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S o m e  theorems  on  p o l y n o m i a l s  
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1. Le t  F ( x ) = x 2 m + a l x Z ' n - l +  " " + a 2 , ,  be a p o l y n o m i a l  wi th  r a t i ona l  coeffi- 
cients.  Le t  p be  an  odd  p r ime  t h a t  does no t  occur  in  t he  d e n o m i n a t o r  of 
a n y  a t .  N o w  assume t h a t  

F(x)  ~-- G ~ (x) (rood p), (1.1) 

where  G (x) is a po lynomia l  wi th  in tegra l  coefficients (rood p). W e  m a y  e v i d e n t l y  
suppose  t h a t  

G (x) = x "~ + bl x m-1 + ... +bin ,  (1.2) 

where  the  br a re  r a t iona l  integers.  Subs t i t u t i ng  f rom ( 1 . 2 ) i n  ( 1 . 1 ) w e  ge t  a 
sys t em of congruences  

a 1 =-- 2 b t ,  a 2 = b~+2b~ ,  a a =- 2 b l b 2 + 2 b  a, 

a 4 --- b~ + 2 b 1 b 3 + 2 b 4 . . . .  (mod p) .  

(1.3) 

There  are  of course 2 m  congruences  in (1.3). 
We  m a y  ev iden t ly  choose r a t iona l  numbers  b'1, 
a n d  t h a t  sa t i s fy  t he  eTualities 

Consider  the  f i rs t  m of these.  
. . . .  bm t h a t  a re  in tegra l  (mod p)  

a l =  2 b l ,  a~ b'~2-4- 2b~, .-. a ,n= " - + 2 b ~ ;  (1.4) 

moreover  b ~ = b r  ( m o d p )  for r =  1 . . . . .  m. I f  we p u t  

q t 

G'(x)  = x ~ + b l x  ~ - 1 +  ... +b in ,  

t hen  G'(x)  =- G(x)  (mod p) and  (1.1) impl ies  

F (x) = G' 2 (x) + c 1 x m- I + % x m- e + ... + cm, (1.5) 

where  the  cr are r a t iona l  number s  t h a t  are  in tegra l  (mod p) ;  i ndeed  

c 1=  %-= "-" =- c~ = 0 (mod p). (1.6) 
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Comparing (1.5) with (1.4) it  is clear tha t  the cT are completely determined 
by  the aT, tha t  is by  the polynomial F (x) alone. Consequently if we assume 
tha t  (1.1) holds for infinitely many  primes p, i t  follows at  once from (1 .6 ) tha t  
all the cT vanish. This proves the following result. 1 

Theorem 1. Let the polynomial F (x) with rational coe//icients be congruent 
(rood p) to the square o /a  polynomial/or in/initely many primes p. Then F (x) = H ~ (x), 
where H (x) is a polynomial with rational coe//icients. 

The proof of Theorem 1 evidently indicates t ha t  it suffices tha t  (1.1) holds 
for a single sufficiently large p. More precisely we may  state 

Theorem 2. Let the polynomial F (x) be congruent (rood p) to the square o/ a 
polynomial, where p >  K e ,  a positive constant depending on F(x).  Then F(x )  is 
equal to the square o/ a polynomial H (x) with rational coe//ieients. 

Indeed if the coefficients at of F(x)  satisfy 

aT=O(M T) ( r = l  . . . . .  2m), (1.7) 

where the constant  implied by 0 may  depend on m and r, then it follows from 
(1.4) and (1.5) t ha t  

cs = O ( M  re+T) (s=  1 . . . . .  m). (1.8) 

Thus we may  take K F =  ]cM re+l, where /c depends only on m. 

2. I t  is proved in [1] tha t  if F ( x )  is a polynomial  (mod p) of degree m 
such tha t  F(a ) - -b  2 (mod p) for all a (rood p) and p exceeds a positive constant 
depending only on m, then F ( x ) -  G'Z(x)(mod p). Combining this result with 
Theorem 2 we get 

Theorem 3. Let the polynomial F(x)  satis/y 

F (a) =-- b 2 (mod p), (2.1) 

/or all a (mod p), where b = ba is an integer; also assume p > K ~ ,  a positive 
constant depending on F (x). Then F (x) is equal to the square o /a  polynomial H (x). 

The remark following Theorem 2 applies here also. 
I t  is clear t ha t  the above results may  be generalized without difficulty to 

arbi t rary  powers. 

3 .  In  place of the rational field we may  for example use an algebraic number  
field and of course replace the prime p by  a prime ideal p;  then the condition 
of Theorem 2 becomes N p > K F .  As for Theorem 3, we remark tha t  the con- 

: 1 The writer has discussed this question with N. C. Ankeny. 
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dition F (~) ---/~2 (rood p) for all integral ~ again suffices for the application of 
[1, Theorem 1]. Hence Theorem 3 generalizes in the obvious way. 

In  the next  place suppose tha t  the coefficients ar of F(x) are in the field 
G F(q, u), where u is an indeterminate.  Now let P{u) be an irreducible poly- 
nomial  in GF(q, u) tha t  does not occur in the denominator of any at .  Assume 
tha t  

F(X) -~ G2(x) ( m o d  P ( u ) ) ,  (3.1) 

where G(x) is a polynomial in x with coefficients e GF(q, u). I t  is readily seen 
tha t  the proof in § 1 carries over and we may  accordingly state 

T h e o r e m  4. Let (3.1) hold, where deg P(u) > K~, a positive constant depending 
on F (x), then F (x) = H 2 (X), where H (x) is a polynomial with coe][ieients e G F (q, u). 

Corresponding to Theorem 3, the hypothesis (2.1) is now replaced by 

F(](u)) ~ g2(u) (mod P(u)), (3.2) 

where /(u), g (u)eGF(q,u) ;  indeed we assume tha t  (3.2) holds for all /(u), in 
other words for a complete residue system (mod P (u)). But  since such a system 
constitutes the GF(qa), where h = d e g P ( u ) ,  it is clear tha t  in this si tuation 
also, Theorem 1 of [1] applies. We have therefore 

T h e o r e m  5. Let (3.2) hold ]or all / (u)eGF[q,u]  o[ degree _ < h - l ,  where 
h=deg P ( u ) > k F ,  a positive constant depending on F(x). T h e n  F(x) is equal to 
the square of a polynomial with eoe//icients s G F(q, u). 

4. Returning to (1.1), if we modify this to read 

F(x) =- G2(x)H(x) (mod p) (deg G(x)>_ 1), (4.1) 

then it  follows a t  once tha t  P l d (F), the discriminant of F(x). Hence if p is 
sufficiently large, d ( F ) =  0 and it follows tha t  we have an equali ty 

F (x) = ~2 (x) H (x). 

The same remark applies when (3.1) is modified in an analogous way. 
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