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I. Introduction 

We denote a (finite-dimensional) complex Hilbert space by  F .  Its elements 
(vectors) are denoted /, g and the scalar product of f, g EF is writ ten (f, g). 
The norm of l E E  is (f, /)*=11/11. Elements (matrices) of the algebra B ( F )  of 
endomorphisms on F are denoted by capital letters other than B and F. The 
norm of A E B ( F ) i s  defined by IIAli= sup IIAIiI.II/I1-1. The adjoint A* of A 

f E F  

is defined by (A/, g)=(/, A'g) for all /, gfF .  
An element A of B (F) is called normal if it  commutes with its adjoint: 

A*A =AA*. 
As is well known, A fiB (F) is normal if and only ff it  can be writ ten as 

a sum 
m 

A = ~ ~k E~, (I.1) 
1 

where ~ are complex scalars and Ek E B (F) satisfy the conditions 

m 

~..E~=I; EjEk=O, i:ek; Ek-E*=E~.- k (I.2) 
1 

The set spA={2~]E~=~0} is called the spectrum of A. From eqs. (I.1) and 
(I.2) it  is easy to conclude that  for all polynomials p (t) in one variable t wi th  
complex coefficients one has 

II v (A)II = max [p (~)1. 
Jle spA 

(i.3) 

According to a theorem of v. Neumann [1], the following converse of (I.3) 
holds true. If  F is a finite subset of the complex plane and 

x This article was wr i t ten  at  the  Depar$ment  of Mathematics ,  Royal  Ins t i tu te  of Technology,  
Stockholm, while the  au thor  was holding a scholarship from the State  Council for Technical  
Research.  
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E. A-SPLUND, Normality for complex matrices 

IIp(x)lI= max Ip(~)l 
).er 

(1.4) 

for all polynomials p (t) in one variable, then A is normal and s p A ~  I ' .  
We call eq. (I.4) a metric criterion of normality.  The following criterion 

II (p (A)) ~11 = II P (A)II 3 for all polynomials p (t) (I.5) 

is equivalent 1 with (I.4), because ( I . 5 ) imphes  

Ilp(A)]l= lim ]l(p(A))~IIl'n= max [~ l=  max [p(~)l 
n - - ~  ~ s p ( p  (A)) ).e spa  

b y  theorems of Gelfand and Dunford. Actually, as every polynomial  in A can 
be replaced by  its residue modulo the minimal polynomial of A, a sufficient 
condition tha t  A shall be normal is tha t  (I.5) shall hold for every polynomial 
p (t) of degree less than  the minimal polynomial of A. 

We will be mainly concerned in this article with a weakened form of (I.5), 
namely  

IIANII=IIA~II', A ~ = A - ) . I  (1.6) 

for all complex ~t. I t  turns out tha t  (I.6) imphes normali ty  only if d im  F_<4. 
Moyls and Marcus [2] have given another criterinm of normahty ,  whose do- 

main of appheabih ty  coincides with tha t  of eq. (I.6). I f  

W (A)={,II,~=(AI, l)(l, 1) -1, / eF}  

is the range of values of A, the condition of Moyls and Marcus reads: W (A) 
is equal to the convex hull of spA.  They prove tha t  this condition imphes tha t  
A is normal  if dim F < 4 by  representing A as a tr iangular mat r ix  (Schur's 
lemma). We give here in the last section another  proof of their theorem which 
uses no special representation for A. 

H. A characterization of  normal matrices for dim F_< 4 

II.1.  Introductory remarks 

According to the provious section, the condition 

[IA~II=IIA~II 2, A ~ = A - ) . I  for all complex 2 ( I I . l . i )  

would imply tha t  A is normal  if dim F =  2. Actually, the validity of eq. (11.1.1) 
as a criterion of normali ty  for A reaches further. I t  is valid for dim F = 4, and 
if dim F equals 2 or 3, i t  is possible to restrict  the variat ion of ~ and still 
have a necessary condition tha t  A shall be normal.  Thus, if dim F =  2 and eq. 
( I I . l .1)  holds for one complex value 2 only, then A is normal  and the same 

1 This equivalency was pointed out to us by Vidar Thom~e. 
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conclusion holds if dim F = 3  and eq. (11.1.1) is vahd for all values • on some 
straight line in the complex plane. 

To prove this we need two auxiliary theorems. 

Theorem 1. The following two statements are equivalent. 

1. II4~II=IIAII ~ 
2. There is a vector f e F such that A* A f = A A* it = II AII ~ f. 

Proof. Suppose tha t  s ta tement  1 is true. As dim F < oo, there is at  least one 
vector g E F tha t  satisfies 

II A ~ g 11 = I1A 11 ~ II g I1 ( II .  1.2) 

when s ta tement  1 is true. F rom (II.1.2) one obtains 

II A II ~ II g II = II A ~ g II < II A II II A g II < II A II ~ II g II- ( I I .1 .3 )  

Obviously, equality must  hold throughout  in eq. (II.1.3). Thus the equation 

II 4/11 = II A II II/11 (II.1.4) 

is satisfied by  both i t=g and it= A g. However,  a necessary (and also sufficient) 
condition for i t eF to satisfy eq. (11.1.4) is A*A/=I]A[t2It .  Using this fact, we 
verify s ta tement  2 with it = A g. 

Conversely, 2 implies 1. For let i t e F satisfy A* A f = A A* it = [I A ]]z/. Then, 
if one puts A' i t  = g, 

[[A~ g[[=(A2 A* It, A2 A* it)½=(A it, A It)½ [[A [I~=IIA II2 (A* A It, /)½= 

IIAIff (AA* f, l)½=llAII2(A* it, A*/)½=llAlffllgll. 
This proves theorem 1. 

T h e o r e m  2. Any  vector it~ which satisfies A~' Aa/~ = A~ A~' it~ = II A~II ~ l is in the null 
space oit A* A - A A*. To prove A normal, one need only exhibit (dim F -  1) line- 
arly independent vectors lying in the null space oit A * A - A A * .  

Prooit. I f  A% A~ fa = A~ A% it~- II A,~ I] 2/a, a simple computat ion shows: tha t  
( A * A - A A * ) f ~ = O .  The trace of A A - A A *  is, however, zero. Thus if A * A -  
A A* has zero as a (dim F - 1 ) - t u p l e  eigenvalue, the remaining eigenvalue must  
be zero too. This coricludes the proof of theorem 2. 

I I .2 .  The main theorem 

We are now ready to prove our main theorem. 

Theorem 3. I /  A is a subset o/ the complex plane and 

/or aU ~CA,  then A E B (F) is normal 
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1. trivially i/ dim F =  1. 
2. i/ dim F= 2 and A is any point. 
3. i/ dim F= 3 and A is any straight line. 
4. i[ dim F= 4 and A is the whole complex plane. 

Proo/. Statement  2 is proved directly by  using theorem 1 and theorem 2. 
To prove statement 3 we have to exhibit two linearly independent vectors /~. 
I t  turns out tha t  this may be accomplished by using vectors [a belonging to 
infinite values of 4. These are defined in the following way. Suppose [a, ]l h I I = 1, 
satisfies A~ A~ h = A~ A~ h = ]t A~ ]l 2 I~, i.e. 

A* A I ~ - ( i A h +  2A*h)+ I~1~I~ = II A~II~ h, / 
AA* h - ( 2 A I ~ +  2A*h)+12I~h =I[A~H2h. J 

(11.2.1) 

We rewrite eqs. (II.2.1) in the following way, using the abbreviations a/Izl= , 
(S A +wA*=A~.  

A..h-I;tl-  AA* h=l;tl-  (l r -llA, II ) I,. J 
(II.2.2) 

Taking the difference of the two eqs. (II.2.1) we get 

(A* A - A A*) h = 0. 

I f  now ~ tends to infinity in such a way tha t  co approaches a limit, i t  is pos- 
sible to pick out  a convergent sequence /~n, whose limit /~ is an eigenvector 
of A~: 

A~,/~=m~f~, (11.2.3) 

and which also by continuity has the property 

(A* A - A A*)/~ = 0. (II.2.4) 

Moreover, ra~ is the smallest eigenvalue of the self-adjoint matr ix A~. We dem- 
onstrate this by proving tha t  Ao, - (m, , - e ) I  is a positive self-a~tjoint matr ix  
for an arbi t rary positive e (the matrix A is said to be positive ff it is self- 
adjoint  and (A [, [)_> 0 for every vector [). Namely, this matr ix is this sum of 
the three matrices 

A~,--[)[]-'A*A-IA[-I([~[2-I]A,[I*)I, I ; t l - tA*A+~I 

and 
e 

the first of which is positive by the definition of H A~H. The second and third 
will be positive for all sufficiently large )t = 2, corresponding to the convergent 
sequence h . -  
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We are thus able to obtain two eigenvcctors f~ and /_~, corresponding to 
the eigenvalues m~ and m_~ of A~ and A _ ~ = -  A~ respectively. Bu t  m_~, the 
smallest eigenvalue of - A ~ ,  is obviously the same as the largest eigenvalue 
M~ of A~. I f  m ~ :  M~, then for dim F = 3 we have satisfied the requirements 
of theorem 2 and s ta tement  3 is proved. If  m ~ =  M~, then A~=  m,~I and we 
have 

A* = Co m~,I- ~ A, 

which is enough for normal i ty  in any  case. 
When we s tar t  out  to prove s ta tement  4 we can thus assume the existence 

of /~ and ]_~ satisfying 

A~ l~ =*no 1~ 
(II.2.5) 

A~,/_,~=M~I_~,, [ 

with m~ < M~. As A is now the whole complex plane, we can construct in the 
same way for an ¢0'=~ +~o eigenvectors /~,, /_~, satisfying 

A~,,/.,. = m,~. I~,. I (II.2.6) 
J A,,.t_,~.=M~,,/_,~. 

with m~, ~= M~.. Now, either we have enough vectors for use in theorem 2 to 
prove A normal  or else /~ , /_~ and /~,,/_~, span the same two-dimensional sub- 
space F1cF. As A~ and A~, are two independent linear homogeneous func- 
tions of A and A* we conclude from eqs. (II.2.5) and (II.2.6) tha t  this sub- 
space is reduced by  both  A and A*. Thus F 1 is spanned by  two eigenvectors 
of A corresponding to different eigenvalues 21 and 42 (A acts as a normal  mat r ix  
on •1 because A * A - A A *  annihilates F1, therefore 21=2~ would contradict  
m~,<M,~). I f  we put  o~"=i(21-22) 121-2~1-1, it is easy to verify tha t  every 
vector of F 1 is an eigenvector of A,~,, with the same eigenvalue, namely 
2 Im() , t2z ) [~x-2~1-1 .  When we then repeat  the construction of eigenvectors 
]~,, and /_~,, corresponding to the smallest and largest eigenvalue of A~,, re- 
spectively, i t  is clear tha t  a t  least one of f~,, and /_~,, does not belong to F 1 
(i.e. the subspace generated by f~ and /_~) or else A,~,,=m~,,,I, i.e. A * =  
D"m,,,,I-Co"2A, and in either either case A must  be normal .  Thus all state- 
ments  of theorem 4 are proved. 

I I .3 .  Counterexample .for dim F =  5. 

We now construct a non normal  matr ix  A of order 5 such tha t  

[IA II=IIA IL A =A-ZI (II.3.1) 

for all complex ),. Le t  F be the direct sum of two mutual ly  orthogonal sub- 
spaces F 1 and F~, dim F 1 = 3 and dim F 2 = 2. Let  A, Az be represented by  the 
block matrices 

(A~-2I~ 01 0 A =  ( A1 O ) ,  A ~ = \ 0  A~-,~Ij=(AI~ A~a)" 
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From the definition of the norm of A it  is obvious tha t  

IIA~II = max {IIA1,.II, IIA~II}. 

We choose A 1 to be a normal mat r ix  such tha t  

I I A I . I I > - I + I X I  • 

This can be accomplished by  choosing 2, - 1 + i  V-3 as eigenvalues of A r Then (0:) 
we take A S to be a non normal matr ix  of norm 1, e.g. 3= which thus 

0 ' 
satisfies 

I1 ~2,11_< 1 +1~1 

Then IIA~II= max {IIA~II, I IA~III=IIA~.II=IIAI~IP=IIA.II  ~ 

which proves the assertion of eq. (II.3.1). 

III. Properties of  eigenvalues which lie on the boundary of  the range of  
values o f  a matrix 

Moyls and Marcus (2) have proved tha t  the eigeuvectors corresponding to 
eigenvalues of A E B (F) lying on the boundary of the range of values W (A)=  
{~[~=(A/,  [ ) ( [ , / ) -1 , / eF}  are eigenvectors also of A*. I t  then follows in the 
same way as in the proof of our theorem 3 tha t  if only one (simple) eigen- 
value of A lies in the interior of W (A) (this mus t  always be the case when 
dim F < 4 and W (A)=  convex hull of sp A), then A is normal. Moyls and Marcus 
prove their result  representing A as a tr iangular mat r ix  by means of Schur 's  
lemma, but  the theorem is really a consequence of a simple proper ty  of the 
boundary  of W (A) and can be proved without  using any  special representation. 

Theorem 4. I] ]EF is an eigenvector of A E B (F) corresponding to an eige~z- 
value 2 which lies on the boundary o/ the range of values o[ A, then / is also 
an eigenvector of A*. 

We prove theorem 5 by  a variat ional method. Pu t  / ~ = / + l x g  and determine 

d~ = {d [(A 1., It)([~, /~t)-l]}/x=0 

={d[(]tl+/zAg, [ + # g ) ( / + # g ,  l + # g ) - l ] } . = 0  

= [d# (A g , / )  + ~ d #  (1, g)] ( / , / ) -1  _ ~ (1, 1)-1 [d# (g, l) + d #  (1, g)] 

= d #  E(A g , / )  - ~ (g, 1)] (L / ) -1  

= d ~  (g, A* 1 -  i l) (l, l) -1- 
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Since, however,  d ~ is res t r ic ted because 2 lies on the b o u n d a r y  of W (A) b u t  
d #  is not ,  we mus t  have 

(g, A* f - ~ / ) = 0  

for all g E F ,  which proves the  theorem. 
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