On linear recurrences with constant coefficients

By Trygve Nagell

1.-An arithmetical function $A(n)=A_{n}$ of n may be defined by recursion in the following way: The value of A_{n} is defined for $n=0,1,2, \ldots, m-1$, and there is given a rule indicating how the value of A_{m+n} may be determined when the values of A_{μ} are known for $\mu=n, n+1, n+2, \ldots, n+m-2, n+m-1, n$ being an integer $\geqq 0$.

The infinite sequence

$$
A_{0}, A_{1}, A_{2}, A_{3}, \ldots, A_{n}, \ldots
$$

thus defined is said to be a recurrent sequence. We denote it by $\left\{A_{n}\right\}$. The rule of recursion has often the shape of a recursive formula.

For instance, the function $A_{n}=n!$ satisfies the recursive formula

$$
\begin{equation*}
A_{n+1}=(n+1) A_{n} \tag{1}
\end{equation*}
$$

and the initial condition $A_{0}=1$.
The general solution of the recursive formula

$$
\begin{equation*}
A_{n+1}=2 A_{n} \tag{2}
\end{equation*}
$$

is obviously

$$
A_{n}=2^{n} A_{0}
$$

The arithmetical function A_{n} satisfying the recursive formula

$$
\begin{equation*}
A_{n+2}=\sqrt{A_{n+1} A_{n}} \tag{3}
\end{equation*}
$$

is a function of n, A_{0} and A_{1}.
Another example is the function A_{n} defined by the recursive formula

$$
\begin{equation*}
A_{n+2}=A_{n+1}+A_{n} \tag{4}
\end{equation*}
$$

and the initial conditions $A_{0}=A_{1}=1$. In this case we get the following series:

$$
1,1,2,3,5,8,13,21, \ldots
$$

the so-called Fibonacci numbers.
2.-In Algebra and in Number Theory we often have to do with linear recurrences, that is to say recursive formulae of the type

$$
\begin{equation*}
A_{m+n}=a_{1} A_{m+n-1}+a_{2} A_{m+n-2}+\cdots+a_{m} A_{n}+b \tag{5}
\end{equation*}
$$

t. Nageld, On linear recurrences with constant coefficients

where the coefficients $a_{1}, a_{2}, \ldots, a_{m}$ and b are functions of n. In the sequel we shall only consider the case in which the coefficients are constants. We shall develop an elementary theory of this category of linear recurrences.

When $a_{m} \neq 0$, the recurrence (5) is said to be of the m th order. When $a_{m}=$ $=a_{m-1}=\ldots=a_{\mu+1}=0$ and $a_{\mu} \neq 0$, the order of the recurrence is μ. It suffices to consider the case with $a_{m} \neq 0$.

The recurrent sequence

$$
\begin{equation*}
A_{0}, A_{1}, A_{2}, A_{3}, \ldots, A_{n}, \ldots \tag{6}
\end{equation*}
$$

is said to be of the m th order if the numbers A_{n} satisfy a linear recurrence of order m but no recurrence of a lower order. A recurrent sequence of the m th order satisfies exactly one recurrence of the type (5). In fact, if it satisfied another recurrence

$$
A_{m+n}=c_{1} A_{m+n-1}+c_{2} A_{m+n-2}+\cdots+c_{m} A_{n}+d
$$

we should have by elimination of A_{m+n}

$$
\left(a_{1}-c_{1}\right) A_{m+n-1}+\left(a_{2}-c_{2}\right) A_{m+n-2}+\cdots+\left(a_{m}-c_{m}\right) A_{n}+(b-d)=0
$$

But this recurrence is at most of order $m-1$.
The formula (2) is of the first order. The formula (4) is of the second order. When $b=0$, the recurrence (5) is homogeneous. The homogeneous recurrence

$$
\begin{equation*}
X_{m+n}=a_{1} X_{m+n-1}+a_{2} X_{m+n-2}+\cdots+a_{m} X_{n} \tag{7}
\end{equation*}
$$

is said to have the scale $\left[a_{1}, a_{2}, \ldots, a_{m}\right]$.
As a direct consequence of the above definition we have
Theorem 1. If $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are two recurrent sequences satisfying the recurrence (7), then $\left\{A_{n}+B_{n}\right\}$ is also a recurrent sequence satisfying (7).
3.-We shall prove

Theorem 2. Suppose that the numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$ are given, $a_{m} \neq 0$.
If $\left\{A_{n}\right\}$ is a recurrent sequence such that the numbers A_{n} satisfy the homogeneous recurrence

$$
\begin{equation*}
A_{m+n}=a_{1} A_{m+n-1}+a_{2} A_{m+n-2}+\cdots+a_{m} A_{n} \tag{8}
\end{equation*}
$$

of order m, we have the relation

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n} z^{n}=\frac{b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{m-1} z^{m-1}}{1-a_{1} z-a_{2} z^{2}-\cdots-a_{m} z^{m}} \tag{9}
\end{equation*}
$$

where $b_{0}, b_{1}, b_{2}, \ldots, b_{m-1}$ are constants which are uniquely determined by A_{0}, A_{1}, \ldots, $A_{m-1}, a_{1}, a_{2}, \ldots, a_{m}$.

Conversely, when $b_{0}, b_{1}, \ldots, b_{m-1}$ are arbitrarily given constants, the coefficients A_{n} in (9) satisfy the recurrence (8).

Proof. Given the recurrent sequence $\left\{A_{n}\right\}$ satisfying (8) it is easy to see that the infinite series

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n} z^{n} \tag{10}
\end{equation*}
$$

has a certain circle of convergence. In fact, we will show by induction that, for all $N \geqq 0$,

$$
\begin{equation*}
\left|A_{N}\right| \leqq Q^{N} Q_{1} \tag{11}
\end{equation*}
$$

where

$$
Q=1+\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{m}\right|
$$

and

$$
Q_{1}=\max \left(\left|A_{0}\right|,\left|A_{1}\right|, \ldots,\left|A_{m-1}\right|\right) .
$$

The relation (11) is clearly true for $N=0,1,2, \ldots, m-1$. It follows from (8) that (11) is true for $N=m$. If we suppose that (11) is true for $N=m, m+1, m+2, \ldots$, $m+\nu$, we get from (8)

$$
\left|A_{m+v+1}\right| \leqq Q \cdot \max \left(\left|A_{m+v}\right|, \ldots,\left|A_{v+1}\right|\right)
$$

and, since (11) is true for all $N \leqq m+\nu$,

$$
\left|A_{m+\nu+1}\right| \leqq Q Q_{1} \cdot \max \left(Q^{m+\nu}, Q^{m+\nu-1}, \ldots, Q^{\nu+1}\right) \leqq Q^{m+\nu} Q_{1}
$$

This proves that (11) is true for all $N \geqq 0$. Hence the circle of convergence of the series (10) has a radius which is

$$
=\lim _{n \rightarrow \infty} \sup \frac{1}{\sqrt[n]{\left|A_{n}\right|}} \geqq \lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{Q^{n} Q_{1}}}=\frac{1}{Q} .
$$

Thus, multiplying the series (10) by the polynomial

$$
\begin{equation*}
1-a_{1} z-a_{2} z^{2}-\cdots-a_{m} z^{m} \tag{12}
\end{equation*}
$$

we get, since the convergence is absolute in the inner of the circle, the following product

$$
\begin{equation*}
\sum_{n=0}^{m-1} b_{h} z^{n}+\sum_{n=0}^{\infty}\left(A_{m+n}-a_{1} A_{m+n-1}-a_{2} A_{n+m-2}-\cdots-a_{m} A_{n}\right) z^{n+m} \tag{13}
\end{equation*}
$$

where the coefficients b_{h} are uniquely determined by the relations

$$
\left.\begin{array}{l}
b_{0}=A_{0}, \tag{14}\\
b_{1}=A_{1}-a_{1} A_{0}, \\
b_{2}=A_{2}-a_{1} A_{1}-a_{2} A_{0}, \\
\cdots \cdots \cdots \cdots \cdots \cdot \cdots \\
b_{m-1}=A_{m-1}-a_{1} A_{m-2}-\cdots-a_{m-1} A_{0} .
\end{array}\right\}
$$

In virtue of (8) the product (13) is equal to the polynomial

$$
b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{m-1} z^{m-1}
$$

This proves the first part of Theorem 2.
Suppose next that the numbers $b_{0}, b_{1}, \ldots, b_{m-1}$ are arbitrarily given and expand the rational function

$$
\begin{equation*}
\frac{b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{m-1} z^{m-1}}{1-a_{1} z-a_{2} z^{2}-\cdots-a_{m} z^{m}} \tag{15}
\end{equation*}
$$

T. nagell, On linear recurrences with constant coefficients

in a power series. If this series is given by (10), and if we multiply it by the polynomial (12), we find as above that the coefficients $A_{0}, A_{1}, A_{2}, \ldots, A_{m-1}$ are determined by the system (14) and further that the coefficients A_{m+n}, for all $n \geqq 0$, satisfy the recurrence (8).

The rational function (15) is the generating function of the recurrent sequence $\left\{A_{n}\right\}$. This function may be written in the form

$$
\frac{\beta_{0}+\beta_{1} z+\beta_{2} z^{2}+\cdots+\beta_{\mu-1} z^{\mu-1}}{1-\alpha_{1} z-\alpha_{2} z^{2}-\cdots-\alpha_{\mu} z^{\mu}}
$$

where the numerator and the denominator have no common divisor $z-\theta$, and where $\alpha_{\mu} \neq 0$. Then the order of the sequence $\left\{A_{n}\right\}$ is $=\mu$. In fact, suppose that it was of the order $\lambda<\mu$. Then, it would satisfy a homogeneous recurrence with the scale $\left[c_{1}, c_{2}, \ldots, c_{\lambda}\right]$ where $c_{\lambda} \neq 0$.

Hence we should have, in virtue of Theorem 2,

$$
\frac{\beta_{0}+\beta_{1} z+\beta_{2} z^{2}+\cdots+\beta_{\mu-1} z^{\mu-1}}{1-\alpha_{1} z-\alpha_{2} z^{2}-\cdots-\alpha_{\mu} z^{\mu}}=\frac{e_{0}+e_{1} z+e_{2} z^{2}+\cdots+e_{\lambda-1} z^{\lambda-1}}{1-c_{1} z-c_{2} z^{2}-\cdots-c_{\lambda} z^{\lambda}}
$$

where $e_{0}, e_{1}, \ldots, e_{\lambda-1}$ are constants. Thus

$$
\begin{aligned}
&\left(\beta_{0}+\beta_{1} z+\cdots+\beta_{\mu-1} z^{\mu-1}\right)\left(1-c_{1} z-\cdots-c_{\lambda} z^{\lambda}\right) \\
&=\left(e_{0}+e_{1} z+\cdots+e_{\lambda-1} z^{\lambda-1}\right)\left(1-\alpha_{1} z-\cdots-\alpha_{\mu} z^{\mu}\right)
\end{aligned}
$$

Hence $1-c_{1} z-\cdots-c_{\lambda} z^{\lambda}$ would be divisible by $1-\alpha_{1} z-\cdots-\alpha_{\mu} z^{\mu}$. But this is impossible since $\lambda<\mu$.

There is of course an infinity of recurrent sequences of a given order m and satisfying the homogeneous recurrence with the given scale $\left[a_{1}, a_{2}, \ldots, a_{m}\right], a_{m} \neq 0$.
4. - We add the following result:

Theorem 3. Denote by $\theta_{1}, \theta_{2}, \theta_{3}$, etc. the distinct roots of the algebraic equation

$$
\begin{equation*}
z^{m}-a_{1} z^{m-1}-\cdots-a_{m-1} z-a_{m}=0 \tag{16}
\end{equation*}
$$

where $a_{m} \neq 0$. Then we obtain all the recurrent sequences $\left\{A_{n}\right\}$ satisfying the recurrence with the scale $\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ by the following formula

$$
\begin{equation*}
A_{n}=\sum_{\theta_{i}}\left[d_{v_{i}, i}\binom{n+v_{i}-1}{v_{i}-1}+d_{v_{i}-1, i}\binom{n+v_{i}-2}{v_{i}-2}+\cdots+d_{2, i}\binom{n+1}{1}+d_{1, i}\right] \theta_{i}^{\pi} \tag{17}
\end{equation*}
$$

where the sum is extended over all the distinct roots θ_{i} and where \boldsymbol{v}_{i} is the multiplicity of θ_{1}. The coefficients $d_{1, i}, d_{2, i}, \ldots, d_{v_{i}}$ are arbitrary constants.

For the proof it suffices to observe that the function (15) may be written

$$
\sum_{\theta_{i}}\left[\frac{d_{v_{i}, i}}{\left(1-\theta_{i} z\right)^{v_{i}}}+\frac{d_{v_{i}-1, i}}{\left(1-\theta_{i} z\right)^{y_{i}-1}}+\cdots+\frac{d_{1, i}}{1-\theta_{i} z}\right]
$$

and that we have the expansion

$$
\frac{1}{\left(1-\theta_{i} z\right)^{q}}=\sum_{n=0}^{\infty}\binom{n+q-1}{q-1} \theta_{i}^{n} z^{n}
$$

The number of coefficients $d_{k, i}$ in formula (17) is equal to m. If the initial values $A_{0}, A_{1}, \ldots, A_{m-1}$ are given, and if the roots of equation (16) are known, we obtain from (17) a set of m linear equations for the determination of the coefficients $d_{k, i}$.

A corollary of Theorem 3 is the following proposition:
Let ν_{1} denote the multiplicity of the root θ_{1} of (16), and let A_{n} be given by (17). Then the difference

$$
B_{n}=A_{n}-d_{v_{1}, 1}\binom{n+v_{1}-1}{\nu_{1}-1} \theta_{1}^{n}
$$

satisfies the recurrence

$$
B_{m+n-1}=b_{1} B_{m+n-2}+b_{2} B_{m+n-3}+\cdots+b_{m-1} B_{n},
$$

where the coefficients $b_{1}, b_{2}, \ldots, b_{m-1}$ are determined by the identity

$$
\frac{z^{m}-a_{1} z^{m-1}-\cdots-a_{m}}{z-\theta_{1}}=z^{m-1}-b_{1} z^{m-2}-\cdots-b_{m-1} .
$$

We now turn to the inhomogeneous recurrences. Consider the recurrence of order m

$$
\begin{equation*}
A_{m+n}=a_{1} A_{m+n-1}+a_{2} A_{m+n-2}+\cdots+a_{m} A_{n}+b \tag{19}
\end{equation*}
$$

where a_{m} and b are $\neq 0$. Suppose first that

$$
\begin{gathered}
h=1-a_{1}-a_{2}-\cdots-a_{m} \neq 0 \\
B_{n}=A_{n}-c
\end{gathered}
$$

and put $c=b / h$ and
Then it is easily seen that B_{n} satisfies the homogeneous recurrence

$$
\begin{equation*}
B_{m+n}=a_{1} B_{m+n-1}+a_{2} B_{m+n-2}+\cdots+a_{m} B_{n} . \tag{20}
\end{equation*}
$$

Suppose next that $h=0$. Then the equation (16) has the root $z=1$. Denote by μ the multiplicity of this root. We may eliminate b between (19) and the formula

$$
A_{m+n+1}=a_{1} A_{m+n}+a_{2} A_{m+n-1}+\cdots+a_{m} A_{n+1}+b .
$$

Then

$$
\begin{aligned}
A_{m+n+1}=\left(a_{1}+1\right) A_{m+n}+\left(a_{2}-a_{1}\right) A_{m+n-1}+ & \left(a_{3}-a_{2}\right) A_{m+n-2}+\cdots+ \\
& +\left(a_{m}-a_{m-1}\right) A_{n+1}-a_{m} A_{n} .
\end{aligned}
$$

This recurrence is homogeneous and its scale is

$$
\left[a_{1}+1, a_{2}-a_{1}, a_{3}-a_{2}, \ldots, a_{m}-a_{m-1},-a_{m}\right]
$$

Plainly

$$
\begin{aligned}
z^{m+1}-\left(a_{1}+1\right) z^{m}-\left(a_{2}-a_{1}\right) z^{m-1} & -\cdots-\left(a_{m}-a_{m-1}\right) z+a_{m} \\
& =(z-1)\left(z^{m}-a_{1} z^{m-1}-a_{2} z^{m-2}-\cdots-a_{m}\right) .
\end{aligned}
$$

T. Nagell, On linear recurrences with constant coefficients

Hence, in virtue of the corollary of Theorem 3 , we have (for all $n \geqq 0$)

$$
\begin{equation*}
A_{n}=B_{n}+\binom{n+\mu}{\mu} d \tag{21}
\end{equation*}
$$

where B_{n} satifies (20), and where d is a certain constant (i. e. independent of n). To determine d we have the relations

$$
A_{m+n}=B_{m+n}+\binom{m+n+\mu}{\mu} d
$$

and

$$
\sum_{i=1}^{m} a_{i} A_{m+n-i}=\sum_{i=1}^{m} a_{i} B_{m+n-i}+\sum_{i=1}^{m} a_{i}\binom{m+n+\mu-i}{\mu} d .
$$

Since A_{n} and B_{n} satisfy (19) and (20) respectively, we get by subtraction

$$
b=\left[\binom{m+n+\mu}{\mu}-\sum_{i=1}^{m} a_{i}\binom{m+n+\mu-i}{\mu}\right] d
$$

Since b and d are constants, we may take $n=0$. Hence

$$
d=\frac{b}{\binom{m+\mu}{\mu}-\sum_{i=1}^{m} a_{i}\binom{m+\mu-i}{\mu}}
$$

where μ denotes the multiplicity of the root $z=1$ in equation (16).
In this way the inhomogeneous case has been reduced to the homogeneous case.
5.-A general theory of recurrences is developed in N. E. Nörlund, Vorlesungen über Differenzrechnung, Berlin 1924 (Verl. Springer). Linear recurrences are treated in Kapitel 14, § 2. But the method employed is quite different from the simple one adopted in this note.
6. -We finish with a few examples:
(1) The sequence of the Fibonacci numbers F_{n}

$$
1,1,2,3,5,8,13,21, \ldots
$$

satisfy the recurrence of the second order

$$
F_{n+2}=F_{n+1}+F_{n}
$$

and the initial conditions $F_{1}=F_{2}=1$. One finds easily

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

(2) The general solution of the recurrence of the first order

$$
A_{n+1}=a A_{n}+b
$$

is easily found to be

$$
A_{n}=a^{n} A_{0}+\frac{a^{n}-1}{a-1} b
$$

valid also for $a=1$.
(3) The coefficients A_{n} in the expansion

$$
\frac{1}{1-7 z^{2}-6 z^{3}}=\sum_{n=0}^{\infty} A_{n} z^{n}
$$

satisfy the recurrence of the third order

$$
A_{n+3}=7 A_{n+1}+6 A_{n}
$$

and the initial conditions $A_{0}=1, A_{1}=0, A_{2}=7$. Further we find

$$
A_{n}=-\frac{1}{4}(-1)^{n}+\frac{4}{5}(-2)^{n}+\frac{9}{20} 3^{n}
$$

In fact the equation

$$
z^{3}-7 z-6=0
$$

has the roots $z=-1,-2$, and 3 .
(4) If we put in the recursive formula (3), for all n,

$$
B_{n}=\log A_{n}
$$

we get the homogeneous linear recurrence

$$
\begin{gathered}
B_{n+2}=\frac{1}{2} B_{n+1}+\frac{1}{2} B_{n} . \\
B_{n}=\alpha+\beta\left(-\frac{1}{2}\right)^{n},
\end{gathered}
$$

Hence
where α and β are determined by the relations

$$
B_{0}=\alpha+\beta, B_{1}=\alpha-\frac{1}{2} \beta
$$

Thus

$$
B_{n}=\frac{1}{3} B_{0}+\frac{2}{3} B_{1}+\frac{2}{3}\left(B_{0}-B_{1}\right)\left(-\frac{1}{2}\right)^{n}
$$

and finally

$$
A_{n}^{3}=A_{0}^{2\left(-\frac{1}{2}\right)^{n}+1} A_{1}^{2-2\left(-\frac{1}{2}\right)^{n}}
$$

