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This paper  is concerned with a theorem of Chevalley on multiplicities in a 
local ring ([1], Theorem 5, p. 25). We shall present a generalized form of this 
theorem, for which we can give a new and rather  simple proof. Before stating 
our  theorem we introduce some notations. I f  q is a p r imary  ideal belonging to 
the  maximal  ideal of a local ring, then e ( q ) m e a n s  its multiplicity, defined 
according to Samuel, and L(q)  its length; if a is an arbi t rary  ideal t in a 
Noetherian ring R and 0 a minimal prime ideal of a, then we define e (a; p ) =  
= e (a R~) and L (n; p) = L (a Ro), where R~ denotes the generalized ring of quo- 

t ients  with respect to p. I t  may  be pointed out here tha t  our result depends 
in an essential way on Samuel 's notion of multiplicity, which is more general 
than  Chevalley's original notion. 

Our theorem reads: 

T h e o r e m  1. Let Q be a local ring o/ dimension r and let {x 1 . . . . .  xT} be a 
system o/ parameters in Q. Put  q = ( x  1 . . . . .  xr) and ~=(Xm+l . . . . .  xr), where 
0 <_m< r. Let O range over those minimal prime ideals of ~ /or which dim p + 
rank  p =  dim Q. Then 

e (q) = 5 e ((q + 0)/0) e (0; p). 

Chevalley's theorem is restricted to local rings which admit  a nucleus. ( I t  is 
formulated for the even smaller class of geometric local rings.) In  his theorem, 
p ranges over all minimal prime ideals of v. This difference from our theorem 
comes from the fact tha t  in a local ring which admits  a nucleus it is t rue for 
every prime ideal p tha t  dim p + rank p = dim Q. Chevalley's theorem as well 
as ours has its greatest  importance in the algebro-geometrie theory of inter- 
section-multiplicities. 

We begin our proof by  deriving a certain expression for the multiplicity of 
an  ideal generated by  a system of parameters  (Theorem 2, Section 1). Theo- 
rem 1 is then proved by  induction on the dimension of Q (Sections 2 and 3). 
The proof is based directly on the fundamental  properties of Noetherian rings 
and of local rings.:~ The local rings which occur during the  demonstrations are 

By an  ideal we shall a lways  mean  a p roper  ideal; in o ther  words,  the  whole r ing does no t  
coun t  as an  ideal. 

:~ As a general  reference, also for the terminology,  see [2]. 
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either general local rings or submitted to restrictions which refer only to the 
dimension and to the p r imary  components of the zero ideal. 

Following Northcot t  and Rees {[4], [5]) one can obtain a generalization of 
Theorem 1 in terms of analytically disjoint ideals. This is outlined in Section 4 
below, the result being stated as Theorem 3. 

The concluding Section 5 contains a couple of simple formulas obtained as 
side-results. 

1. Before we enter on the proper subject of this section we recall some 
well-known facts, fundamental  to the whole paper.  Let  Q be a local ring, m 
its maximal  ideal and let q be an m-pr imary  ideal. 

The length L(q) of q is defined as the max imum of the number  2 of steps 
in a chain 

Q=q0 ~ q l  D . . .  ~ q ~ = q ,  

where each inclusion is strict and where, apar t  from %, each te rm is an m- 
pr imary  ideal. A way of viewing this situation is to regard Q as a module 
with itself as a multiplicative operator domain. The permit ted submodules are 
then the ideals of Q: and L (q) is equal to the length of a Jordan-HSlder com- 
position series of the Q-module Q/q. Notice that ,  if q' is another m-pr imary  
ideal contained in q, then L ( q ' ) -  L (q) is equal to the length of a composition 
series of the Q-module q/q ' .  By  saying tha t  two modules are Q-isomorphic we 
shah mean tha t  they  are isomorphic regarded as Q-modules. 

The dimension of Q can be equivalently defined in two quite different ways. 
According to one, dim Q is the minimum number  of generators of an m-pr imary  
ideal. (The number  of generators of (0) is thereby counted as zero.) A system 
of elements which generate an m-pr imary  ideal and whose number  is dim Q, 
is called a system of parameters  in Q. According to the other way of defini- 
tion, dim Q is the max imum of the number  Q of steps in a chain 

where each inclusion is strict and each te rm is a prime ideal in Q. If  a is 
any  ideal and p any  prime Meal in Q, then by definition, dim a = d i m  (Q/a) 
and rank p = dim Q~. Using the correspondence between the prime ideals in Q 
on one hand and those in Q/p and in Q~ on the other, we see tha t  we always 
have dim p + rank p < dim Q. 

Let  now the dimension of Q be r. Samuel has shown that ,  for n sufficiently 
large, L (q") is a polynomial in n, whose degree is exactly r (see [6], pp. 24-28, 
or [3]; el. the formula (5) below). He defines e(q) as r! t imes the leading coef- 
ficient of this polynomial. From this definition it can easily be concluded tha t  
e (q) is a positive integer. On the other hand, it is plain tha t  we can write 

e (q) = lim (r!) L (q') 
~ + ~  n~ (1) 

and we shall take this expression as our start ing point. 
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The main object of the present section is to derive another similar expression 
for e (q) in the ease where q is generated by  a system of parameters.  At the 
same t ime we shall get an independent proof of the fact tha t  the above limit 
exists for such a q. For simplicity we write e (x 1 . . . . .  x~) instead of e ((x 1 . . . . .  x~)), 
etc. Our result is as follows. 

T h e o r e m  2. I /  {x I . . . . .  x~} is a system o/ parameters in a local ring, then 

L (x[', . . . .  x ~  ) 
e (x 1 . . . . .  x~) = lim 

( ra in  nt)-->oo n l .  , . ,  n r 
t 

Denote by  Q the local ring referred to in the theorem, by  m its maximal  
ideal and by  q the ideal (x 1 . . . . .  x~). Let  a be an arbi t rary  ideal in Q. Ap- 
plying a method which goes back to Krull we shall deduce an expression (the 
formula (5), p. 304) for L ( a + q  ~) in terms of certain "form ideals" (cf. [6], 
p. 19, and [3], Section 4). This expression will then be used for estimating 
L (x?', . . . .  ~ , ) .  

Fix a composition series from Q to q, 

Q = q 0  ~ q l  ~ " "  ~ q z = q ,  

so tha t  l=L(q) .  Multiplying the terms of this chain successively by  Q=q0,  
q . . . . .  q,-1 and linking together the chains so obtained, we get a chain 

q0 ~ q l  D " ' "  D {~I-1 Dq ~ q l q  ~q2q  ~ "'" ~ qt-1 q ~q2 ~ ... ~ q " ,  

which is of course in general no composition series. Adding a to each te rm of 
this chain, we get a chain from Q = a + q 0  to o + q  ", from which we obtain 

n - 1  l - 1  

L (a + q") = ~ ~ lengthQ ((a + q~ q ' ) / ( a  + q,+~ q')), (2) 
p = 0  v=O 

where lengtha of a Q-module denotes the length of a composition series for this 
Q-module. The final formula for L ( a + q  ~) will be obtained from ( 2 ) b y  re- 
placing 

(a + q. q~')/(a + c1.+1 q") 

by a Q-isomorphic image. As a first step in this direction, we note that ,  by  
one of the isomorphism theorems for groups, there is a Q-isomorphism 

(CL + q. q~)/(a + q.+l q~) ~ q. q~/(a n q~ q~.+ q.+l q")- (3) 

Now put  K = Q/m. Form the polynomial ring K [X I . . . . .  X~] = K IX], where 
the X, are indeterminates. Denote by  F ,  the K-module consisting of all the 
forms of degree # in K[X] .  For each v(O<_v<_l-1) we shall define an ideal 
1, (a) in K [X]. 

Without  reducing the structure we may  consider every Q-module annihilated 
by  m as a K-module. Now m q v c  q,+l (for otherwise q , + l + m q ,  would be an 
ideal strictly between q, and q,+l, cf. [2], Proposition 1, p. 65). Hence the 
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modules in (3) are K-modules and the symbol " lengtho" in (2) m a y  be re- 
placed by  "dim~". Furthermore,  the module q~/q~+l is a K-module and, as it  
is irreducible, it is actually K-isomorphic to K. Let  us fix such an isomorphism 
between q,/q,+t and K.  

For g = 0 ,  1, 2 . . . .  we shall define a mapping 

T,. , : -F~,  --> q, q"/q,+1 q". 

Let [ be a form of F t. A representative ~0 in qv q~' of its image under  T,,. ~, is 
obtained as follows. Replace in the form [ the indeterminates Xt b y  the corre- 
sponding elements xt and the coefficients in K by  a representative in el, of the 
corresponding elements in q,/q~+l. (The form i t is then a kind of a leading form 
of ~0. Cf. [3], p. 71.) We write 

T~,~it = ~o + q~+lq ~ • 

Notice tha t  

T~,.+I (X, 1) = zt ~0 + q.÷l q.+l (i = 1, 2 . . . . .  r). (4) 

As is easily verified, the mapping T , . ,  is a K-homomorphism onto q~q"/q,+l q ' .  
I t  induces a further K-homomorphism 

F ,  --> q. q"/(a n q. q" + q~+1 q"). 

the kernel of which we denote by  K,,. (a). We have 

K,.~, (a) ={it l lEF,.  T..~,Ic (a N q,. q~'+ q,,+l q~')}. 

Using (4), we see tha t  

X~ K,.~ (a) c K, . ,+I  (a) ( i = l ,  2 , . . . ,  r). 

Therefore the set 

~J K , . ,  (a) 
# = 0  

is the set of forms in a homogeneous ideal of K IX]. 
I , ( a ) .  The ideals I,(a) (v=0 ,  1 . . . . .  l - l )  m a y  be 
Note tha t  

a c b implies Iv (a) c I~ (t}). 

We denote this ideal by  
called form ideals of a. 

According to the definitions of K , . ,  (a) and Iv (a) there is a K-isomorphism 

F . / ( I .  (a) N F . )  _~ q~ q"/(a N q, q~' + q.+l q")- 

Hence, from (2) and (3), after changing the order of summation in (2), 

l--1 n - 1  

L (a + qn) = ~ ~ dimK (F~,/(I,, (a) N F~)). 
v=0 / l = l  

(5) 
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This  is the desired formula  for L ( a +  q=). I f  a is an  m-pr imary  ideal, we get  
f rom (5), b y  taking n large and summing over /~, 

l - 1  

L (a) = ~ dim~ ( K  [ X ] / I ,  (a)). (6) 
Y = 0  

For  exact ly  e (q) values of v we have I , ( 0 ) = ( 0 ) .  I n  fact,  if we app ly  (5) 
wi th  a =  (0), we see t h a t  those values of v for which I ,  ( 0 )=  (0) will contr ibute  
to  L ( q  ~) with an  amoun t  n ~ / r ! + O ( n ~ - l ) ,  the  other  values of v with merely  
O ( n ' - l ) .  The assertion therefore follows f rom (1). A t  the  same t ime we see 
t h a t  the limit in (1) exists for q = (x I . . . . .  x,). The number  of values of v for 
which I~ (0 )=  (0) cannot  exceed I. For  later use we m a y  thus  note  with Samuel 
t h a t  

e (x 1 . . . . .  xr) < L (x~ . . . . .  xr). (7) 

( I t  m a y  be remarked  t h a t  the analyt ic  independence of {x I . . . . .  xT} means pre- 
cisely t h a t  I o (0) = (0), hence implies t h a t  e (x 1 . . . . .  Xr) > 0 . )  

_ n l  The formula  (6) applied to a - ( x l  . . . . .  x~)  will now be used to  get an upper  
est imate for L (x~', . . . .  =~ x~ ). Since 

L (x~', .. , xT~) ~ ( x T ' ,  . . . .  x 2 ~ ) ,  

we have, for v = 0 ,  1 . . . . .  l - 1 ,  

dimx. ( g  [ X ] / I ,  (x~', . . . .  x~r)) < dimK ( g  [X]/(X'~' ,  . . . .  X~T)) = n  1 ... hr. 

This est imate is appropr ia te  when / ,  ( 0 )=  (0). For  those values of v for which 
I ,  (0) -~ (0) we consider, instead of (X~', ~r . . . .  . . . .  Xr , ]), where Xr ), an ideal (X~', n~ 
] is an arbi t rar i ly  chosen non-zero form of Iv (0). Order  the  power products  of 
K [ X ]  lexieografically on the  basis of the sequence of their  exponents.  Le t  
X~' ... X ~  be the  highest power produc t  occurring i n / .  Then every  power prod- 
uc t  divisible b y  Xg' ... Xgr is the highest power p roduc t  in some homogeneous 
multiple of [. B y  subtract ing a suitable multiple of f one can therefore from 
a n y  form in K [X] derive another  form of the same degree in which the power 
products  divisible b y  X~' ... X,  , if occurring at  all, have a lower max imum 
height  t han  in the  first form. I t  follows by  induct ion t h a t  modulo (/) every 
form in K [X] is congruent  to a form which contains no power products  di- 
visible by  X~' .. .  X~r Therefore K [ X ] / ( X ' ~ ' ,  nr . . . . .  Xr , [) is generated over K by  
those power products  X~' ... X~T which satisfy the  r inequalities 

0_<Ti <n~ ( i = 1 ,  2 . . . . .  r) 

and  in addit ion at  least one of the  inequalities 

T ~ < ~  ( i = I ,  2 . . . . .  r). 

Hence  

d imx ( K  [X] / (X~ ' ,  . . . .  X'/~, 1)) ~ nl  . . .  nT ( aa + ... + ar I • 
\ n x n~ / 
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Thus,  if / ~ I~ (0), 

d i m ~  ( K [ X ] / I ~ ( x ' ~ ' ,  . . . .  x ' ~ ) ) < : n  1 . . .  n~ + . . .  +(Y~ 
nr] 

Put t ing  together  our  two types  of est imates we get  f rom (6) 

L (x~', .. nr ... e (q) + min n~ • , Xr ) ~ n 1 n r  

where A is a constant ,  independent  of the  n~. I fence  

L (zT ' ,  . . . .  z T , )  
l i m  < e (q )  = e (x~  . . . . .  Xr).  ( 8 )  

(m~n nt ) -*oo n 1 . . .  n r  

N e x t  we prove a reverse to  (8), namely:  I f  n 1 . . . . .  n~ are any  na tura l  num-  
bers, then  

e (x~', . . . .  x~)  _> n 1 .. .  n~ e (x 1 . . . . .  x~). (9) 

Choose m I . . . . .  m, such t h a t  r a i n  I . . . . .  m ,  nr. An app]ication of (8) gives 

. . . .  - -  . . . . . . . .  X r  ) ( 1 0 )  lira L (xl, x~) < 1 lim L ((x~') m' n, (xrnr)~ n) <" e (x~ ~, ~r 
~ t" - n~  . . .  n~ ~ (rex n )  . . .  (m~ n )  n 1 . . .  n ,  

Apply ing  (7), we have,  for every  value of t, 

L (x I  . . . .  ~ , x , ) > _ e ( z l  . . . . .  x ~ ) > e ( ( x , . . ,  x ~ ) ~ ) = t ~ e ( x l  . . . . .  x~). 

I n  par t icular  

lim .L (x~ . . . . .  x~) :> e (x 1 . . . . .  Xr). 
t r 

Combining this inequal i ty  with (10), we get  (9). 
B y  applying (7) with {x 1 . . . . .  xT} replaced by  {x~ ~, . . . .  x~ ~} we deduce f rom 

(9) t h a t  
L (x~ ~, . . . .  x T ' )  >- n l  . . .  n ,  e ( x l  . . . . .  x~),  

This inequality,  toge ther  with (8), proves Theorem 2. 

The l emma which follows will be used in Section 3 as a complement  to  
Theorem 2. 

Lenaxna  t .  Le t  Q be a local r ing o/ d imens ion  r, m its m a x i m a l  ideal an t i  
let (x  1 . . . . .  xs), where  s > r ,  be an  m - p r i m a r y  ideal. T h e n  

l im  L (x'~, x~) 
"°"  ' 0 .  

n.-~¢~ n s 
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I t  is sufficient to  show tha t  

l i ra  L ( x ~ ,  x ~ • . - ,  s ) < o o  
n r n--~oO 

A s  ( x L  x ~ )  ~ ( x l ,  x ~s~ . . . . . . . . .  , , we have L (x~ . . . . .  x~) ~ L ((x 1 . . . . .  xs)'~n). Hence  

lim L (x~ . . . . .  x~) < lim L ((x 1 . . . .  x,) '~) s ~ 
~ n ~ _ ~ n ~ = ~ i . e  (~1 . . . . .  ~ ) <  ~ o ,  

which was to  be proved.  

2. Via the  L e m m a t a  2 and 3 we prove L e m m a  4, which is essentially the  
one-dimensional  ease of  Theorem 1. 

L e n l r n a  2. Let q be primary to t the maximal ideal in a local ring Q, and 
let 7) E Q. Then 

L (q) = L (q + (7))) + L (q : (7))). 

Proof. The t ransformat ion  which t ransforms Q E Q into 7)Q E7)Q= (~0) is a Q- 
homomorph i sm with the  kernel (0) : (7)). As q : (7)) D (0) : (7)), it follows f rom one 
of  the  two isomorphism theorems for groups  t h a t  

Q/(q : (7))) ~_ 7) Q/7) (q : (7))). 

F r o m  the  other  isomorphism theorem we get  

7)Q/7) (q : (7))) = (7))/((~) • q) - ((~) + q) /q .  
Hence  

Q/(q : (~)) ~ ((7)) + q)/q,  

f rom which the  lemma follows readily (cf. the  beginning of Section 1). 

I f  m is the maximal ideal and 7) an element o/ a local ring, then, given any 
integer s > O, one can determine n so that 

m "  : (~)  c (0) : (7)) + m ~. 

This fact  is a corollary of a well-known theorem of Cheval ley (see [6], Corol- 
l a ry  2, p. 10). We shall prove it directly, using the  idea of the  proof  of his 

theorem. P u t  I = ~ (m ~ : (~0) + m').  We  have I = (0) : (7)) + ms. For ,  if c¢ E I ,  then  
v = l  

7) ~ E ~1 (7) m~ + 111") = 7) 11I s. Thus there is an  element # E m s so t h a t  7) (~ - #) = 0 

and  hence ( ~ -  #) E (0) : (7)). This shows I ¢ (0) : (7)) + I1t'. The reverse inclusion is 
obvious. On the  o ther  h a n d  one can f ind an  integer n such t h a t  I = 11l ~ : (7)) + m ~. 

t By an ideal primary to p we mean a primary ideal belonging to (the prime ideal) p or, 
what  i~ the same, a p-primary ideal. 
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For  there  can only  be a finite number  of different ideals among the  ideals 
m ' : ( q ) + m  ' ( v=  1, 2 . . . .  ), since they  form a descending chain and all contain 
ms. F r o m  I = (0) : (~) + m s = m y : (~) + m s we get  the desired result, 

m ~ : (q)  c (0) : (~,) + m ~. 

The lemma which follows contains a similar bu t  sharper result  in a spe- 
cial case. 

Le rn r r t a  3. Let Q be a one-dimensional local ring in which not every non-unit 
is a zero divisor. I[  q) is an element o[ Q and x a parameter, then there exists 
a non-negative integer k such that /or n > k 

(x ~) : (~ )  c (0) : (q)  + (x=-~) .  

According to  wha t  we have  just  proved there  exists an integer k > 0 such tha t  

(x TM) : (~) c (0) : (~)  + (x). 

We shall  show b y  induct ion on n t h a t  this integer k has the p roper ty  required 
by  the  lemma. This is t rue  for n = k +  1. Suppose n >  k +  1 and  let y E (xn) : (~). 
Then cer ta in ly  y E ( x  k+l) :(~),  and  we can write y = z e + x z  with ~E(0)  : (~), z e Q .  
I t  follows t h a t  xzE(x'):(q~).  According to the  assumptions,  x cannot  be a 
zero divisor.  Therefore z E ( x ~ - l ) : ( ¢ ) .  B y  the induct ion hypothesis  this implies 
ze(O) : (~v)+(xn-k-1). Hence  xze (O) : (q ) )+(x  ~-k) and thus  

y = ~r + xz  e (0) : (~) + (xn-k), 

which proves the  lemma. 
Before s ta t ing  the  next  l emma we shall slightly ex tend our  notat ion.  Le t  ~t 

be an  a rb i t r a ry  p r i m a r y  ideal in a Noether ian ring R and  let p be the prime 
ideal belonging to 1t. B y  L (11) we shall denote  the  l e n g t h  of 11. I n  terms of 
our  previous  no ta t ion  this not ion can be defined b y  L (11)=L (ii; p ) = L  (11R~). 
However ,  taking into account  the  correspondence between the  0-pr imary  ideals 
in R and  the  (p R~)-primary ideals in Rv, we see t h a t  L (1I) can also be char- 
acterized as being the  m a x i m u m  number  of steps in a chain R D 0 D .-. D11 
where, apa r t  f rom R, each te rm is a p-pr imary ideal. 

Le r rmaa  ~:. Let Q be a one-dimensional local ring with the parameter x. Let 
p~ ( i = l ,  2 . . . . .  s) be the minimal prime ideals in Q and 11~ ( i = 1 ,  2 . . . . .  s) the 
corre"~ondi~., primary components o[ the zero ideal. Then 

e (x) = ~: e ((x) + p~/p, )  L (n~). 
I = 1  

As e ((0); p~) = L ((0); Pi) = L (11,), the  s ta tement  of L e m m a  4 coincides with the 
case r = m = 1 of Theorem 1. 

To prove  the  l emma we shall use induct ion with respect  to the  number  
$ 

t = ~ L (ltd. 
i = l  
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P u t  ( x ) = q  and let m be the maximal ideal of Q. I f  a i s  an arbi t rary  one- 
dimensional ideal in Q, we have, since ((q+ a)/aF= (qn + a)/a, t ha t  

e ((q + a)/a) = lim 1 L  (qn + a). (!1) 
n-->~ Tb 

Suppose tha t  we can write a =  a o N q0, where q0 is an m-pr imary  ideal. Let  us 
show tha t  then 

e ((q + a ) / a )  = e ((q + ao)/ao) .  (12) 

There is a Q-isomorphism 

(0 = + a0) / (q  = + a)___ ao/(q" n a0 + a),  

and for large values of n we have q = c  q0 so tha t  ao/(qnN a0+a)=a0/a. I t  
follows tha t  L (q~+ a ) - L  (q"+  %) is constant for large values of n (el. the be- 
ginning of Section 1). Hence we get (12 ) f rom (11). (This result is contained 
in [6], Proposition 3, p. 32, and also in [3], Theorem 8, p. 77.) 

For  each value of t we can reduce our proof to the ease where the zero ideal 
in Q has no pr imary component belonging to m. In  fact, if the zero ideal in 
Q has the form 

(0) = ~,  n -.- n us n 00, 

where qo is m-pr imary and irredundant, then we pass from Q to Q/ f i  1t/ and 
/=1 

replace x, Pi and Ih by  their residues modulo fi  Ih. Thereby the multiplicities 
4=1 

and lengths occurring in Lemma 4 will not change .their values. This is seen 
for e (x) from (12) applied to a = (0), for e ((x) + ~0//p/) for instance from (11), 

s 

and  is obvious for L (Ih). As the  zero ideal in Q / n  ~h has apparent ly  no pri- 
i=1  

m a r y  component  belonging to the maximal ideal, our  assertion follows. 
When t = l  there is nothing more to prove. Suppose tha t  t > l  and tha t  

(0) = fi  Th. I f  1~ 1 * Pxl choose n~ ~ nl pr imary to pp such tha t  L (1tl) - L (1t'~) = 1. 
i=1  

I f  r h = Pl, pu t  rt~ = Q. Choose 

9~Ert'~Nn2N-.. N~ts, 9~*0. 

We shall write down a pr imary decomposition of the ideal (~). As Pl . . . . .  Ps, m 
are the only pr ime ideals in Q, and as, for each i, every p/-primary ideal must  
contain nl, we have 

(q) = n~ n n~ n ..- n u~ n oo, 

where qo is an m-pr imary ideal, possibly redundant.  Fur thermore (cf. the fact 
tha t  m q~c q~+l, p- 303), 

(0) : ( ~ ) =  ~1. (13) 
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By Lemma  2, we have 

L (x") = L  ((x") + (~)) + L ((x") : (q)). 

Divide b y  n in this formula and let n tend to infinity. The left-hand side will 
tend to e (x). The first te rm of the right-hand side will tend to e ((x)+ (~)/(~)). 
By  the induction hypothesis we can apply Lemma 4 to the ring Q/(q)). In. 
this way we get 

e ((x) + (~)/(~)) = e ((x) + P,/P~) (L (n~) - l)  + ~ e ((x) + P,/P~) L (~). 
iffi2 

Thus, in order to prove Lemma 4, i t  remains to show tha t  

• lim L ((x") : (~)) e ((x) + Pl/O1). (14), 

Since, by  our assumption, (0)=  f l  1t~, we deduce from Lemma 3 tha t  there exists  
tffil 

an integer k such tha t  for n > k 

(z =) : (V) c (o) : (@ + (x"-~). 

On the other hand it is obvious tha t  

(x")  : (~) ~ (0) : (~) + (z") .  

Because of (13), these two inclusions imply 

L ((3c n-k) -~ 01) --~ L ( (x  n) ". (~9)) __~ L ((x") + 01). 

The formula (14) now follows from (11). Thus the proof of Lemma  4 is com- 
plete. 

3. Proo/ of Theorem 1. Assume Q to be an r-dimensional local ring, m its 
maxin~al ideal and {x 1 . . . . .  xr} a system of parameters  in Q. Denote by  ~ the 
set of sequences 

(00, P~ . . . . .  P,) 

of r + 1 primo ideals in Q which satisfy the condition that ,  for k = O, 1 . . . . .  r - 1, 

0k v0k+l ,  0k*0k+x and 0k D(Xk+I . . . . .  XT). 

I f  (P0 . . . . .  0T) E ~ ,  then, for each k, dim Ok+rank  0 k = d i m  Q, and dim 0 k =  
= k = d i m  (xk+l . . . . .  xr), so tha t  Ok is a minimal prime ideal of (xk+l . . . . .  xr). 
In  particular, i t  follows tha t  ~ is a finite set. Let  us show that ,  if Pm is a 
minimal prime ideal of (Xm+l . . . . .  x~) such tha t  dim p m + r a n k  0re=dim Q (and 
hence dim Pm = m ,  rank Pm= r -  m), then 0m occurs in some element of ~ .  By  
passing to the rings Q/pm and Q~m, and sets analogous to ~ in these rings, 
we m a y  reduce the demonstration to showing tha t  the set ~ is necessarily non- 
void. Now an element (P0 . . . . .  p~) of ~ may  be constructed as follows. Choose 
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p~ as a minimal prime ideal of (0) such tha t  dim Pr = r. Then dim ((xr)+ Pr)= 
= r - 1 .  Choose Pr-1 as a minimal prime ideal of (x~)+pr such tha t  dim P r - l =  
= r - - 1 .  ~'orm (xr-a)+pr-1 ,  etc. 

We introduce the abbreviation 

(z; p, a) = e ((~) + a /a ;  p / a ) ,  

where it is assumed tha t  x is an element and a an ideal of a Noetherian ring, 
and tha t  p is a minimal pr ime ideal of (x )+a .  Notice that ,  if ( x ) + a  is an 
m-pr imary  idea] in Q, then 

E (x; m,  a) = e ((x) + a / a ) .  

W e  shall prove the following formula: 

e (fl~l . . . . .  Xr) ~-~ ~ E (Xl; P0, Pl)  E (x2; Pl ,  P2) . . .  E (Xr; Pr-1,  Pr) L ((0); Or). (15) 
(Po . . . .  ,~r)e~ 

Let  us first show tha t  (15) implies Theorem 1. Let  p". be the ( m + l ) t h  
pr ime ideal in an element of 6 .  We shall apply (15) to the ring Q/p, ,  and the 
parameters  in this ring represented by x I . . . . .  x".. In  order to write down the 
resulting formula in a suitable form, we observe tha t  the prime ideals in Q/p". 
are precisely the ideals p/p". where p is a prime ideal in Q containing p"., and 
tha t ,  furthermore, the symbol E (x; p, a), if defined, does not change its value 
when x, p and a are replaced by  their residues modulo an ideal contained in a. 
Thus we get 

• e((x x . . . . .  x".) + p". /p".)= ~ E(x l ;  Po, Pl ) - . -E (xm;  p".-1, p".) L(pm; p".), 
(Po,..., Pm)e~' (Pm) 

where ~ '  (Pro) denotes the set of those sequences of m +  1 prime ideals in Q 
-that end with p". and can be extended to elements of 6 .  Similarly, by  applying 
(15) to the ring Q~". and the parameters  Xm+l . . . . .  xr, we obtain 

,e fix".+, . . . . .  xr); p".)= E E (z".+~; p"., p".+~)... 
(am . . . . .  Pr )E~'' (Pro) 

• -. E(Zr; Or--l, pr) i ((O); Or), 

where  6 "  (Pro) denotes the set of those sequences of r - m +  1 prime ideals in 
Q tha t  begin with Pm and can be extended to elements of 6 .  Using these two 
formulas and the fact tha t  L (p".; p" .)= 1, we derive Theorem 1 from (15) by  
performing the summation in two stages, keeping p". fix in the first stage. 

I t  remains to prove (15). When r = 0 ,  the formula (15) follows from the fact 
t h a t  in a zero-dimensional local ring e ( 0 ) = L  (0). When r =  1, the formula (15) 
follows from Lemma 4. We proceed by  induction on r and assume r >  2. The 

X n . . .  :ideals ( 2, x~) (n = 1, 2 . . . .  ) have the same minimal prime ideals, all of di- 
mension 1. Let  p range over these minimal prime ideals. Apply Lemma 4 to 

X n t h e  ring Q/(  2 . . . . .  x';) and the parameter  in this ring represented by  x x. This 
.yields 

e ((xl) + (x~ . . . . .  x ~ ) / ( ~  . . . . .  x~)) = ~ E (xl; m,  p) L ((X~, . . . .  x~); p). 
p 
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Dividing b y  n ~-1 and  expressing the  mul t ip l ic i ty  on the  lef t -hand side according 
to  (1), we ob ta in  

x 2  l im L (x~, n . . . .  x~) 
t - - ~  t n r - 1 

p)L " x,), ~) 
- Y E (x.;  m ,  ((z~. . . . . .  ~ • 

n r - 1 

On account  of Theorem 2 and L e m m a  1 we can t ake  n so large t h a t  for  a n y  
given e > 0 

I l im L (Xlt, x~ x;)  l 2 . . . . .  e ( x .  x , )  < e, 
t - ~  t n  r - 1  " "" 

IL((x2, 4 .  < 
. . . , x ~ ) , p )  e((x2, x~);p) e when  r a n k p = r - 1 ,  

n r - 1  - . .  

Hence  

I L ((xL ~ • ] . . . .  X r ) ,  ]3) 
~- - i  < ~ when r a n k  O < r - 1. 

e (Zl . . . . .  z , )  = Z E (xl;  ~ ,  p ) e  ((x2 . . . . .  z~); p) .  
r a n k  p = r  - 1 

B y  expressing e ((x 2 . . . . .  xr); p) according to  the  induct ion hypothes is  we ar r ive  
a t  the  formula  (15). Q.E.D.  

4. I n  ana logy with  a result  of Nor thco t t  and Rees and  b y  means  of a m e t h o d  
of theirs one can deduce f rom Theorem 1 .the following, more  general  t heo rem 
([4], [5]; esp. [4], Theorem 1, p. 158). 

T h e o r e m  3. Let a and ~ be analytically disjoint ideals .in a local ring Q, and 
assume that a + b is primary to the maximal ideal o/ Q. Then 

e(a+5)=Ze((a+p)/p)e (5; p) ,  
P 

where p ranges over those minimal prime ideals o/ ~ /or which dim p + r ank  p = 
=dim Q. 

The not ion of analyt ica l  disjointness has to be  explained. Le t  m be the  
max ima l  ideal and  a an  a rb i t r a ry  ideal of Q. F o r  large values of n t he  di- 
mension of an/ /a~m over  Q/I~ is equal  to a polynomial  in n, whose degree in- 
creased by  1 is called the  "ana ly t ic  spread"  of a and  is denoted b y  l (a). The  
null po lynomia l  is t h e r e b y  considered to  be of degree - 1 .  Two ideals a and  5 
are called "ana ly t i ca l ly  dis joint"  if l (a + b) = l (a) + l (b). I t  is a lways t rue  t h a t  
l (a + b) _< 1 (a) + l (§). I f  q is an  m - p r i m a r y  ideal, then  1 (q) = d im Q. I f  {x~ . . . . .  x~} 
is a sys t em of p a r a m e t e r s  in Q, then,  for each m (0_< m <_ r), the  ideals @1 . . . . .  xm) 
and  (xm+l . . . . .  x,) are analyt ica l ly  disjoint, which shows t h a t  Theorem 3 includes 
Theorem 1. 

We shall outl ine the  deduct ion of Theorem 3 f rom Theorem 1. Le t  c be  an 
ideal  of a Noether ian  r ing R. An e lement  x of R is said to be  " in tegra l ly  de- 
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p e n d e n t "  on c if i t  satisfies an  equa t ion  of t he  t y p e  

Xn ~- ~i  Xn-I -}- "'" -~- ~ 2r~ = O, 

where 7~EC ~ for ~= I, 2 . . . . .  n. t The integral closure of ¢, i.e. the set of ele- 
ments integrally dependent on c, is denoted by ~. An ideM c' such that c' c c c c' 
is called a "reduction" of c. One proves the statements (A)-(D) below: 

(A) ~ is an idea]; 

(B) }=~; 
(C) c a n d  ~ have  the  same min ima l  p r ime  ideals; if p denotes  a n y  one of 

these ,  t h e n  e (~; p) = e (c; p); 
(D) I f  c is an  ideal  in a local  r ing,  t hen  there  exis ts  a n a t u r a l  n u m b e r  

such t h a t  c", and ,  in consequence,  each  of the  ideals  c "~ (# = 1, 2 . . . .  ), has  a 
r educ t ion  gene ra t ed  b y  1 (c) elements .  

L e t  now a a n d  b be t h e  ideals  of Theorem 3. Accord ing  to  (D), choose 
such  t h a t  a ~ and  5 ~ have  reduc t ions  a~ and  5: gene ra t ed  b y  t (a) a n d  1 (5) ele- 
m e n t s  resp.  Then  a:  + b: is m-pr imary .  As I (a) + l (b) = 1 (a + 5) = d im Q, we can  
a p p l y  Theorem 1 wi th  q = a: + 5:, 0 = 5:. W e  ge t  

e (a: + 5:) = 5 e ((a: + p ) / p )  e (5:; p), 

where  p ranges  over  those  min ima l  p r ime  ideals  of 5: for  which d im p + r a n k  p = 
= d i m  Q. F r o m  (A), (B) and  the  def ini t ions one can  infer  t h a t  t h e  following 

idea ls  have  two  a n d  two t h e  same integral  closure: (a + 5) ~ and  (a: + 5:), (a ~ + p)/p 
a n d  ( a : + p ) / p ,  5 ~ a n d  5:. Hence,  b y  (C), 

e ((a + 5) ~) = 2 e((a ~ + p) /V)  e (5~; p). 

This is t he  fo rmula  of Theorem 3 except  for  a fac tor  v d~m Q in b o t h  members .  
A n o t e w o r t h y  special  case of Theorem 3 is ob t a ined  b y  t a k i n g  for b the  zero 

idea l  a n d  for a an  a r b i t r a r y  m - p r i m a r y  ideal .  P a r t  of t h a t  resu l t  has  been  
p r o v e d  b y  N o r t h c o t t  and  Rees  for equicharac ter i s t ic  local  r ings ([5], Theorem 1, 
p. 354). 

5. The  formulas  given be low are  s imple  consequences of our  prev ious  results .  
T h e y  do no t  seem to  have  been p roved  before wi thou t  some ex t r a  condi t ion  for  
t h e  local  r ings  in  quest ion.  

I n  a one-dimensional local ring where x and x' are parameters we have 

e (xx')  = e (x) + e (x'). (16) 

There are other equivalent definitions, of. [4], Theorems 1-3, pp. 155-156, and Definition 1, 
p. 145, Notice that our "integral dependence" is termed "analytical dependence" in [4]. 

$ (A)-(C) are inherent in [4], Sections 1 and 7, except for a detail, marked by the presence 
of the notion of "relevant ideal" in Theorem 3, p. 156. Actually, we indicate in our outline 
an approach which is slightly different from that of [4], but which seems to us more suggestive. 
(D) follows by an argument similar to that given in [5], proof of the Theorems 1-4, pp. 355-357. 
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Proof. Using L e m m a  4 (or t he  f irst  p a r t  of i t s  proof) we m a y  assume t h a t  
x a n d  x '  a re  no t  zero divisors.  Then ( x n x " ) : ( x  ~) = (x'n), and  hence,  b y  L e m m a  2, 

L (x" z'  n) = L (x n) + L (x' n). 

Hence  (16). 
Combining (16) wi th  Theorem 1, the  case m = l ,  we o b t a i n  

I /  {xlx~, x 2 . . . . .  xT} is a system o/ parameters in a local ring, then 

e (xl x~, x2 . . . . .  xT) = e (Xl, x2 . . . . .  x r )  + e (x'l, x2 . . . . .  x~). 

A repea t ed  app l i ca t ion  of th is  fo rmula  gives 

I /  {x I . . . . .  Xr} ks a system o[ parameters in a local ring, then 

e (x~', . . . .  x~ r) = n 1 . . . .  n r  e (x  1 . . . . .  Xr). 

This  formula ,  ,whic, h is well  k n o w n  in t he  equicharac te r i s t i c  case, is also an  
i m m e d i a t e  consequence of Theorem 2. 
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