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On measurement of velocity by Pitot tube 

By BENGT J. ANDERSSON 

With 4 figures in the text 

1. We know several paradoxal  results from theoretical  hydrodynamics which 
are incompatible with practical experience. Obviously such a paradox can be 
explained by  an unpermit ted  simphfication in the theorizer 's assumptions. I f  e.g. 
all boundary  conditions in a problem are s ta t ionary or the boundary has some 
symmet ry  properties, i t  is plausible to assume the same character for the solu- 
tion of the hydrodynamical  equations. Sometimes it is a good approximation 
to neglect the viscosity, e.g. by calculation of the velocity outside an airfoil 
in a homogeneous flow, but  the supposition is an over-simplification if we seek 
the resistance of the body (d'Alembert paradox). For further examples of this 
kind I refer to a famous book by GAR~TT BnU~_UOrF [1]. Here I shall discuss 
a problem where the effects of viscosity are problematical.  

A real fluid is viscous, and this fact may  cause accumulation of fluid in 
"wakes".  In  some cases a wake may  have a ra ther  well defined boundary zone 
which on idealization to non-viscous fluid tends to a surface, called a "f ree"  
boundary,  where the velocity is discontinuous. Sometimes the wake is bounded 
by  a turbulent  "mixing zone", and the turbulence produces motions in the wake, 
which are practically inaccessible for theoretical analysis. Evidently it  is dif- 
ficult to predict the existence of wakes, and without a condition of s tabihty,  
we get an infinite number  of solutions to a given problem. On account of the 
difficulty of surveying the s tabihty  problem for all conceivable cases, we mus t  
in general supplement the theoretical speculations with experimental  experiences. 

2. A long, straight, circular tube with thin walls is closed by  a wall inside 
the tube. The tube is immersed in an incompressible fluid, and at  a great  
distance from the end of the tube the flow is homogeneous, s ta t ionary and 
parallel to the tube axis. The velocity is so great  tha t  we may,  as a first 
approximation,  neglect the viscosity. 

I f  no wakes were accumulated the calculation of the flow (Fig. 1) should be 
a classical problem for harmonic functions. In  reahty  we may  expect tha t  fluid 
is accumulated in the tube  and eventually forms a stable wake before the wall. 
Perhaps it is plausible t, hat  the free boundary has rotat ional  symmet ry  about  
the tube axis and forms a peak on the axis (Fig. 2). We shall not t ry  to make  
a stabil i ty analysis of this flow, but  it  is obvious t h a t  internal friction will 
break down the peak a t  an arbi trary small deviation from the symmetric  ar- 
rangement.  
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Fig.. 1. Fig. 2. 

In  order to establish the real behaviour of this flow the following experiment  
was carried out. The tube, made of glass a n d  filled with coloured water, was 
immersed in a t ank  with flowing water  and suitably arranged. A s ta t ionary 
s ta te  was quickly at tained and i t  was found tha t  the wake was not  symmetr ic  
about  the tube  axis but  apparent ly  symmetr ic  about  a plane through the axis 
(Fig. 3). Small disturbances of the direction of the tube caused a rotat ion of 
the symmet ry  plane round t h e  axis. 

I t  seems to me tha t  the formation of the wake continues until  the free 
boundary reaches the front edge of the tube. I f  the free boundary extended 
beyond the opening of the tube we should obtain a peak like tha t  in Fig. 2 
and this peak might  be broken down by  the turbulence tha t  always exists in 
the surrounding flow. 

3. We s tudy the two-dimensional ease, obtained by  substituting for the tube  
two thin, parallel plates of infinite extension (Fig. 4). At a great  distance from 
the edges the flow is parallel to the plates. We assume tha t  the formation of 
a stable two-dimensional wake is completed and the free boundary reaches the 
edge of one plate. We introduce curtesian coordinates x, y according to Fig. 4. 
Let u = u 2 + v ~  be the velocity vector and p u t  z=x+iy ,  T = u - i v .  I f  ¢(z) 
is the real velocity potential, ~ =  grad ~0, and ~p (z) is the conjugate harmonic 
function to ~, t h e  "s t ream function", then W = ~  + i y~ is an analytic function, 
regular in the flow region Az outside the wake. Fur ther  we know tha t  z = W' (z). 

We can assume tha t  ~ = 0  on the free boundary a n d  3 = 1  at  z = - o o .  Ac- 
cording to Bernoulli 's theorem the velocity is constant on the free boundary.  

In  t h e  W-plane, the region Az is represented "schlicht" on a region Aw, 
which is the W-plane cut along the positive real axis, and in the z-plane 
"schlieht" on the region 

Izl>k} 
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where k is the constant velocity on the free boundary. 
spondence of the boundaries is clear from Fig. 4. 

The mapping A~--+Aw is given by 

W (~) = K 
(3 - k) ~ 

(~" - -  1)  2 ( 3  - -  k~)  2 

The detailed eorre- 

where K is a positive constant. Hence follows 

f f (T--k) 4 T - k +  1 - k  ~ - k  
z (v)=  ~- 'W '  (~)d3.=KIv@_l)~(~_k~)2+ ~ ( f ~  1 _ ~ +  

/c 

1 - k  ~ - k  k (2+k) 1 - ~  ~ T 
+k(1  + k ) ~  3 _  k ~  + 2 ( 1 ~  (1 - T) l°g ~ _  k + 2  l °g~c-  

- 2  ( l - k )  (1 + 2 k )  "t" - -  k2  / 

k ~ ( l+k)  3 l o g k ( l _ k ) j .  

(1) 

At the edge C we have T = co and z = zc = i H, where H is the distance between 
the plates. We obtain from (1) 

2 k (1 + k 2) k (1 - k) (2 + k) 
Zc = K (1 + k) 2 - 2 (1 + k) 3 

1 2 ( 1 - k )  2 1 
log I t -  ~ l ° g  1 - ~  + 

k (1 - k) (2 + k) / j. 

From R z c = 0  follows k=0.3270 and hence H =  1.377 K. The free boundary 

is given by z=z(ke~) ,  O>_fl>_~r. Especially if f l= - ~  we get the point zp 

where the distance from the opening to a point on the free boundary has a 
maximum, and we get zp = (0.896 + 0.713. i) H. 
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4. Accord ing  to  Bernoul l i ' s  t heorem we ge t  t he  pressure  in  t he  wake  

Pwake = P0 + ~ (1 - k s) = P0 + ~ 0.8931, 

Po be ing  the  pressure  a t  z = - o o  and  ~ the  de ns i t y  of the  f luid.  
The  t u b e  s t ud i ed  in  sect ion 2 migh t ,  for ins tance ,  be t h e  t u b e  in a P i t o t  

head  for  ve loc i ty  measu remen t ,  in which  case i t  is des i red  to  me a su re  t h e  
s t a g n a t i o n  pressure .  The  two-d imens iona l  case s tud i ed  in sect ion 3 ind ica t e s  
t h a t ,  if  t he  pressure  in the  wake  is e r roneous ly  t a k e n  equa l  to  t h e  s t a g n a t i o n  

= P0 + ~ v2, where  v is the  ve loc i ty  a t  z = - o o ,  t he  ve loc i ty  o b t a i n e d  pressure  

will  be  a b o u t  5 pe r  cen t  too  low. I n  t h e  th ree -d imens iona l  case i t  is  therefore  to  
be  expec t ed  t h a t  the re  will be an  error  of a t  leas t  one or two  per  cent  in t he  
ve loc i ty  de t e rmined .  

I n  a lecture in 1950, Professor  A l ~ E  BEURLING, Uppsala ,  t rea ted  some h y d r o d y n a m i c  

problems  connected wi th  wakes, and  it was  a t  t ha t  lecture the  a u tho r  got  the idea fo r  

this  s tudy.  
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