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On the connection between Hausdorff measures 
and capacity 

B y  LENNART CARLESON 

1. The metrical characterization of pointsets has been carried out along two differ- 
ent  lines. Hausdorff (1919) introduced what is now called I-Iausdorff measures and the 
concept of capacity was first given a general sense by Polya-Szeg5 (1931). 1 The 
first general result on the connection between the two concepts was given by Frost- 
man  [3] (1935). He proved that  if a closed set has capacity zero, then its Hausdorff 
measure vanishes for every increasing function h (r), h (0) = 0, such that  

1 

f h(r) dr < ~ .  (1) 
r 

0 

I t  has since then been an open question whether or not a converse of this result holds 
true: given a closed set E of positive capacity, does there exist a measure function 
h(r) such that  (1) holds and such that  the corresponding Hausdorff measure is 
positive? This is known to be true e.g. for Cantor sets. The main object of ,this note 
is to exhibit a set E for which it fails to hold. This will make it clear that  the two 
ways of measuring sets E are fundamentally different. 

I n  the other direction it has been proved by ErdSs and Gillis [2] that  if a set E 
has finite Hausdorff measure with respect to (log (l/r)) -1, then its capacity vanishes. 
We shall give a new and very simple proof of this result. The method will also permit 
us to prove, for sets of positive capacity, the existence of a uniformly continuous 
potential, a result tha t  does not seem to have been observed before. 

2. Let  I be a subinterval of (O, 1). By  (m, q)I,  m an integer, we denote a subdivision 
of I into smaller intervals in the following way. The subintervals cover I and have 
lengths (from left to right): e -m, e -q, e - a - l ,  e-q, ..., e -q, e -2~. We assume that  m and 
q are so chosen that  this actually gives a covering of I ,  and we speak of the m- 
intervals and the q-intervals. We shall construct E applying this kind of subdivision 
on intervals, and we shall each time let the m q-intervals of length e -~ belong to the 
complement of E. 

Let us assume that  we have applied the above method n times and in this way 
obtained the set E= of m-intervals. Let/x= be a distribution of unit mass with constant 
density on each interval of E= and let u n (x) be the corresponding potential. Let  I be 
the interval of E~ to be subdivided. We distribute the mass #~(I)/(m + 1) uni- 

1 For definitions see [4], pp. 114 ff. 
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formly on each arising m-interval but  do not  change ju~ on the rest of En, and 
we call the corresponding distribution ju~+ 1 and potential  u~+ 1 (x). I t  is obvious t ha t  

Also, if we put  

u,+a(x)-->u,(x ), m- -+~ ,  uniformly on E , -  I .  (2) 

uk(x) = log d#k(t),  
, 
I 

t t u .  (x) - u .  (x) = u,,+~ (x) - u .+~ (x). (a) 

By (2) and (3) and the max imum principle it  is sufficient to give an est imate of 
u~+a(x) for x belonging to an m-interval of I .  Since the m-intervals have lengths 
_> e -~m, the following estimate holds: 

~ 6 - g r n  

• f 1 d t + u~ u,+~(x)<_(m+ l ) - l  l u , ( I ) 2 e  ~m log~  (x) 
q ]  

0 

<-21an (I) + u', (x) + O ( 1 )  • 

Hence lira u'n+x (x) <_ 2/~. (I) + u'~ (x), x E m-interval of I .  (4) 
r n = ~  

3. We now construct the set E in the following way. We make  an arbi t rary division 
of (0,1) by  use of the Operation (ml, ql) and get the m-intervals 11,12 . . . . .  Im,+l. 
Each interval Ik carries the mass 1/ (m I + 1). On I 1 w e  use the operation (ms, q2), 
m 2 > 2 m l ,  and we choose m 2 so large tha t  the potential  u2(x ) on 12 . . . . .  Im,~l increases 
by  less than  a given positive number.  On 19 we use (ms, q3), m3 > 2m2, and make an 
analogous requirement concerning u a (x). Finally we have subdivided all intervals Iv, 
each t ime choosing m,+ 1 > 2 m,. On all the m-intervals of (0,1) tha t  h a v e n o w  been 
constructed, we perform in succession the same kind of subdivision, and this process 
is then continued indefinitely. The (m, q)/s are" so chosen tha t  the sum of the increases 
of u ,+i  (x), x~ In, for all the resulting poteiatials is uniformly bounded. The set of 
points, not belonging to any  q-interval during this process, constitutes our set E. 

Let  us now choose a point x in E. I t  belongs t o  an infinity of m-intervals, IF, 
I~ . . . . .  I*,  .. . ,  where In+l* is an m-interval resulting from I* under the operation 
(m*, q*). I t  is now easy to see tha t  the sequence of  po ten t ia l su*  (X) is bounded a t  
this point. The increases from subdivisions of other intervals than  I* have already 

m *  been dealt  with; the increases under the operations ( n, q*) are by  (4) bounded by  the 

series const. ~ 1 . . 1 m*' m~+l > 2m~, and hence bounded. From this follows tha t  u* (x) is 

bounded on E. I t  is obvious tha t  #~(e) is a convergent sequence of set functions 
converging to a distribution/~(e) on E. The potential  corresponding to #, u(x) ,  is 
bounded on E and hence, by  the maximum principle, everywhere. We have thus 
proved tha t  E has positive capacity.  

We now turn the at tent ion to the Hausdorff measure of E. Let  h (r) satisfy condi- 
tion (1). Let  us consider a set of m-intervals, wa, w2 . . . . .  w~, which cover E. We can 
assume their lengths e -s', . . . ,  e-S~ , to be < e-~, where s is arbitrari ly large. Further-  
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more- -and  this is the crucial point of our construction--all  the si a re  different f rom 
each other. Hence 

~ ( h (r) Zh(e-")-< ~ h(e-')< ~r. 
i l l  u=~:+l J r 

o 

The las t  expression is arbitrarily small and we have proved that  E has vanishing 
h-measure. Let  us summarize o u r  result in the following theorem. 

T h e o r e m  1. There exists a closed set of positive capacity such that its Hausdor// 
measure vanishes/or every measure/unction h(r) /or which (1) holds. 

4. In  the other direction the following theorem of ErdSs-Gillis [2] holds. I t  is an 
improvement of a classical result of Lindeberg. '  

T h e o r e m  2. I /  a set E has /inite Hausdor/f measure with respect to (log ( l / r))  -1, 
then its capacity vanishes. 

Remark: The construction in Theorem 1 easily yields tha t  Theorem 2 fails for any  
function h (r) such that  h(r) log (I/r)-->0. 

Let  us suppose that  E has positive capaci ty  and let # be a distribution with 
bounded energy integral: 

oo  

E E 0 E 

where # (r; x) is the value of # for the circle I z - x  I< r. From the last formula i~ 
follows that  there is a positive, decreasing function K (r)~ such tha t  the corresponding 
integral with log (I /r)  replaced by g(r) also converges and K(r) log (1/r)-~oo,  
r -~0.  This can be written 

f f K ( { x - y { )  d#(x )d#(y )< oo, 
Es 

and it  follows that ,  for a restriction ~1 of # to a suitable closed subset E 1 of E ,  
/~1 (e) ~ 0, the potential 

K (] x -  y{) d /~  (y) (5) 
El 

is bounded, _< V, on E 1. Let  C1, C 2 . . . .  , C~ be open circles of diameters l, _~ s which 
cover E 1. We have for x~ E C~ N E 1 

K (l,) • #~ (C,) g ] g ({ x, - y [) d~ l  (y) _< V. 
Ex 

Hence 0 < #1 (El) ~ v~_l~ 1 =  (C~) _<- V ~=x ~ K (l~) -~. 

Since K(l,) log (1//,) _-> A (e), A (~)-->oo, e-->0, we finally get 

log >_ #1 (El) A (e), 
- V 

and the assertion follows. 
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5. Le t  us finally observe that  the above method can be used to prove the following 
theorem. 

T h e o r e m  3. I f  a set E has positive capacity then there exists a uniformly continuous 
potential o/a distribution o/unit mass on E. Hence there exists a uni/ormly continuous 
harmonic /unction in the complement o/ E. 

The last s tatement  follows if we divide E into two disjoint closed subsets of positive 
capacity and form the difference between the two uniformly continuous potentials 
which correspond to the two subsets. The situation should be compared with the 
analogous problem for analytic function [1]. There the existence of bounded and of 
uniformly continuous functions is not equivalent. 

For  the proof of Theorem 3, we simply construct the largest convex minorant 
H(r) of K(r). I t  is obvious tha t  H(r) log (1/r)-->oo, r -+0.  Since by  (5) 

f H (Ix--yl) dl~l(y)<_ V (6) 
E1 

o n  E l ,  it follows from the maximum principle for H (r) tha t  (6) holds everywhere. 
The logarithmic potential of/z I is then evidently uniformly continuous. 
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