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A multi-dlmensional prediction problem 

B y  MURRAY ROSENBLATT* 

1. Introduction 

The problem of linear predict ion for a weakly  s t a t ionary  stochastic process 
has been discussed in considerable detail b y  Kolmogorov  [3], Wiener  [6] and  
others.  Recent ly  there has been increasing interest  i n  the  linear predict ion 
problem for a vector-valued weakly s ta t ionary  process. 'Aspec t s  of this problem 
have  been t rea ted  in a heuristic manner  by  Whit t le  [5] and analyt ical ly  by  
Wiener  [7]. The discussion in this paper  i s  more probabilist ic in or ientat ion 
and  some a t tent ion  is devoted  to  the  problem of comput ing  the predict ion error 
covariance matr ix  in a one-step predict ion when the  process is a two-vector .  

Le t  

X t 

2. P re l imina ry  discussion 

: , t . . . .  , - 1 , 0 ,  1 . . . . .  E x t = O ,  

\ m x t /  

be an m-vector  weakly  s ta t ionary  stochastic process. B y  this we mean  t h a t  
the  sequence of covariance matr ices (m×m)  

rt, ~ = E x t  x'~ = r t -~  (1) 

depends only on the  difference t -  T. I t  is then  well known  tha t  the sequence 
of covariance matr ices rt can be represented as the Fourier-St ie l t jes  coefficients 

?$ 

rt= f e'*~dF(;O (1) 

of a matr ix-valued (re×m) non-decreasing funct ion F(2) .  T h e  funct ion F (2 )  is 
said to  be non-decreasing since for any  given m-vector  v 

v" h F (;t) v = v" [F  (2~) - F (21)] v >_ 0, 

* Indiana University and New York University. Written for the David Taylor Model Basin 
under ONR contract Nonr 285 (17). 

1 Given the matrix A, A" denotes the conjugated transpose of the matrix A. 
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M. R O S E N B L A T T ,  . 4  m u l t i - d i m e n s i o n a l  prediction problem 

2~ >_ 21. The case of interest to us is tha t  in which F (2) is absolutely continu- 
ous, i.e. 

). 

. F ( ) . )  = fl(ff)dff. 

The matr ix-valued function (m×m) [(2) is called the spectral density of the 
process xt. Note tha t  [(X) is non-negative, i.e. for any  given m-vector v 

v'l(2)v>_O. 

Since f(2) is an m x m matr ix-valued function we shall write /(~) in the form 

! (2) = {lJ~ (~); i, k = I . . . . .  m}. 

The function /j;(2) is the spectral density of the j th component jxt of the proc- 
ess while ]j, (2), j=~ k, is the cross-spectral density of jxt and kxt. Since 1(2)_>0 
it  follows tha t  fjj(2)>_0. In  general /s~(2), j # k ,  is complex-valued. The real 
pa r t  of /jk (2), R e / j ,  (2), is called the cospectrum of jxt, ,xt while the imaginary 
par t  of /j,(2), I m  [jk (2), is called the quadrature spectrum of jxt, kxt. 

There is a random representation of the process xt itself analogous to the  
representation (1) 

x ,  = f e it'~ d Z  (2) ,  

where Z (2) is an m-vector valued process with orthogonal increments 

E d Z (2) d Z (#)' = ~ , d  F ()~) = ~}~.1 (2) d2. 

3. The problem 

Assume tha t  the vector-valued process {xt} has been observed a t  t imes 
t = n ,  n - 1  . . . .  and tha t  we are interested in predicting v > 0  steps ahead. I n  
particular the case of greatest  interest to us will be tha t  in which we predict  
one step ahead. We limit ourselves to predictors linear in the observations 
x~, x~-l,  ... tha t  is, to expressions 

~ ak xn-k,  
k=0  

where the ak's are m × m  matrices or to limits (in mean square) of such ex- 
pressions. The best linear predictor x~+~* is the one whose error 

X n  _l. v - -  X n  + v 

is smallest. In  this context the error is smallest if the covariance matr ix  

E(x~+~-xn~)*  (x~+,-x~+~)* ' 
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ARKIV FOR MAT~EMKTIK. B d  3 nr  37  

of the error is smaller than  tha t  of the error obtained if any  other linear pre- 
dictor in terms of the observations x~, xn-1 . . . .  were used. The case of greatest  
interest, as in the case of prediction for a one-dimensional process, is tha t  in 
which' the prediction error is positive, tha t  is, the covariance matr ix  of the 
prediction error is a positive definite matrix.  A necessary condition for the 
error to be positive will be obtained in section 5. In  section 6 it  will be 
shown tha t  the prediction error is positive if the spectral distribution function 
is absolutely continuous and the spectral density function is continuous and non- 
singular. The question of obtaining simple and  explicit formulae for the pre- 
dictor and the covariance matr ix  of the prediction error in terms of the spec- 
t rum is considered in section 7 when the process is two-dimensional and the 
diagonal elements of the spectral density function are equal. This question is 
one of practical interest and in general is difficult. 

Now consider a context in which such a prediction problem arises naturally.  
Even though the s ta t ionary processes here are continuous parameter  s ta t ionary 
processes, the prediction problem tha t  arises is quite analogous to tha t  discussed 
above. W. J .  Pierson Jr.  has constructed the following model of a storm 
generated ocean surface. The ocean surface is given by  

V(u,v,t)= ; f [eos (~(u cos O+vsiu O)-t~t)dZ~(t~,O) 

+ s i n  ( u c o s O + v s i n O ) - # t  dZ2(l~,O ) , 

where (u, v) is the position on the ocean surface and t is the time. :Here /L is 
the frequency and 0 is the gravitational constant. The random processes 
Z 1 (1~, 0), Z 2 (t~, O) are orthogonM to each other and are processes with orthogonM 
increments, tha t  is 

EZI(#,  O)=EZ~(#, 0)=--0 

E z~ (#, O) g2 (#', 0 ' ) -0  
and 

EdZ~(,u, O)dZ~(#', 0') = ~ ,  ~00,/(#, O)d#dO, i = 1 ,  2. 

Thus dZl(#,O), dZ2(#, O) are the random amplitudes of long crested waves of 
frequency # with direction of propagation a t  an angle 0 to the u-axis. The 
ocean surface is a superposition of such waves. This process is s ta t ionary in 
(u, v) and t. I t  can, of course, only be considered as a realistic model well 
within the storm area and over t ime intervals short compared to the t ime length 
of the storm. Assume tha t  the sea surface is observed a t  the two points (u, v) 
and ( u + A , v )  up to t ime t = 0  and tha t  one wishes to predict the sea surface 
a t  (u + A, v) at  t ime T > 0. The two-dimensional process 

xt = (~ (u + A' v' t)) 
(u~ v, t) 

has the matr ix  (2× 2) spectral  density 
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M. ROSEr~BLATT, ,4 multi-dimensional prediction problem 

~" - t 2  IAcosO 
/(2, O)dO e o 

-': -:. 
/~ t~ZAcosO /~ 
I e o 1(2, O)dO 1(2, O)dO 

1(2, O)dO 

if 2_> 0. We define / ( - 2 ) = / ( 2 ) .  Note that  the problem of predicting 

V(u+ A, v, ~) 

is the same as that  of predicting ~ (u, v, ~) from the past of both processes. 
In other words, it  really is equivalent to tha t  of predicting the two-vector xt 
from its past. 

4. Remarks  on orthogonal izat ion 

Assume that  xt is a process with an absolutely continuous spectral distribu- 
tion function and a non-singular spectral density function /(2). Suppose tha t  
xn, x,-x . . . . .  xn-v have been observed and we wish to predict x,+l by the best 
linear predictor in terms of the least squares criterion we have adopted. The 
predictor has the form 

. 
Xn+l  = akXn-k 

k~0 

and is such tha t  

* * r 
~ ( X n + l - - X a - I ) ( X n + l  - -  Xn+l)  

=minE (x,~+l-- ~obkxn-O (x,~÷l-- k~obkXn-k) '' 
b i 

In terms of the spectral representation we can look at  the prediction problem 
as a minimization problem 

E(xn+l * (z.+l - -  Xn+l  ) * t - -  Xn +1) 

: ; ( I - -  k=o~ ak e-'(k+l)a)/(2, (I-  k=o~ake-'d'+l)al'd2/ 

;( ( ) = m i n  1 -  ~ b  e - i ' k + l ) ~ / ( 2 )  I - -  ~ b k  e-i(k+l)2 d2. 
- g  

Now we will briefly discuss matrix-valued (mxm) orthogonal polynomials in 
e tx and then interpret aspects of our minimization problem in terms of these 
polynomials. Consider generating the system ~0 (2), ~1 (2) . . . .  of orthogonal poly- 
nomials in e ia with weight function /(2) recursively by the Gram-Schmidt 
orthogonalization procedure from I ,  e~aI . . . . .  Then 
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] ~j  (4) ! (4) ~ (~)' d ~ = ~jk I .  

Assume t h a t  ~o o (1) . . . . .  ~o~ (4) have been generated and  t h a t  we wish to  approx-  
imate  a given funct ion g (1) in the mean  square b y  a linear combinat ion of 
~o (1), . . . ,  ~ (~). N o w  

-y$ 

P P 

= (~, g) + E [c~- (g, ~j)] [c~- (g, ~,)]' - E (g, ~ )  (g, ~ ) ' ,  (2) 
t = 0  i = 0  

where (g, h) = ~ g (4) [ (t) h (2)' d t .  

I f  in par t icular  g(1)=e'C"+l>~I, 
~o(~), . . . ,  ~ (;t) is 

Note  t h a t  

The error (2) is minimized if we set 

cj = (g, ~.). 

the best  l inear approximat ion  in terms of 

1=0 

P 

ei(P+'>aI - ~ (e~(v+l>~I, ~j(1)) ~j (4) (3) 
i = 0  

is orthogonal  to T0 (1) . . . . .  ~p (t). On normalizing (3) we obtain  ~p+l (t). Note  t h a t  

~g 

X n + l  
t = 0  

in the  predict ion problem spoken of at the beginning of this section. 
predict ion error 

* X* ~t E (Xn+l-Xn+1) (Xn+l-- n-l-l] 

The 

is the  square(1) of the  inverse of the coefficient of e ~(p+I>~ in ~+1(1) .  We have 
in effect given here procedures which can be used to  obtain  the  predictor  and 
predictor  error  in a comput ing  program.  

5.  A necessary condition for positive prediction error 

Let  xt, Ext - -0 ,  t . . . .  , - 1 ,  0, I , . . .  be a weakly s t a t ionary  m-vector  stochastic 
process, i.e. 

1 The square of a matrix M is understood to be MM'. 
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M. ROSENBLATT, .,4 m u l t i - d i m e n s i o n a l  prediction problem 

w h e r e  F ( 2 )  is a n o n - d e c r e a s i n g  (m×m) m a t r i x - v a l u e d  func t ion .  I t  is c lear  t h a t  
o n e  o u g h t  t o  a s s u m e  r 0 non- s ingu la r ,  for  i f  th i s  w e r e  n o t  t r u e  one  cou ld  in a n y  
case  r e d u c e  xt t o  a w e a k l y  s t a t i o n a r y  p rocess  Yt of  l ower  d i m e n s i o n  b u t  e q u a l  
rank m '< m w i t h  a n o n - s i n g u l a r  c o v a r i a n c e  m a t r i x  of lag  zero.  Cons ide r  t h e  
p r o j e c t i o n  of  xt on  t h e  c losed l inear  m a n i f o l d  ~ l t - 1  (1) g e n e r a t e d  b y  xt-1,  xt-u . . . . .  
T h i s  p r o j e c t i o n  x~ is an  m - v e c t o r  whose  c o m p o n e n t s  a r e  t h e  p r o j e c t i o n s  of  t h e  
c o m p o n e n t s  of  xt on  7#lt-1 r e spec t i ve ly .  N o t e  t h a t  t h e  one - s t ep  p r e d i c t i o n  e r r o r  

E ( x t - x ~ ) ( x t - x ~ ) ' = m i n  E ( x t - y ) ( x t - y ) ' ,  lY . . . . . .  yET#It-i, 

w h e r e  

Let ~Tt = x t -  x~. T h e  17t's a re  o r t h o g o n a l  t o  e a c h  o the r ,  i .e. 

E ~ t ~ ' ~ = 0  if  t~ :~ .  

# 

C o n s i d e r  E ~ t~ t .  T h e  ease  of  i n t e r e s t  t o  us  is t h a t  in  w h i c h  t h e  prediction error 
is positive, t h a t  is, E Ut~7't is a n o n - s i n g u l a r  m a t r i x  (a m a t r i x  of r a n k  m).  N o r -  
m a l i z e  t h e  r a n d o m  v e c t o r  ~t- Call  t h e  n o r m a l i z e d  v e c t o r  ~t 

l}t 1}t) l}t. 

Le t  cs = E xt ~-s .  

T h e n  xt = ~ cs ~t-s + vt, 
1=0 

w h e r e  v t E  N 'rot. 

t i o n a r y  p roces s  ~t- 

N o t e  t h a t  t h e  p roces s  vt is o r t h o g o n a l  to  t h e  w e a k l y  s t a -  

T h e  p rocess  ~t is a p rocess  of  o r t h o n o r m a l  r a n d o m  v e c t o r s  

1 This closed linear manifold int-1 is simply the space of random variables which can be 
obtained either as finite linear combinations of the components of X t _ l ,  X t_  2 . . . .  or as limits 
in the mean square of such random variables, lnt-1 is a linear space. The random variables 
of int-1 can be considered points in r~t-1. The distance between two points (random vari- 
ables) in int-1 x, y is 

I I ~ - y N = E  ~ I ~ - y N  (4) 

Most of the usual techniques appropriate in the ease of a finite dimensional space can be 
carried over to this infinite dimensional space. I n  particular the notion of a projection on 
a closed linear manifold is valid just as in the finite dimensional space, i.e. the projection 
pz of a random variable z on int-1 is the random variable in lnt-1 which is closest to z 
using the distance (4). The difference between z and its projection on r~t-1 is orthogonal 
to ~t-1 (perpendicular to int-1), i.e. the inner product of z - p z  and any element ~c of ~t-1 

(z-pz,  x)=E (z-pz)z'=O.~ 

See t ta lmos [1] for a detailed discussion of these points. An m-vector v is loosely spokei~ 
of as being in the closed linear manifold in if all its components are in in. 
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E ~ ~" = &: I.  

The  process xt is called a pure ly  non-determinis t ic  process if vt~O. 

The  funct ion c ( z ) =  ~= ejz j 
1=0 

is a ma t r ix -va lued  ( m × m )  funct ion of a complex a r g u m e n t  z. The  funct ion  
c (z) is ana ly t ic  in the  uni t  circle ] z l <  1 since 

Moreover  (5) implies t h a t  

cj ~j < ~ .  (5) 

c (e -t~) = l i m c  (re -i~) 
r - - + l  - 

exists  a lmos t  everywhere .  We shall show t h a t  the determinant [e (z)[ is not zero 
at any point in the unit circle [ z [ < l .  N o w  [e(0)]=[Co[ is not  zero since we 
have  assumed posi t ive  predict ion error, t h a t  is, c o is a s sumed  non-singular.  I f  
c(z) were singular  a t  some poin t  za=~0 , Izol < 1, there  would  be some vec tor  c¢ such 
t h a t  

e (Zo) ~ = ~: c,. z~ = = O. 
t=0 

Consider x = Zo ~t-j  ~¢. 

Now x E ~ t  bu t  no t  ~ t - 1 -  However  

t=0 

for all vectors  fl so t h a t  x E 7~lt-1 and  we are thus  led to  a contradict ion.  
The  processes xt, ~t, vt are weak ly  s ta t ionary .  B u t  $t, vt have  the  reprensen ta t ion  

:g  

EdZ~ (2) dZ~ (F)' = (~, I dF, 

vt = ~ g"~dZ,,  (t), EdZ,,  (2) dZ,, ( # ) ' =  ~ ,  d F v  Gt). 

We  know t h a t  

xt = ~ cj ~t-j + vt 
i=0  

= fe"~(~-f~)~z~(2)+ fe"~dZ~(2). 
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Because of the orthogonality of the ~t and vt processes, it is clear tha t  

F(4 )=  ~-~e(e-~")c(e-~") ' dg + F~(~). 

Since the components of ~t are in ~ t ,  i t  follows that  

t t  = f e "~ ¢ (~) d Z  (4) 

= ~ e '~ ¢ (4) c (e -'~) dZ~ (4) + ~ e "~ ¢ (4) dZ~ (4) 
- - ~  - - r g  

= fe"adZ~(4). 

The function Ic(z) l is a power series in z tha t  belongs to H~ and hence it 
follows tha t  [c(e-ta)] is not zero for almost  all 4 (see G. Szego [4], p. 267). 
But  then c(e -~) is non-singular for almost all X (Lebesgue measure). Thus 

O(4)c(e-t~)=I 

for almost all ~ (Lebesgue measure) and qb (4)= 0 for almost all 4 (F~ measure). 
Thus 

~" (4) = 2-~ c (e -tA) c ( e -~ )  ' 

and [c (e -i~) ]2 = (2 y~)m ]~, (~)]. 

Since [c(z)] has no zeros in the unit circle [ z ] <  1, it follows that 

log IF' (4) 1 

is inLegrable and tha t  thb determinant of the one-step prediction error covarianee 
matr ix  

[ c (0)12 = I Co I ~ = (2 ~)m exp ~ log I F' (~)J d ~ (6) 

(see J. L. Doob [1], p. 577). We have thus shown that  i/ the prediction error 
is positive, log IF'(2)[  is integrable and that the determinant o/ the prediction 
error covariance is given by (6). Note that  though the determinant of the pre- 
diction error covariance matrix is easily obtained, this is in general not true of 
the elements of the Covariance matrix. I t  is the latter problem that  is of 
greatest interest. 
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6. A sufficient condition for positive prediction error 

We shall restrict ourselves in this section to an m-vector weakly stationary 
process xt, Ext=--O, with an absolutely continuous spectral distribution/unction F (2). 
Moreover the spectral density f (2) is assumed to be continuous and non-singular 
/or all 4. Under these conditions, the covariance matrix of the one-step predic- 
tion will be shown to be positive definite. 

First consider the case of a positive definite matrix-valued (m x m) polynomial 
of finite order in e ia 

P 

1(4 )=  ~ eke~a>O. 
k = - p  

Now one can construct a weakly stationary m-vector xt, E xt=--O, with spectral 
density ] (2). Consider the random vector x~" whose components are the projec- 
tions of the components of x~ on 7flt_~. Let 

~ = z t  - x~.  

The random vectors ~t are orthogonal, i.e., 

! 
E ~ ? t ~ = 0  if t *T .  

The random vectors ~t all have the same covariance matrix, let us say R. 
From the form of /(2), it follows that  the components of xt are orthogonal to 
~ t - ~ - l -  This means that  

P 

x~ = ~ ak ~t-~. 
k = 0  

Now 

and 

Thus 

xt = f eU~dZ (4), Z d Z (4) d Z (~)' = ~ .  / (4) d 2, 

~t = f eUadZ~(2), 
- yg 

~ ;t,u E d Z ,  (4) dZ ,  (~)' = - ~  R d 2. 

xt= e*t~dZ(2)= ~ ak~t-k 
k = O  

- 7~ 

I t  then follows that  

= e ~ d Z , ( 4 ) .  
J k = O  

Z(2)=f~_oake-~k~dZ,(2).  (7) 
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On taking the covariance of both  sides of equation (7) we have 

so tha t  

/ ( i s )d /z=  ake -'kl' -2--~R abe ,k .  d/z 
- -~  - I t  

R a e -~k~ I(2) = ~  ake  -k~ k " 

Since ] (2) is posi t ive definite, R must  be non-singular. But  then the z/t's can 
be normalized so as to obtain the ~t's 

~t=  R -½ ~t 

E ' ~ t ~ = ~ t , ~ I .  

Using the 
such tha t  

Thus 

Note tha t  

argument  given above one can see tha t  there are coefficients bk 

P 

xt= ~ bk~t-~. 
kffiO 

1( o ) f (2)  = -ff-~ bk e - ~  bk e -~k~ " 

xt - x* = b o ~t 

and the ~t's are constructed so t ha t  b0= (bob'o) ½ where bobo is the  prediction 
error. I t  is clear tha t  the optimal one-step predictor is 

P 

x~= ~bk~t_~.  
k f f i l  

Note tha t  b 0 is non-singular so t ha t  the prediction error covariance bobo is 
positive definite. Given the mode of construction of the coefficients b~, i t  is 
clear tha t  

Ib( )l*0 for all I l<l, 
P 

where b (z) = ~ bk z k. 
k=0 

We have in effect given a generalization of Fej4r 's  theorem, for we have 
shown tha t  given a matrix-valued (m×m) positive de/inite po lynomia l / (2 )  of order 
p in e ~ 

p 

t (2) = Y. ek e ' ~  > 0 
k ~ - p  
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one can write f (,~) in the form 

f (,t) = 2-~ ( ~_~)bk e-~ka) ( ~_obk e-~k;t ) ' 

P 

with b o positive definite and Ib(z) l~:O when [ z [ < l .  H e r e  b ( z ) =  ~ b ~ z  k. This  
kf f i0  

represen ta t ion  is uniquue.  
Now we use the  general izat ion of Fej~r 's  t heo rem to  ob ta in  the  desired resul t  

fo r  any  pos i t ive  defini te cont inuous ma t r ix -va lued  (m×m) funct ion f(2). Given  
a n y  such funct ion  f(~), one can find a posi t ive defini te po lynomia l  g(~) in e ~ 
of  finite order  such t h a t  f (2) >_ g (2). The  predict ion error  for  a weak ly  s t a t i ona ry  
process wi th  spectra l  dens i ty  g (2) has  posi t ive defini te covar iance  m a t r i x  and  
hence this also m u s t  be t rue  of a weak ly  s t a t iona ry  process wi th  spectra l  den-  
u i ty  f(~). Us ing  the a r g u m e n t  of the  previous section we can t hen  show t h a t  
] (~)  has the  represen ta t ion  

1 0o oo t 

wi th  a 0 pos i t ive  definite and  I a (z) l :~ 0 when I z I < I .  He re  a (z) = ~ a ,  z ~. More- 
k = 0  

over ,  this represen ta t ion  is unique.  
I t  is wor thwhi le  looking br ief ly  a t  a process whose spect ra l  dens i ty  is the  in- 

verse  of a m a t r i x - v a l u e d  (re×m) polynomia l  in eta of f inite order  

! ( ~ ) =  e - ~  > 0 .  
k 

:From the  resul t  cited above  it  is clear t h a t  we can wri te  

f (~) = ~ ak e -~k~ ak e -~ka , 

where  a 0 is posi t ive defini te and I a (z)[ ~: 0 when  [z [ < 1. 

:Now the  process xt has  the  represen ta t ion  

Here  a (z) = ~. ak z ~. 
kffi{} 

xt = f eit~dZ(~i). 
- x i  

:Let 
p 

- T g  

T h e n  E ~t ~ '  = (~t ~ I .  

417 
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Note that 
?g 

f akxt_k = e tt~ dZ(,~)=~t 
kffiO 

and 
p 

if  = 2--~ e tya _ as e -~k~ d A = 0 

if ~>0.  Thus the best linear predictor of xt given xt-1, xt-~ . . . .  is 

P 

x t  = ~ aol akxt-k .  
kffil 

P 

One can obtain the function ~ age - ~  in the case of such a spectral density 
k = 0  

](2) by the following procedure. By the Gram-Schmidt  orthogonalization pro- 
cedure we obtain the polynomial in e ~ 

P 

b~ e tg~ 
k ~ 0  

which is normalized and orthogonal to I ,  e ~ I  . . . . .  ef(r-1)~I with respect to the: 
weight function /(2). On multiplying this polynomial by e -ivx one obtains th~ 
desired expression. 

7. Computational aspects of the problem 

I t  is interesting to examine the computational aspect of the prediction prob- 
lem in the case of a two-dimensional process. We shall see tha t  there are various. 
difficulties tha t  arise in the at tempt to get an explicit and simple representation 
of c(e -~)  (see section 5) and the prediction error eovariance in terms of /(~). 

Before going on let us review a few aspects of the one-dimensional case. Le t  
xt be a one-dimensional weakly stationary process, t . . . .  , - l ,  0, 1, ..., Ext~--O, 
with spectral density /(2). Let log/(2)  be integrable. 

Set 

D ( [ ; z ) = l / - 2 - ~ e x p  ~ 1 - z e  ~ol°gf(O)dO " 

Then ID(l;z)l*o when Izl<l and D ( / ;  0 ) > 0 .  
Now on setting 

c(e-~)  = lim D(];  r e - ~ ) = D ( / ;  e -~)  
r--->l -- 
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one  finds t h a t  l (2) = [c (e -'a) 12. 

T h e  predict ion error  var iance  for a one-step predic t ion is 

(1; } 
2 ~ r e x p  ~ I o g ! ( 4 )  d2  • 

T h u s  there  is a nea t  and  elegant  way  of obta ining c(e -ia) and  the  predic t ion 
er ror  var iance  in the  one-dimensional  case. 

Consider a two-vec tor  weak ly  s t a t iona ry  process xt, t . . . .  , - 1, 0, 1 . . . . .  E xt----0, 
wi th  spectra l  dens i ty  

(!1(2) !2(22) ) 
! (2 )=  ~,12(2) 11( ) 

where !1 (4) > 0, /~ (4) - ]!2 (4)]2 = 1! (2)] > 0, and  log I! (2)] is integrable.  I f  we t r y  
to  follow the  procedure  used in the  one-dimensional  case uniformly,  we run  
in to  difficulties ve ry  soon as the  logar i thm of a ma t r i x  does  no t  sat isfy the  equa t ion  

log M N  = log M + log N 

unless M N = N M .  We shall therefore  first  l imit  ourselves to those  spectra l  
densit ies f(4) which are such t h a t  ! ( 2 ) ! ( f f ) = / ( / ~ ) / ( X )  for  all 2, #.  

Given  two matr ices  

A =  ~ ai/  \b~. b 1 

where  A, B ~ 0 ,  the  mat r ices  A, B c o m m u t e  if and  only  if a2b2=a 2b 2 or a2b 2 
is real.  Le t  us now ad~l the  addi t ional  condit ion t h a t  

!1 (4) = !1 ( --  4) ,  !2 (4) = !2 ( --  2)  

as th is  is sat isf ied b y  the  spectra l  dens i ty  of a process wi th  rea l -va lued com- 
ponen t s  and we are par t i cu la r ly  in teres ted  in such processes. Now !2 (4)]2 (#) 
is real  for all 4, # if and  only  if e i ther  I2(4) is rea l -va lued  for  all ~t or /2(~) 
is pu re  imag ina ry  for all 2. Thus  the  only  cases in which  c o m m u t a t i v i t y  holds 
are those  where there  is e i ther  zero cospec t rum (/~ (4) pure  imaginary)  or zero 
quadra tu re  spec t rum (!2(2) real). 

F i r s t  let us look a t  the  case in which /2 (2) is real  so t h a t  

Then  

(/1 (4) 
/ (2)  = /2 (2) 

u! (4) u = (h (4) +0 !2 (4) 

/1(  ) 

0 

h (4) -/2 (4)] 
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where 

:Now 

1 1 

U I(,~) u= (D(II +~2; e-*a) 0 "e *a) D(II_I2; e-,a)) (D(tl +: 2' 

Thus 

c(e -~)=U D(I~+ 2, U 
D(11-12 ; e-i~) 

= _1 ~ D  (I1 + 12 ; e- 'a)  + D (11 - 12 ; e- 'a)  

2 \ D  (I1 + 12 ; e-ta)  - D (I1 - 12 ; e- ta)  

o ). 
.D ( h  - t2 ; e~ a) 

D (11 + 12 ; e - '~)  - D (11 - I2 ; e - % ] .  

D (11 + 12 ; e - ia )  + D (11 - 12 ; e-ia) ] 

The covariance matrix of the error in a one-step prediction is 

exp { ~ - ~ f l o g ( / l + , 2 ) d 2  } exp {2-~ log( / l+ /2)d2 } 

+exp {~ ; ~og (,,-,=,dX} - exp {~ ; log (1~-1=) d~} 

- -gg - - ~  

- x t  - - ~  

The prediction error variance that would have been obtained for the first com- 
ponent if only the past of the first component of the process were used is 

(8) 

The improvement in prediction accuracy can therefore be represented by the 
ratio of the prediction variance using the past of both components to the 
prediction variance (8), that is, 
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21 [exp { ~  log ( '1+ '2) g2} +exp  [2~ 

exp log ]x d 2 < 1. 

Now let us look at the ease in which there is no eospectrum. Then we can. 
write 

i(;~)= (riot) ~ls(;t)' 1 
- i Is (,!.) h (2) f 

where ls (2) is real and [s (2) = - 1~ ( - 2). Now 

0 
Uf(2) U'=([x(2)O[2(2) /1 ( 2 ) -  12(2)) 

1 i 

Thus 

c(e -'~) 
= U, ( D ( ] x + ~ ;  e-~a) 0 ) U 

D (fi - Is; e-~'~)" 
1 [ D  (Ix+ [~ ; ~ e-'a) + D (Ix - [s ; e-'~) 

= 2 ~-iD(/x  +[2 ; e -~)+iD([1-[2; e -i~) 
i D  (Ix + / s ;  e-~a)-  i D  ( f i -  ls ; e - ~ ) ] .  
D(fx+f~;e-~)+D(fx-f2;e -~a) ] 

Note that  if we expand c(e -~) as a series in e -ix, all the coefficients are mat- 
rices with real elements since [2(~.)=-[s(-2). The covariance matrix of a 
one-step prediction is 

f 
1 1 -[,)d]~ + exp ~ log ([1-- [2) d J~ - i exp ~.~ log ([1 

- i  exp 1 log ( /1+/2)d2 exp 1 log ( /x+ / s )d2  
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The cases discussed thus far are the commutative cases in which precise 
analogues of one-dimensional ¢~chniques can be used and where, for example, 
the covariance matr ix for the one-step prediction error is given by  

(9) 

The cases of greatest interest are those in which one has non-commutativi ty 
of /(2) with /(/~), 2 .##,  tha t  is, when both the cospectrum and quadrature 
spectrum are not  zero. We consider a simple example of this type to show 
that  one can no longer expect results like (9) to hold generally in this context. 

Consider a matrix-valued (2 × 2) spectral density f (4)> 0 which can be factored 

= (alx(4) a1~(4) t (a11(4) a21(2!~ 
a (it) a (4)' \a~l (4) au2 (it)/ ka12 (4) a22 (]t)] 

(fi(~) '2(~) 1 
= l (;t) = ~ ( , ~ )  l~ (;t)/ '  

a (2 )=  ~ aie -uz, where al~(~)~0. We shall also assume that  
i=0 

non-singular in the unit circle. Then 

I ~,, (~)P = h (~), 

all (~t) a21 (~) =/~ (X), 

I , ~  (.~)ff + I,~= (~)I ~ = t, (~). 
Then we can take 

a11 (it) = D  (/1 (4) ; e -i~) 

a,, 1 (,,1.) =/2 (~.)/D (/1 (Jr) ; e -i ~). 
Now 

[ a~  (~.)12 = / 1  (~,) -- [ /~ (~.)12/]~ (~) = [/(~)[ 
I1 (~) 

so that  a22 (~t) = D (I [ (~)1; e-,a~. 
\ h (~) ] 

atzJ=a(z) is 
t=0 

We can now see tha t  a necessary and sufficient condition that  f (4) have such 
a faetorization is tha t  /~(~)//1 (4) have the one-sided expansion 
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I~(a)//i(4) = ~ .~ ~- '~ .  
k - 0  

The prediction error covariance matrix for a one-step prediction is 

2~ ,  

× .  

oxp/ flog,l  } 
exp ~ log /1 ) 

m n 

0 

h(~t) j 
- - S  

[ - 
= 2 ~ / exp ~ log [ exp 

. ×  

- - T t  

--~/ j+ 

- -$¢  

Note that  in the case of such a spectral density (which is not  generally com- 
mutative), the prediction error covariance is not of the same form as (9). Various 
other special non-commutative cases can be treated similarly. 

8. Some final remarks  

Let us discuss the case in which there is no quadrature spectrum in the 
context of Pierson's model of storm-generated ocean waves. Assume that  the 
sea surface is observed at two points separated by a distance A as in section 
3 and that  the quadrature spectrum of the observed two-vector process is zero. 
What  kind of spectrum /(4, 0) of the sea surface is it that  would lead to such 
a situation? The quadrature spectrum of the observed process is 

f O,. 0~0 .  (10) 
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An interesting sufficient condition for equation (10) to hold is given by the 
restraint 

/(;t, O)+ / (;t, -- O)= l(;t, zc-- O) + 1 (;t, 0 - ~ )  (1]) 

on the sea spectrum f (~, 0). I t  should be noted, however, tha t  this is not a 
necessary condition. I t  would be interesting to choose interesting spectra satis- 
fying condition (11) and determine the optimal distance A between the points 
of observation on the sea surface so as to minimize the prediction error. 
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