Communicated 9 November 1955 by OTTO FROSTMAN

A note on a problem of Boas

By Bo KJELLBERG

Boas has in a paper [1] generalized certain theorems of Plancherel and Pólya [2] concerning simultaneous convergence of

$$\int_{-\infty}^{+\infty} |f(x)|^p dx \text{ and } \sum_{-\infty}^{+\infty} |f(\lambda_n)|^p$$

for entire functions f(z) of exponential type. He also puts the question how to treat corresponding problems for functions regular in a half-plane, especially what may be precisely stated as follows.

Problem. Let f(z) be regular for $x \ge 0$, z = x + iy, and such that, if $z \to \infty$ in this half-plane,

$$\limsup \frac{\log |f(z)|}{|z|} = c, \quad 0 < c < \infty.$$
(1)

Let $\varphi(t)$ be, for $t \ge 0$, a non-decreasing convex function of $\log t$ with $\varphi(0) = 0$. Consider further a sequence of positive numbers $\lambda_0 < \lambda_1 < \lambda_2 < \cdots$ such that

$$\inf_{n} (\lambda_{n+1} - \lambda_n) \ge 2 \,\delta > 0. \tag{2}$$

Does then

$$\int_{0}^{\infty} \varphi\left\{\left|f\left(x\right)\right|\right\} dx < \infty$$
(3)

imply

$$\sum_{0}^{\infty} \varphi \left\{ e^{-c\delta} \left| f(\lambda_n) \right| \right\} < \infty ?$$
(4)

At first I thought the answer ought to be negative. Therefore the following affirmative proof was not finally elaborated until I heard Professor Lennart Carleson express a contrary opinion: that my original condition (5) was superfluous.

By means of an example Boas shows that the factor $e^{-c\delta}$ in (4) cannot be dropped. It signifies a number arbitrarily close to 1 since—as soon as (2) is fulfilled— δ may be chosen arbitrarily close to 0.

The proof is given in two steps.

 $\mathbf{21}$

BO KJELLBERG, A note on a problem of Boas

Theorem I. Condition (3) implies (4) if we impose the additional condition

$$\int_{0}^{\frac{1}{2}} \frac{\varphi(t)}{t \log \frac{1}{t}} dt < \infty.$$
(5)

Proof. We denote the coordinate half-axes and the quadrants, counted in the positive direction and starting with the positive x-axis, by L_1, \ldots, L_4 , and K_1, \ldots, K_4 respectively.

We do not repeat here a proof of the fact (proved e.g. by Boas) that (1) and (3) imply that it is possible, for each c' > c, to find a constant B such that

$$|f(z)| \le B e^{c' |y|}. \tag{6}$$

Choosing c'' > c' we consider the function

$$\psi(z) = \varphi \{ e^{-c'' |y|} | f(x+iy) | \}.$$
(7)

The function $\psi(z)$ is subharmonic both within K_1 and within K_4 . In K_1 , for instance, we have $\psi(z) = \varphi\{|e^{i c'' z} f(z)|\}$ which is subharmonic in consequence of the properties of φ . From (6) we infer that $\psi(z)$ is bounded.

The essential point of the proof is to make sure of the convergence for $y \neq 0$ of

$$\Psi(y) = \int_{0}^{\infty} \psi(x+iy) \, dx; \qquad (8)$$

according to (3) we know that $\Psi(0)$ is finite.

In order to estimate (8) we now form in K_1 —and analogously in K_4 —the harmonic majorant of the bounded subharmonic function $\psi(z)$ whose boundary values agree with those of ψ . We so obtain for, e.g., $z \in K_1$:

$$\psi(z) \le h_1(z) + h_2(z),$$
 (9)

where $h_1(z)$ is harmonic and $=\psi(x)$ on L_1 , =0 on L_2 , and $h_2(z)$ harmonic and =0 on L_1 , $=\psi(iy)$ on L_2 . By reflection in L_2 we extend $h_1(z)$ to be harmonic in K_1+K_2 with boundary values $-\psi(-x)$ on L_3 . Analogously $h_2(z)$ will be defined in K_1+K_4 with the values $-\psi(-iy)$ on L_4 .

According to the representation formula for functions harmonic in a halfplane we obtain

$$h_1(x+iy) = \frac{1}{\pi} \int_0^\infty y \, \psi(\xi) \left\{ \frac{1}{(\xi-x)^2 + y^2} - \frac{1}{(\xi+x)^2 + y^2} \right\} d\xi \tag{10}$$

and

$$h_2(x+iy) = \frac{1}{\pi} \int_0^\infty x \, \psi(i\eta) \left\{ \frac{1}{(\eta-y)^2 + x^2} - \frac{1}{(\eta+y)^2 + x^2} \right\} d\eta.$$
(11)

From this we obtain

$$\int_{0}^{\infty} h_1(x+iy) dx = \frac{2}{\pi} \int_{0}^{\infty} \psi(\xi) \operatorname{arctg} \frac{\xi}{y} d\xi \leq \int_{0}^{\infty} \psi(\xi) d\xi = \Psi(0)$$
(12)

and

$$\int_{0}^{\infty} h_{2}(x+iy) dx = \frac{1}{\pi} \int_{0}^{\infty} \psi(i\eta) \log \left| \frac{\eta+y}{\eta-y} \right| d\eta \le A + C \int_{2\delta}^{\infty} \frac{\psi(i\eta)}{\eta} d\eta, \quad (13)$$

where A and C may be taken as fixed constants if we restrict the variation of y to some interval $0 \le y \le \delta$.

From (7), (6) and the fact that φ is non-decreasing we obtain $\psi(i\eta) \leq \varphi(t)$, where $t = Bc^{-(c''-c')\eta}$. After introducing t as variable instead of η we then obtain (5) as a condition for convergence in (13) and also—after addition of (12) and (13)—as a condition for uniform boundedness of $\Psi'(y)$ for $0 \leq y \leq \delta$. Because of the analogous situation in K_4 we may here just as well write $|y| \leq \delta$.

To finish the proof we again follow the paper quoted. From the foregoing we infer that

$$\int_{-\delta}^{+\delta} \int_{0}^{\infty} \psi(x+iy) \, dx \, dy < \infty \,. \tag{14}$$

For $|y| \leq \delta$ it holds true that

$$\psi(x+iy) \equiv \varphi\left\{e^{-c'' \mid y \mid} \left| f(x+iy) \right|\right\} \geq \varphi\left\{e^{-c'' \delta} \left| f(x+iy) \right|\right\}.$$

This latter function is subharmonic for $|y| \leq \delta$, whereas ψ is not. In the strip $|y| \leq c \, \delta/c''$ it holds that $\psi \geq \varphi \{e^{-c\delta} |f|\}$. Each number $\varphi \{e^{-c\delta} |f(\lambda_n)|\}$ is accordingly less than or equal to the average of ψ over a circular disc around λ_n , i.e. (14) implies (4) and Theorem I is proved.

It now remains to examine the condition (5). If this be not satisfied it must hold true that

$$\int_{0}^{t_{a}} \frac{\varphi(t) dt}{t \log 1/t} = +\infty.$$
(15)

297

BO KJELLBERG, A note on a problem of Boas

Theorem II. The class of functions f(z), satisfying (1), (3) and (15) is empty.

Proof. Let us study $\log |f(z)|$ in K_1 . The weak growth according to (1) implies that $\log |f(z)|$ within K_1 is dominated by the harmonic function which is obtained in form of an integral of the boundary values along $L_1 + L_2$. Let $z_0 = x_0 + i y_0$ be an arbitrary point within K_1 . We then obtain

$$\log |f(z_0)| \le A_0 + \frac{y_0}{\pi} \int_0^\infty \log |f(x)| \frac{4x x_0 dx}{[(x-x_0)^2 + y_0^2] [(x+x_0)^2 + y_0^2]}.$$
 (16)

Here A_0 denotes a convergent integral along L_2 corresponding to (11), and the second integral corresponds to (10). Since |f(x)| is bounded this integral either converges or diverges towards $-\infty$ at the same time as

$$\int_{1}^{\infty} \frac{\log |f(x)|}{x^3} dx \quad \text{or} \quad -\int_{1}^{\infty} \frac{\log \frac{1}{|f(x)|}}{x^3} dx.$$

For simplicity's sake we set $u(x) = \log \{1/|f(x)|\}$ and $g\{u(x)\} = \varphi\{|f(x)|\}$. Thus g(u) is a steadily decreasing function of u. Formula (3) can now be written

$$\int_{0}^{\infty} g\left\{u\left(x\right)\right\} dx < \infty.$$
(17)

The substitution $u = -\log t$ transforms (15) into

$$\int_{\log 2}^{\infty} \frac{g(u)}{u} du = +\infty.$$
 (18)

We shall show that these relations imply that the integral in (16) diverges, i.e. that \sim

$$\int_{1}^{\infty} \frac{u(x)}{x^{3}} dx = +\infty.$$
 (19)

Let v(x) be obtained from u(x) by a measure-conserving rearrangement, such that v(x) is steadily increasing (towards $+\infty$ according to (17)). Then

$$\int_{0}^{\infty} g\{v(x)\} dx = \int_{0}^{\infty} g\{u(x)\} dx \text{ and } \int_{0}^{\infty} \frac{v(x)}{x^{3}} dx \leq \int_{0}^{\infty} \frac{u(x)}{x^{3}} dx.$$
(20)

Summing up, the present problem may be stated as follows: From

$$\int_{0}^{\infty} g\left\{v\left(x\right)\right\} dx < \infty \tag{21}$$

298

$$\int_{1}^{\infty} \frac{g(v)}{v} dv = +\infty$$
 (18)

we want to deduce

$$\int_{1}^{\infty} \frac{v(x)}{x^3} dx = +\infty.$$
(22)

In (18) we may consider v = v(x), where x varies from some number a > 0 to $+\infty$. By partial integration we may restate (21) and (18) as

$$\overline{\lim_{A \to +\infty}} \left\{ (g \cdot x]_a^A + \int_a^A x \, d \, (-g) \right\} < \infty$$
(23)

and

$$\lim_{A \to +\infty} \left\{ [g \log v]_a^A + \int_a^A \log v d (-g) \right\} = +\infty.$$
(24)

Here g is non-negative and -g steadily increasing; accordingly there must exist arbitrarily large numbers x_n such that

$$\log v(x_n) > x_n \quad \text{or} \quad v(x_n) > e^{x_n}. \tag{25}$$

Since then

$$\int_{x_n}^{\infty} \frac{v(x)}{x^3} dx > \int_{x_n}^{\infty} \frac{e^{x_n}}{x^3} dx = \frac{e^{x_n}}{2x_n^2} \to +\infty \quad \text{as} \quad x_n \to +\infty,$$

the validity of (22) is obvious. For each z_0 in K_1 we thus obtain $f(z_0) = 0$, i.e. $f(z) \equiv 0$ and, therefore, without interest in connection with functions of exponential type.

Thus the condition (5) is redundant, and it is demonstrated that (3) implies (4).

REFERENCES

- R. P. BOAS Jr.: Inequalities between series and integrals involving entire functions. Jour. Indian Math. Soc., 1952, 127-135.
- PLANCHEREL and PÓLYA: Functions entières et intégrales de Fourier multiples, Comm. Math. Helv. 9, 1937, 224-248; 10, 1938, 110-163.

Tryckt den 16 februari 1956

Uppsala 1956. Almqvist & Wiksells Boktryckeri AB

and