Communicated 24 April 1957 by LENNART CARLESON

Metric criteria of normality for complex matrices of order less than 5

EDGAR ASPLUND¹

I. Introduction

We denote a (finite-dimensional) complex Hilbert space by F. Its elements (vectors) are denoted f, g and the scalar product of $f, g \in F$ is written (f, g). The norm of $f \in F$ is $(f, f)^{\frac{1}{2}} = ||f||$. Elements (matrices) of the algebra B(F) of endomorphisms on F are denoted by capital letters other than B and F. The norm of $A \in B(F)$ is defined by $||A|| = \sup_{f \in F} ||Af|| \cdot ||f||^{-1}$. The adjoint A^* of A is defined by $(Af, g) = (f, A^*g)$ for all $f, g \in F$.

An element A of B(F) is called normal if it commutes with its adjoint: $A^*A = AA^*$.

As is well known, $A \in B(F)$ is normal if and only if it can be written as a sum

$$A = \sum_{1}^{m} \lambda_k E_k, \qquad (I.1)$$

where λ_k are complex scalars and $E_k \in B(F)$ satisfy the conditions

$$\sum_{1}^{m} E_{k} = I; \qquad E_{j} E_{k} = 0, \quad j \neq k; \qquad E_{k} = E_{k}^{*} = E_{k}^{2}. \tag{I.2}$$

The set $\operatorname{sp} A = \{\lambda_k | E_k \neq 0\}$ is called the spectrum of A. From eqs. (I.1) and (I.2) it is easy to conclude that for all polynomials p(t) in one variable t with complex coefficients one has

$$\|p(A)\| = \max_{\lambda \in \operatorname{sp} A} |p(\lambda)|.$$
 (I.3)

According to a theorem of v. Neumann [1], the following converse of (I.3) holds true. If Γ is a finite subset of the complex plane and

¹ This article was written at the Department of Mathematics, Royal Institute of Technology, Stockholm, while the author was holding a scholarship from the State Council for Technical Research.

E. ASPLUND, Normality for complex matrices

$$\|p(A)\| = \max_{\lambda \in \Gamma} |p(\lambda)|$$
(I.4)

for all polynomials p(t) in one variable, then A is normal and spA $\subseteq \Gamma$.

We call eq. (I.4) a metric criterion of normality. The following criterion

$$\|(p(A))^2\| = \|p(A)\|^2$$
 for all polynomials $p(t)$ (I.5)

is equivalent¹ with (I.4), because (I.5) implies

$$\| p(A) \| = \lim_{n \to \infty} \| (p(A))^n \|^{1/n} = \max_{\lambda \in \operatorname{sp}(p(A))} |\lambda| = \max_{\lambda \in \operatorname{sp}A} | p(\lambda) |$$

by theorems of Gelfand and Dunford. Actually, as every polynomial in A can be replaced by its residue modulo the minimal polynomial of A, a sufficient condition that A shall be normal is that (I.5) shall hold for every polynomial p(t) of degree less than the minimal polynomial of A.

We will be mainly concerned in this article with a weakened form of (I.5), namely

$$||A_{\lambda}^{2}|| = ||A_{\lambda}||^{2}, \qquad A_{\lambda} = A - \lambda I$$
 (1.6)

for all complex λ . It turns out that (I.6) implies normality only if dim $F \leq 4$.

Moyls and Marcus [2] have given another criterium of normality, whose domain of applicability coincides with that of eq. (I.6). If

$$W(A) = \{\lambda \mid \lambda = (A f, f) (f, f)^{-1}, f \in F\}$$

is the range of values of A, the condition of Moyls and Marcus reads: W(A) is equal to the convex hull of sp A. They prove that this condition implies that A is normal if dim $F \leq 4$ by representing A as a triangular matrix (Schur's lemma). We give here in the last section another proof of their theorem which uses no special representation for A.

II. A characterization of normal matrices for dim $F \leq 4$

II.1. Introductory remarks

According to the provious section, the condition

$$||A_{\lambda}^{2}|| = ||A_{\lambda}||^{2}, A_{\lambda} = A - \lambda I \quad \text{for all complex } \lambda \qquad (\text{II.1.1})$$

would imply that A is normal if dim F=2. Actually, the validity of eq. (II.1.1) as a criterion of normality for A reaches further. It is valid for dim F=4, and if dim F equals 2 or 3, it is possible to restrict the variation of λ and still have a necessary condition that A shall be normal. Thus, if dim F=2 and eq. (II.1.1) holds for one complex value λ only, then A is normal and the same

¹ This equivalency was pointed out to us by Vidar Thomée.

conclusion holds if dim F=3 and eq. (II.1.1) is valid for all values λ on some straight line in the complex plane.

To prove this we need two auxiliary theorems.

Theorem 1. The following two statements are equivalent.

- 1. $||A^2|| = ||A||^2$.
- 2. There is a vector $f \in F$ such that $A^*Af = AA^*f = ||A||^2 f$.

Proof. Suppose that statement 1 is true. As dim $F < \infty$, there is at least one vector $g \in F$ that satisfies

$$||A^{2}g|| = ||A||^{2} ||g||$$
(II.1.2)

when statement 1 is true. From (II.1.2) one obtains

$$||A||^{2} ||g|| = ||A^{2}g|| \le ||A|| ||Ag|| \le ||A||^{2} ||g||.$$
(II.1.3)

Obviously, equality must hold throughout in eq. (II.1.3). Thus the equation

$$||Af|| = ||A|| ||f||$$
(II.1.4)

is satisfied by both f=g and f=Ag. However, a necessary (and also sufficient) condition for $f \in F$ to satisfy eq. (II.1.4) is $A^*Af = ||A||^2 f$. Using this fact, we verify statement 2 with f = Ag.

Conversely, 2 implies 1. For let $f \in F$ satisfy $A^*Af = AA^*f = ||A||^2 f$. Then, if one puts $A^*f = g$,

$$\begin{split} \|A^{2}g\| &= (A^{2}A^{*}f, A^{2}A^{*}f)^{\frac{1}{2}} = (Af, Af)^{\frac{1}{2}} \|A\|^{2} = \|A\|^{2} (A^{*}Af, f)^{\frac{1}{2}} = \\ \|A\|^{2} (AA^{*}f, f)^{\frac{1}{2}} = \|A\|^{2} (A^{*}f, A^{*}f)^{\frac{1}{2}} = \|A\|^{2} \|g\|. \end{split}$$

This proves theorem 1.

Theorem 2. Any vector f_{λ} which satisfies $A_{\lambda}^* A_{\lambda} f_{\lambda} = A_{\lambda} A_{\lambda}^* f_{\lambda} = ||A_{\lambda}||^2 f$ is in the null space of $A^* A - A A^*$. To prove A normal, one need only exhibit (dim F-1) linearly independent vectors lying in the null space of $A^* A - A A^*$.

Proof. If $A_{\lambda}^* A_{\lambda} f_{\lambda} = A_{\lambda} A_{\lambda}^* f_{\lambda} = ||A_{\lambda}||^2 f_{\lambda}$, a simple computation shows that $(A^* A - A A^*) f_{\lambda} = 0$. The trace of $A^* A - A A^*$ is, however, zero. Thus if $A^* A - A A^*$ has zero as a (dim F - 1)-tuple eigenvalue, the remaining eigenvalue must be zero too. This concludes the proof of theorem 2.

II.2. The main theorem

We are now ready to prove our main theorem.

Theorem 3. If Λ is a subset of the complex plane and

$$||A_{\lambda}^{2}|| = ||A_{\lambda}||^{2}, \qquad A_{\lambda} = A - \lambda I$$

for all $\lambda \in \Lambda$, then $A \in B(F)$ is normal

E. ASPLUND, Normality for complex matrices

- 1. trivially if dim F = 1.
- 2. if dim F=2 and Λ is any point.
- 3. if dim F=3 and Λ is any straight line.
- 4. if dim F = 4 and Λ is the whole complex plane.

Proof. Statement 2 is proved directly by using theorem 1 and theorem 2. To prove statement 3 we have to exhibit two linearly independent vectors f_{λ} . It turns out that this may be accomplished by using vectors f_{λ} belonging to infinite values of λ . These are defined in the following way. Suppose f_{λ} , $||f_{\lambda}|| = 1$, satisfies $A_{\lambda}^* A_{\lambda} f_{\lambda} = A_{\lambda} A_{\lambda}^* f_{\lambda} = ||A_{\lambda}||^2 f_{\lambda}$, i.e.

We rewrite eqs. (II.2.1) in the following way, using the abbreviations $\lambda/|\lambda| = \omega$, $\bar{\omega} A + \omega A^* = A_{\omega}$.

$$A_{\omega} f_{\lambda} - |\lambda|^{-1} A^* A f_{\lambda} = |\lambda|^{-1} (|\lambda|^2 - ||A_{\lambda}||^2) f_{\lambda}, A_{\omega} f_{\lambda} - |\lambda|^{-1} A A^* f_{\lambda} = |\lambda|^{-1} (|\lambda|^2 - ||A_{\lambda}||^2) f_{\lambda}.$$
 (II.2.2)

Taking the difference of the two eqs. (II.2.1) we get

$$(A^*A - AA^*)f_{\lambda} = 0.$$

If now λ tends to infinity in such a way that ω approaches a limit, it is possible to pick out a convergent sequence f_{λ_n} , whose limit f_{ω} is an eigenvector of A_{ω} :

$$A_{\omega}f_{\omega} = m_{\omega}f_{\omega}, \qquad (\text{II.2.3})$$

and which also by continuity has the property

$$(A^* A - A A^*) f_{\omega} = 0. \tag{II.2.4}$$

Moreover, m_{ω} is the smallest eigenvalue of the self-adjoint matrix A_{ω} . We demonstrate this by proving that $A_{\omega} - (m_{\omega} - \varepsilon) I$ is a positive self-adjoint matrix for an arbitrary positive ε (the matrix A is said to be positive if it is self-adjoint and $(Af, f) \ge 0$ for every vector f). Namely, this matrix is this sum of the three matrices

and
$$\begin{aligned} A_{\omega} - |\lambda|^{-1} A^* A - |\lambda|^{-1} (|\lambda|^2 - ||A_{\lambda}||^2) I, \qquad |\lambda|^{-1} A^* A + \frac{\varepsilon}{2} I \\ & (-m_{\omega} + |\lambda|^{-1} (|\lambda|^2 - ||A_{\lambda}||^2) I + \frac{\varepsilon}{2} I, \end{aligned}$$

the first of which is positive by the definition of $||A_{\lambda}||$. The second and third will be positive for all sufficiently large $\lambda = \lambda_n$ corresponding to the convergent sequence f_{λ_n} .

We are thus able to obtain two eigenvectors f_{ω} and $f_{-\omega}$, corresponding to the eigenvalues m_{ω} and $m_{-\omega}$ of A_{ω} and $A_{-\omega} = -A_{\omega}$ respectively. But $m_{-\omega}$, the smallest eigenvalue of $-A_{\omega}$, is obviously the same as the largest eigenvalue M_{ω} of A_{ω} . If $m_{\omega} \neq M_{\omega}$, then for dim F=3 we have satisfied the requirements of theorem 2 and statement 3 is proved. If $m_{\omega} = M_{\omega}$, then $A_{\omega} = m_{\omega}I$ and we have

$$A^* = \bar{\omega} \, m_\omega \, I - \bar{\omega}^2 \, A,$$

which is enough for normality in any case.

When we start out to prove statement 4 we can thus assume the existence of f_{ω} and $f_{-\omega}$ satisfying

$$\begin{array}{l} A_{\omega} f_{\omega} = m_{\omega} f_{\omega} \\ A_{\omega} f_{-\omega} = M_{\omega} f_{-\omega} \end{array} \right)$$
 (II.2.5)

with $m_{\omega} < M_{\omega}$. As Λ is now the whole complex plane, we can construct in the same way for an $\omega' = \pm \omega$ eigenvectors $f_{\omega'}$, $f_{-\omega'}$ satisfying

$$\begin{array}{l} A_{\omega'}f_{\omega'} = m_{\omega'}f_{\omega'} \\ A_{\omega'}f_{-\omega'} = M_{\omega'}f_{-\omega'} \end{array} \right)$$
(II.2.6)

with $m_{\omega'} = M_{\omega'}$. Now, either we have enough vectors for use in theorem 2 to prove A normal or else f_{ω} , $f_{-\omega}$ and $f_{\omega'}$, $f_{-\omega'}$ span the same two-dimensional subspace $F_1 \subset F$. As A_{ω} and $A_{\omega'}$ are two independent linear homogeneous functions of A and A^* we conclude from eqs. (II.2.5) and (II.2.6) that this subspace is reduced by both A and A^* . Thus F_1 is spanned by two eigenvectors of A corresponding to different eigenvalues λ_1 and λ_2 (A acts as a normal matrix on F_1 because $A^*A - AA^*$ annihilates F_1 , therefore $\lambda_1 = \lambda_2$ would contradict $m_{\omega} < M_{\omega}$). If we put $\omega'' = i(\lambda_1 - \lambda_2)|\lambda_1 - \lambda_2|^{-1}$, it is easy to verify that every vector of F_1 is an eigenvector of $A_{\omega''}$ with the same eigenvalue, namely $2Im(\bar{\lambda}_1\lambda_2)|\lambda_1 - \lambda_2|^{-1}$. When we then repeat the construction of eigenvectors $f_{\omega''}$ and $f_{-\omega''}$ corresponding to the smallest and largest eigenvalue of $A_{\omega''}$ respectively, it is clear that at least one of $f_{\omega''}$ and $f_{-\omega''}$ does not belong to F_1 (i.e. the subspace generated by f_{ω} and $f_{-\omega}$) or else $A_{\omega''} = m_{\omega''}I$, i.e. $A^* = \bar{\omega}'' m_{\omega''}I - \bar{\omega}''^2 A$, and in either either case A must be normal. Thus all statements of theorem 4 are proved.

II.3. Counterexample for dim F=5

We now construct a non normal matrix A of order 5 such that

$$||A_{\lambda}^{2}|| = ||A_{\lambda}||^{2}, A_{\lambda} = A - \lambda I$$
 (II.3.1)

for all complex λ . Let F be the direct sum of two mutually orthogonal subspaces F_1 and F_2 , dim $F_1=3$ and dim $F_2=2$. Let A, A_{λ} be represented by the block matrices

$$A = \begin{pmatrix} A_{1} & 0 \\ 0 & A_{2} \end{pmatrix}, \qquad A_{\lambda} = \begin{pmatrix} A_{1} - \lambda I_{1} & 0 \\ 0 & A_{2} - \lambda I_{2} \end{pmatrix} = \begin{pmatrix} A_{1\lambda} & 0 \\ 0 & A_{2\lambda} \end{pmatrix}.$$

445

From the definition of the norm of A it is obvious that

$$||A_{\lambda}|| = \max \{||A_{1\lambda}||, ||A_{2\lambda}||\}$$

We choose A_1 to be a normal matrix such that

$$||A_{1\lambda}|| \ge 1 + |\lambda|$$

This can be accomplished by choosing 2, $-1 \pm i \sqrt{3}$ as eigenvalues of A_1 . Then we take A_2 to be a non normal matrix of norm 1, e.g. $A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, which thus satisfies

 $||A_{2\lambda}|| \leq 1 + |\lambda|$

Then
$$||A_{\lambda}^{2}|| = \max \{||A_{1\lambda}^{2}||, ||A_{2\lambda}^{2}||\} = ||A_{1\lambda}^{2}|| = ||A_{1\lambda}||^{2} = ||A_{\lambda}||^{2}$$

which proves the assertion of eq. (II.3.1).

III. Properties of eigenvalues which lie on the boundary of the range of values of a matrix

Moyls and Marcus (2) have proved that the eigenvectors corresponding to eigenvalues of $A \in B(F)$ lying on the boundary of the range of values $W(A) = \{\lambda | \lambda = (Af, f)(f, f)^{-1}, f \in F\}$ are eigenvectors also of A^* . It then follows in the same way as in the proof of our theorem 3 that if only one (simple) eigenvalue of A lies in the interior of W(A) (this must always be the case when dim $F \leq 4$ and W(A) = convex hull of sp A), then A is normal. Moyls and Marcus prove their result representing A as a triangular matrix by means of Schur's lemma, but the theorem is really a consequence of a simple property of the boundary of W(A) and can be proved without using any special representation.

Theorem 4. If $f \in F$ is an eigenvector of $A \in B(F)$ corresponding to an eigenvalue λ which lies on the boundary of the range of values of A, then f is also an eigenvector of A^* .

We prove theorem 5 by a variational method. Put $f_{\mu} = f + \mu g$ and determine

$$\begin{aligned} d\lambda &= \{ d \left[(A f_{\mu}, f_{\mu}) (f_{\mu}, f_{\mu})^{-1} \right] \}_{\mu=0} \\ &= \{ d \left[(\lambda f + \mu A g, f + \mu g) (f + \mu g, f + \mu g)^{-1} \right] \}_{\mu=0} \\ &= [d \mu (A g, f) + \lambda d \bar{\mu} (f, g)] (f, f)^{-1} - \lambda (f, f)^{-1} [d \mu (g, f) + d \bar{\mu} (f, g)] \\ &= d \mu [(A g, f) - \lambda (g, f)] (f, f)^{-1} \\ &= d \mu (g, A^* f - \bar{\lambda} f) (f, f)^{-1}. \end{aligned}$$

446

Since, however, $d\lambda$ is restricted because λ lies on the boundary of W(A) but $d\mu$ is not, we must have

$$(g, A^* f - \bar{\lambda} f) = 0$$

for all $g \in F$, which proves the theorem.

REFERENCES

- VON NEUMANN, J., Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4, 258-281 (1951).
 MOYLS, B. N., and MARCUS, M. D., Field convexity of a square matrix, Proc. Amer. Math. Soc. 6, 981-983 (1955).

Tryckt den 25 juni 1957

Uppsala 1957. Almqvist & Wiksells Boktryckeri AB