of Boas
Theorem I. Condition (3) implies (4) if we impose the additional condition

$$
\begin{equation*}
\int_{0}^{\frac{1}{2}} \frac{\varphi(t)}{t \log \frac{1}{t}} d t<\infty . \tag{5}
\end{equation*}
$$

Proof. We denote the coordinate half-axes and the quadrants, counted in the positive direction and starting with the positive x-axis, by L_{1}, \ldots, L_{4}, and K_{1}, \ldots, K_{4} respectively.

We do not repeat here a proof of the fact (proved e.g. by Boas) that (1) and (3) imply that it is possible, for each $c^{\prime}>c$, to find a constant B such that

$$
\begin{equation*}
|f(z)| \leq B e^{c|y|} \tag{6}
\end{equation*}
$$

Choosing $c^{\prime \prime}>c^{\prime}$ we consider the function

$$
\begin{equation*}
\psi(z)=\varphi\left\{e^{-c^{\prime \prime}|y|}|f(x+i y)|\right\} \tag{7}
\end{equation*}
$$

The function $\psi(z)$ is subharmonic both within K_{1} and within K_{4}. In K_{1}, for instance, we have $\psi(z)=\varphi\left\{\left|e^{i c^{\prime \prime} z} f(z)\right|\right\}$ which is subharmonic in consequence of the properties of φ. From (6) we infer that $\psi(z)$ is bounded.

The essential point of the proof is to make sure of the convergence for $y \neq 0$ of

$$
\begin{equation*}
\Psi(y)=\int_{0}^{\infty} \psi(x+i y) d x \tag{8}
\end{equation*}
$$

according to (3) we know that $\Psi(0)$ is finite.
In order to estimate (8) we now form in K_{1}-and analogously in K_{4}-the harmonic majorant of the bounded subharmonic function $\psi(z)$ whose boundary values agree with those of ψ. We so obtain for, e.g., $z \in K_{1}$:

$$
\begin{equation*}
\psi(z) \leq h_{1}(z)+h_{2}(z) \tag{9}
\end{equation*}
$$

where $h_{1}(z)$ is harmonic and $=\psi(x)$ on $L_{1},=0$ on L_{2}, and $h_{2}(z)$ harmonic and $=0$ on $L_{1},=\psi(i y)$ on L_{2}. By reflection in L_{2} we extend $h_{1}(z)$ to be harmonic in $K_{1}+K_{2}$ with boundary values $-\psi(-x)$ on L_{3}. Analogously $h_{2}(z)$ will be defined in $K_{1}+K_{4}$ with the values $-\psi(-i y)$ on L_{4}.

According to the representation formula for functions harmonic in a halfplane we obtain

$$
\begin{equation*}
h_{1}(x+i y)=\frac{1}{\pi} \int_{0}^{\infty} y \psi(\xi)\left\{\frac{1}{(\xi-x)^{2}+y^{2}}-\frac{1}{(\xi+x)^{2}+y^{2}}\right\} d \xi \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{2}(x+i y)=\frac{1}{\pi} \int_{0}^{\infty} x \psi(i \eta)\left\{\frac{1}{(\eta-y)^{2}+x^{2}}-\frac{1}{(\eta+y)^{2}+x^{2}}\right\} d \eta \tag{11}
\end{equation*}
$$

From this we obtain

$$
\begin{equation*}
\int_{0}^{\infty} h_{1}(x+i y) d x=\frac{2}{\pi} \int_{0}^{\infty} \psi(\xi) \operatorname{arctg} \frac{\xi}{y} d \xi \leq \int_{0}^{\infty} \psi(\xi) d \xi=\Psi(0) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} h_{2}(x+i y) d x=\frac{1}{\pi} \int_{0}^{\infty} \psi(i \eta) \log \left|\frac{\eta+y}{\eta-y}\right| d \eta \leq A+C \int_{2 \delta}^{\infty} \frac{\psi(i \eta)}{\eta} d \eta \tag{13}
\end{equation*}
$$

where A and C may be taken as fixed constants if we restrict the variation of y to some interval $0 \leq y \leq \delta$.

From (7), (6) and the fact that φ is non-decreasing we obtain $\psi(i \eta) \leq \varphi(t)$, where $t=B c^{-\left(e^{\prime \prime}-c^{*}\right) \eta}$. After introducing t as variable instead of η we then obtain (5) as a condition for convergence in (13) and also-after addition of (12) and (13)-as a condition for uniform boundedness of $\Psi(y)$ for $0 \leq y \leq \delta$. Because of the analogous situation in K_{4} we may here just as well write $|y| \leq \delta$.

To finish the proof we again follow the paper quoted. From the foregoing we infer that

$$
\begin{equation*}
\int_{-\delta}^{+\delta} \int_{0}^{\infty} \psi(x+i y) d x d y<\infty . \tag{14}
\end{equation*}
$$

For $|y| \leq \delta$ it holds true that

$$
\psi(x+i y) \equiv \varphi\left\{e^{-c^{\prime \prime}|y|}|f(x+i y)|\right\} \geq \varphi\left\{e^{-c^{\prime \prime} \delta}|f(x+i y)|\right\}
$$

This latter function is subharmonic for $|y| \leq \delta$, whereas ψ is not. In the strip $|y| \leq c \delta / c^{\prime \prime}$ it holds that $\psi \geq \varphi\left\{e^{-c \delta}|f|\right\}$. Each number $\varphi\left\{e^{-c \delta}\left|f\left(\lambda_{n}\right)\right|\right\}$ is accordingly less than or equal to the average of ψ over a circular disc around λ_{n}, i.e. (14) implies (4) and Theorem I is proved.

It now remains to examine the condition (5). If this be not satisfied it must hold true that

$$
\begin{equation*}
\int_{0}^{1 / 2} \frac{\varphi(t) d t}{t} \frac{\log 1 / t}{\log }=+\infty . \tag{15}
\end{equation*}
$$

bo kJellberg, A note on a problem of Boas
Theorem II. The class of functions $f(z)$, satisfying (1), (3) and (15) is empty.
Proof. Let us study $\log |f(z)|$ in K_{1}. The weak growth according to (1) implies that $\log |f(z)|$ within K_{1} is dominated by the harmonic function which is obtained in form of an integral of the boundary values along $L_{1}+L_{2}$. Let $z_{0}=x_{0}+i y_{0}$ be an arbitrary point within K_{1}. We then obtain

$$
\begin{equation*}
\log \left|f\left(z_{0}\right)\right| \leq A_{0}+\frac{y_{0}}{\pi} \int_{0}^{\infty} \log |f(x)| \frac{4 x x_{0} d x}{\left[\left(x-x_{0}\right)^{2}+y_{0}^{2}\right]\left[\left(x+x_{0}\right)^{2}+y_{0}^{2}\right]} \tag{16}
\end{equation*}
$$

Here A_{0} denotes a convergent integral along L_{2} corresponding to (11), and the second integral corresponds to (10). Since $|f(x)|$ is bounded this integral either converges or diverges towards $-\infty$ at the same time as

$$
\int_{1}^{\infty} \frac{\log |f(x)|}{x^{3}} d x \quad \text { or } \quad-\int_{1}^{\infty} \frac{\log \frac{1}{|f(x)|}}{x^{3}} d x
$$

For simplicity's sake we set $u(x)=\log \{1 /|f(x)|\}$ and $g\{u(x)\}=\varphi\{|f(x)|\}$. Thus $g(u)$ is a steadily decreasing function of u. Formula (3) can now be written

$$
\begin{equation*}
\int_{0}^{\infty} g\{u(x)\} d x<\infty \tag{17}
\end{equation*}
$$

The substitution $u=-\log t$ transforms (15) into

$$
\begin{equation*}
\int_{\log 2}^{\infty} \frac{g(u)}{u} d u=+\infty \tag{18}
\end{equation*}
$$

We shall show that these relations imply that the integral in (16) diverges, i.e. that

$$
\begin{equation*}
\int_{i}^{\infty} \frac{u(x)}{x^{3}} d x=+\infty \tag{19}
\end{equation*}
$$

Let $v(x)$ be obtained from $u(x)$ by a measure-conserving rearrangement, such that $v(x)$ is steadily increasing (towards $+\infty$ according to (17)). Then

$$
\begin{equation*}
\int_{0}^{\infty} g\{v(x)\} d x=\int_{0}^{\infty} g\{u(x)\} d x \text { and } \int_{0}^{\infty} \frac{v(x)}{x^{3}} d x \leq \int_{0}^{\infty} \frac{u(x)}{x^{3}} d x \tag{20}
\end{equation*}
$$

Summing up, the present problem may be stated as follows:
From

$$
\begin{equation*}
\int_{0}^{\infty} g\{v(x)\} d x<\infty \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{i}^{\infty} \frac{g(v)}{v} d v=+\infty \tag{18}
\end{equation*}
$$

we want to deduce

$$
\begin{equation*}
\int_{i}^{\infty} \frac{v(x)}{x^{3}} d x=+\infty . \tag{22}
\end{equation*}
$$

In (18) we may consider $v=v(x)$, where x varies from some number $a>0$ to $+\infty$. By partial integration we may restate (21) and (18) as

$$
\begin{equation*}
\varlimsup_{A \rightarrow+\infty}\left\{(g \cdot x]_{a}^{A}+\int_{a}^{A} x d(-g)\right\}<\infty \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{A \rightarrow+\infty}\left\{[g \log v]_{a}^{A}+\int_{a}^{A} \log v d(-g)\right\}=+\infty \tag{24}
\end{equation*}
$$

Here g is non-negative and $-g$ steadily increasing; accordingly there must exist arbitrarily large numbers x_{n} such that

$$
\begin{equation*}
\log v\left(x_{n}\right)>x_{n} \quad \text { or } \quad v\left(x_{n}\right)>e^{x_{n}} \tag{25}
\end{equation*}
$$

Since then

$$
\int_{x_{n}}^{\infty} \frac{v(x)}{x^{3}} d x>\int_{x_{n}}^{\infty} \frac{e^{x_{n}}}{x^{3}} d x=\frac{e^{x_{n}}}{2 x_{n}^{2}} \rightarrow+\infty \quad \text { as } \quad x_{n} \rightarrow+\infty
$$

the validity of (22) is obvious. For each z_{0} in K_{1} we thus obtain $f\left(z_{0}\right)=0$, i.e. $f(z) \equiv 0$ and, therefore, without interest in connection with functions of exponential type.

Thus the condition (5) is redundant, and it is demonstrated that (3) implies (4).

REFERENCES

1. R. P. Boas Jr.: Inequalities between series and integrals involving entire functions. Jour. Indian Math. Soc., 1952, 127-135.
2. Plancherel and Pólya: Functions entières et intégrales de Fourier multiples, Comm. Math. Helv. 9, 1937, 224-248; 10, 1938, 110-163.
