Metric criteria of normality for complex matrices of order less than 5

Edgar Asplund ${ }^{1}$

I. Introduction

We denote a (finite-dimensional) complex Hilbert space by F. Its elements (vectors) are denoted f, g and the scalar product of $f, g \in F$ is written (f, g). The norm of $f \in F$ is $(f, f)^{\frac{1}{2}}=\|f\|$. Elements (matrices) of the algebra $B(F)$ of endomorphisms on F are denoted by capital letters other than B and F. The norm of $A \in B(F)$ is defined by $\|A\|=\sup _{f \in F}\|A f\| \cdot\|f\|^{-1}$. The adjoint A^{*} of A is defined by $(A f, g)=\left(f, A^{*} g\right)$ for all $f, g \in F$.

An element A of $B(F)$ is called normal if it commutes with its adjoint: $A^{*} A=A A^{*}$.

As is well known, $A \in B(F)$ is normal if and only if it can be written as a sum

$$
\begin{equation*}
A=\sum_{1}^{m} \lambda_{k} E_{k} \tag{I.1}
\end{equation*}
$$

where λ_{k} are complex scalars and $E_{k} \in B(F)$ satisfy the conditions

$$
\begin{equation*}
\sum_{1}^{m} E_{k}=I ; \quad E_{j} E_{k}=0, \quad j \neq k ; \quad E_{k}=E_{k}^{*}=E_{k}^{2} \tag{I.2}
\end{equation*}
$$

The set $\operatorname{sp} A=\left\{\lambda_{k} \mid E_{k} \neq 0\right\}$ is called the spectrum of A. From eqs. (I.1) and (I.2) it is easy to conclude that for all polynomials $p(t)$ in one variable t with complex coefficients one has

$$
\begin{equation*}
\|p(A)\|=\max _{\lambda \in \operatorname{sp} A}|p(\lambda)| \tag{I.3}
\end{equation*}
$$

According to a theorem of v. Neumann [1], the following converse of (I.3) holds true. If Γ is a finite subset of the complex plane and

[^0]\[

$$
\begin{equation*}
\|p(A)\|=\max _{\lambda \in \Gamma}|p(\lambda)| \tag{I.4}
\end{equation*}
$$

\]

for all polynomials $p(t)$ in one variable, then A is normal and $\operatorname{sp} \mathrm{A} \subseteq \Gamma$.
We call eq. (I.4) a metric criterion of normality. The following criterion

$$
\begin{equation*}
\left\|(p(A))^{2}\right\|=\|p(A)\|^{2} \quad \text { for all polynomials } p(t) \tag{I.5}
\end{equation*}
$$

is equivalent ${ }^{1}$ with (I.4), because (I.5) implies

$$
\|p(A)\|=\lim _{n \rightarrow \infty}\left\|(p(A))^{n}\right\|^{1 / n}=\max _{\lambda \in \operatorname{sp}(p(A))}|\lambda|=\max _{\lambda \in \operatorname{sp} A}|p(\lambda)|
$$

by theorems of Gelfand and Dunford. Actually, as every polynomial in A can be replaced by its residue modulo the minimal polynomial of A, a sufficient condition that A shall be normal is that (I.5) shall hold for every polynomial $p(t)$ of degree less than the minimal polynomial of A.

We will be mainly concerned in this article with a weakened form of (I.5), namely

$$
\begin{equation*}
\left\|A_{\lambda}^{2}\right\|=\left\|A_{\lambda}\right\|^{2}, \quad A_{\lambda}=A-\lambda I \tag{1.6}
\end{equation*}
$$

for all complex λ. It turns out that (I.6) implies normality only if $\operatorname{dim} F \leq 4$.
Moyls and Marcus [2] have given another criterium of normality, whose domain of applicability coincides with that of eq. (I.6). If

$$
W(A)=\left\{\lambda \mid \lambda=(A f, f)(f, f)^{-1}, f \in F\right\}
$$

is the range of values of A, the condition of Moyls and Marcus reads: $W(A)$ is equal to the convex hull of $\mathrm{sp} A$. They prove that this condition implies that A is normal if $\operatorname{dim} F \leq 4$ by representing A as a triangular matrix (Schur's lemma). We give here in the last section another proof of their theorem which uses no special representation for A.

II. A characterization of normal matrices for $\operatorname{dim} \boldsymbol{F} \leq 4$

II.1. Introductory remarks

According to the provious section, the condition

$$
\begin{equation*}
\left\|A_{\lambda}^{2}\right\|=\left\|A_{\lambda}\right\|^{2}, A_{\lambda}=A-\lambda I \quad \text { for all complex } \lambda \tag{II.1.1}
\end{equation*}
$$

would imply that A is normal if $\operatorname{dim} F=2$. Actually, the validity of eq. (II.I.1) as a criterion of normality for A reaches further. It is valid for $\operatorname{dim} F=4$, and if $\operatorname{dim} F$ equals 2 or 3 , it is possible to restrict the variation of λ and still have a necessary condition that A shall be normal. Thus, if $\operatorname{dim} F=2$ and eq. (II.1.1) holds for one complex value λ only, then A is normal and the same

[^1]conclusion holds if $\operatorname{dim} F=3$ and eq. (II.1.1) is valid for all values λ on some straight line in the complex plane.

To prove this we need two auxiliary theorems.
Theorem 1. The following two statements are equivalent.

1. $\left\|A^{2}\right\|=\|A\|^{2}$.
2. There is a vector $f \in F$ such that $A^{*} A f=A A^{*} f=\|A\|^{2} f$.

Proof. Suppose that statement 1 is true. As $\operatorname{dim} F<\infty$, there is at least one vector $g \in F$ that satisfies

$$
\begin{equation*}
\left\|A^{2} g\right\|=\|A\|^{2}\|g\| \tag{II.1.2}
\end{equation*}
$$

when statement 1 is true. From (II.1.2) one obtains

$$
\begin{equation*}
\|A\|^{2}\|g\|=\left\|A^{2} g\right\| \leq\|A\|\|A g\| \leq\|A\|^{2}\|g\| \tag{II.1.3}
\end{equation*}
$$

Obviously, equality must hold throughout in eq. (II.1.3). Thus the equation

$$
\begin{equation*}
\|A f\|=\|A\|\|f\| \tag{II.1.4}
\end{equation*}
$$

is satisfied by both $f=g$ and $f=A g$. However, a necessary (and also sufficient) condition for $f \in F$ to satisfy eq. (II.1.4) is $A^{*} A f=\|A\|^{2} f$. Using this fact, we verify statement 2 with $f=A g$.

Conversely, 2 implies 1. For let $f \in F$ satisfy $A^{*} A f=A A^{*} f=\|A\|^{2} f$. Then, if one puts $A^{*} f=g$,

$$
\begin{aligned}
& \left\|A^{2} g\right\|=\left(A^{2} A^{*} f, A^{2} A^{*} f\right)^{\frac{1}{2}}=(A f, A f)^{\frac{1}{2}}\|A\|^{2}=\|A\|^{2}\left(A^{*} A f, f\right)^{\frac{1}{2}}= \\
& \|A\|^{2}\left(A A^{*} f, f\right)^{\frac{1}{2}}=\|A\|^{2}\left(A^{*} f, A^{*} f\right)^{\frac{1}{2}}=\|A\|^{2}\|g\| .
\end{aligned}
$$

This proves theorem 1.
Theorem 2. Any vector f_{λ} which satisfies $A_{\lambda}^{*} A_{\lambda} f_{\lambda}=A_{\lambda} A_{\lambda}^{*} f_{\lambda}=\left\|A_{\lambda}\right\|^{2} f$ is in the null space of $A^{*} A-A A^{*}$. To prove A normal, one need only exhibit ($\operatorname{dim} F-1$) linearly independent vectors lying in the null space of $A^{*} A-A A^{*}$.

Proof. If $A_{\lambda}^{*} A_{\lambda} f_{\lambda}=A_{\lambda} A_{\lambda}^{*} f_{\lambda}=\left\|A_{\lambda}\right\|^{2} f_{\lambda}, \quad$ a simple computation shows that $\left(A^{*} A-A A^{*}\right) f_{\lambda}=0$. The trace of $A^{*} A-A A^{*}$ is, however, zero. Thus if $A^{*} A-$ $A A^{*}$ has zero as a ($\operatorname{dim} F-1$)-tuple eigenvalue, the remaining eigenvalue must be zero too. This concludes the proof of theorem 2.

II.2. The main theorem

We are now ready to prove our main theorem.
Theorem 3. If Λ is a subset of the complex plane and

$$
\left\|A_{\lambda}^{2}\right\|=\left\|A_{\lambda}\right\|^{2}, \quad A_{\lambda}=A-\lambda I
$$

for all $\lambda \in \Lambda$, then $A \in B(F)$ is normal

1. trivially if $\operatorname{dim} F=1$.
2. if $\operatorname{dim} F=2$ and Λ is any point.
3. if $\operatorname{dim} F=3$ and Λ is any straight line.
4. if $\operatorname{dim} F=4$ and Λ is the whole complex plane.

Proof. Statement 2 is proved directly by using theorem 1 and theorem 2. To prove statement 3 we have to exhibit two linearly independent vectors f_{λ}. It turns out that this may be accomplished by using vectors f_{λ} belonging to infinite values of λ. These are defined in the following way. Suppose $f_{\lambda},\left\|f_{\lambda}\right\|=1$, satisfies $A_{\lambda}^{*} A_{\lambda} f_{\lambda}=A_{\lambda} A_{\lambda}^{*} f_{\lambda}=\left\|A_{\lambda}\right\|^{2} f_{\lambda}$, i.e.

$$
\left.\begin{array}{l}
A^{*} A f_{\lambda}-\left(\bar{\lambda} A f_{\lambda}+\lambda A^{*} f_{\lambda}\right)+|\lambda|^{2} f_{\lambda}=\left\|A_{\lambda}\right\|^{2} f_{\lambda}, \tag{II.2.1}\\
A A^{*} f_{\lambda}-\left(\bar{\lambda} A f_{\lambda}+\lambda A^{*} f_{\lambda}\right)+|\lambda|^{2} f_{\lambda}=\left\|A_{\lambda}\right\|^{2} f_{\lambda} .
\end{array}\right\}
$$

We rewrite eqs. (II.2.1) in the following way, using the abbreviations $\lambda /|\lambda|=\omega$, $\bar{\omega} A+\omega A^{*}=A_{\omega}$.

$$
\left.\begin{array}{l}
A_{\infty} f_{\lambda}-|\lambda|^{-1} A^{*} A f_{\lambda}=|\lambda|^{-1}\left(|\lambda|^{2}-\left\|A_{\lambda}\right\|^{2}\right) f_{\lambda} \tag{II.2.2}\\
A_{\omega} f_{\lambda}-|\lambda|^{-1} A A^{*} f_{\lambda}=|\lambda|^{-1}\left(|\lambda|^{2}-\left\|A_{\lambda}\right\|^{2}\right) f_{\lambda}
\end{array}\right\}
$$

Taking the difference of the two eqs. (II.2.1) we get

$$
\left(A^{*} A-A A^{*}\right) f_{\lambda}=0
$$

If now λ tends to infinity in such a way that ω approaches a limit, it is possible to pick out a convergent sequence $f_{\lambda_{n}}$, whose limit f_{ω} is an eigenvector of A_{ω} :

$$
\begin{equation*}
A_{\omega} f_{\omega}=m_{\omega} f_{\omega} \tag{II.2.3}
\end{equation*}
$$

and which also by continuity has the property

$$
\begin{equation*}
\left(A^{*} A-A A^{*}\right) f_{\omega}=0 \tag{II.2.4}
\end{equation*}
$$

Moreover, m_{ω} is the smallest eigenvalue of the self-adjoint matrix A_{ω}. We demonstrate this by proving that $A_{\omega}-\left(m_{\omega}-\varepsilon\right) I$ is a positive self-adjoint matrix for an arbitrary positive ε (the matrix A is said to be positive if it is selfadjoint and ($A f, f$) ≥ 0 for every vector f). Namely, this matrix is this sum of the three matrices

$$
A_{\omega}-|\lambda|^{-1} A^{*} A-|\lambda|^{-1}\left(|\lambda|^{2}-\left\|A_{\lambda}\right\|^{2}\right) I, \quad|\lambda|^{-1} A^{*} A+\frac{\varepsilon}{2} I
$$

and

$$
\left(-m_{\omega}+|\lambda|^{-1}\left(|\lambda|^{2}-\left\|A_{\lambda}\right\|^{2}\right) I+\frac{\varepsilon}{2} I\right.
$$

the first of which is positive by the definition of $\left\|A_{\lambda}\right\|$. The second and third will be positive for all sufficiently large $\lambda=\lambda_{n}$ corresponding to the convergent sequence $f_{\lambda_{n}}$.

We are thus able to obtain two eigenvectors f_{ω} and $f_{-\omega}$, corresponding to the eigenvalues m_{ω} and $m_{-\omega}$ of A_{ω} and $A_{-\omega}=-A_{\omega}$ respectively. But $m_{-\omega}$, the smallest eigenvalue of $-A_{\omega}$, is obviously the same as the largest eigenvalue M_{ω} of A_{ω}. If $m_{\omega} \neq M_{\omega}$, then for $\operatorname{dim} F=3$ we have satisfied the requirements of theorem 2 and statement 3 is proved. If $m_{\omega}=M_{\omega}$, then $A_{\omega}=m_{\omega} I$ and we have

$$
A^{*}=\bar{\omega} m_{\omega} I-\bar{\omega}^{2} A
$$

which is enough for normality in any case.
When we start out to prove statement 4 we can thus assume the existence of f_{ω} and $f_{-\omega}$ satisfying

$$
\left.\begin{array}{l}
A_{\omega} f_{\omega}=m_{\omega} f_{\omega} \tag{II.2.5}\\
A_{\omega} f_{-\omega}=M_{\omega} f_{-\omega}
\end{array}\right\}
$$

with $m_{\omega}<M_{\omega}$. As Λ is now the whole complex plane, we can construct in the same way for an $\omega^{\prime} \neq \pm \omega$ eigenvectors $f_{\omega^{\prime}}, f_{-\omega^{\prime}}$ satisfying

$$
\left.\begin{array}{l}
A_{\omega^{\prime}} f_{\omega^{*}}=m_{\omega^{\prime}} f_{\omega^{\prime}} \tag{II.2.6}\\
A_{\omega^{\prime}} f_{-\omega^{\prime}}=M_{\omega^{\prime}} f_{-\omega^{\prime}}
\end{array}\right\}
$$

with $m_{t s^{\prime}} \neq M_{w 0^{\prime}}$. Now, either we have enough vectors for use in theorem 2 to prove A normal or else $f_{\omega}, f_{-\omega}$ and $f_{\omega^{\prime}}, f_{-\omega^{\prime}}$ span the same two-dimensional subspace $F_{1} \subset F^{\prime}$. As A_{ω} and $A_{\omega^{\prime}}$ are two independent linear homogeneous functions of A and A^{*} we conclude from eqs. (II.2.5) and (II.2.6) that this subspace is reduced by both A and A^{*}. Thus F_{1} is spanned by two eigenvectors of A corresponding to different eigenvalues λ_{1} and λ_{2} (A acts as a normal matrix on F_{1} because $A^{*} A-A A^{*}$ annihilates F_{1}, therefore $\lambda_{1}=\lambda_{2}$ would contradict $\left.m_{\omega}<M_{\omega}\right)$. If we put $\omega^{\prime \prime}=i\left(\lambda_{1}-\lambda_{2}\right)\left|\lambda_{1}-\lambda_{2}\right|^{-1}$, it is easy to verify that every vector of F_{1} is an eigenvector of $A_{\omega^{\prime \prime}}$ with the same eigenvalue, namely $2 I m\left(\bar{\lambda}_{1} \lambda_{2}\right)\left|\lambda_{1}-\lambda_{2}\right|^{-1}$. When we then repeat the construction of eigenvectors $f_{\omega^{\prime \prime}}$ and $f_{-\omega^{\prime \prime}}$ corresponding to the smallest and largest eigenvalue of $A_{\omega^{\prime \prime}}$ respectively, it is clear that at least one of $f_{\omega^{\prime \prime}}$ and $f_{-\omega^{\prime \prime}}$ does not belong to F_{1} (i.e. the subspace generated by f_{ω} and $\dot{f}_{-\omega}$) or else $A_{\omega^{\prime \prime}}=m_{\omega^{\prime \prime}} I$, i.e. $A^{*}=$ $\bar{\omega}^{\prime \prime} m_{\omega^{\prime}} I-\bar{\omega}^{\prime \prime 2} A$, and in either either case A must be normal. Thus all statements of theorem 4 are proved.

II.3. Counterexample for $\operatorname{dim} F=5$.

We now construct a non normal matrix A of order 5 such that

$$
\begin{equation*}
\left\|A_{\lambda}^{2}\right\|=\left\|A_{\lambda}\right\|^{2}, \quad A_{\lambda}=A-\lambda I \tag{II.3.1}
\end{equation*}
$$

for all complex λ. Let F be the direct sum of two mutually orthogonal subspaces F_{1} and $F_{2}, \operatorname{dim} F_{1}=3$ and $\operatorname{dim} F_{2}=2$. Let A, A_{λ} be represented by the block matrices

$$
A=\left(\begin{array}{ll}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right), \quad A_{\lambda}=\left(\begin{array}{l}
A_{1}-\lambda I_{1} \\
0 \\
0
\end{array} A_{2}-\lambda I_{2}\right)=\left(\begin{array}{ll}
A_{1 \lambda} & 0 \\
0 & A_{2 \lambda}
\end{array}\right)
$$

E. ASPlund, Normality for complex matrices

From the definition of the norm of A it is obvious that

$$
\left\|A_{\lambda}\right\|=\max \left\{\left\|A_{1 \lambda}\right\|,\left\|A_{2 \lambda}\right\|\right\}
$$

We choose A_{1} to be a normal matrix such that

$$
\left\|A_{1 \lambda}\right\| \geq 1+|\lambda|
$$

This can be accomplished by choosing $2,-1 \pm i \sqrt{3}$ as eigenvalues of A_{1}. Then we take A_{2} to be a non normal matrix of norm 1, e.g. $A_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, which thus satisfies

Then

$$
\left\|A_{2 \lambda}\right\| \leq 1+|\lambda|
$$

Then

$$
\left\|A_{\lambda}^{2}\right\|=\max \left\{\left\|A_{1 \lambda}^{2}\right\|,\left\|A_{2 \lambda}^{2}\right\|\right\}=\left\|A_{1 \lambda}^{2}\right\|=\left\|A_{1 \lambda}\right\|^{2}=\left\|A_{\lambda}\right\|^{2}
$$

which proves the assertion of eq. (II.3.1).

III. Properties of eigenvalues which lie on the boundary of the range of values of a matrix

Moyls and Marcus (2) have proved that the eigenvectors corresponding to eigenvalues of $A \in B(F)$ lying on the boundary of the range of values $W(A)=$ $\left\{\lambda \mid \lambda=(A f, f)(f, f)^{-1}, f \in F\right\}$ are eigenvectors also of A^{*}. It then follows in the same way as in the proof of our theorem 3 that if only one (simple) eigenvalue of A lies in the interior of $W(A)$ (this must always be the case when $\operatorname{dim} F \leq 4$ and $W(A)=$ convex hull of $\operatorname{sp} A$), then A is normal. Moyls and Marcus prove their result representing A as a triangular matrix by means of Schur's lemma, but the theorem is really a consequence of a simple property of the boundary of $W(A)$ and can be proved without using any special representation.

Theorem 4. If $f \in F$ is an eigenvector of $A \in B(F)$ corresponding to an eigenvalue λ which lies on the boundary of the range of values of A, then f is also an eigenvector of A^{*}.

We prove theorem 5 by a variational method. Put $f_{\mu}=f+\mu g$ and determine

$$
\begin{aligned}
d \lambda & =\left\{d\left[\left(A f_{\mu}, f_{\mu}\right)\left(f_{\mu}, f_{\mu}\right)^{-1}\right]\right\}_{\mu=0} \\
& =\left\{d\left[(\lambda f+\mu A g, f+\mu g)(f+\mu g, f+\mu g)^{-1}\right]\right\}_{\mu=0} \\
& =[d \mu(A g, f)+\lambda d \bar{\mu}(f, g)](f, f)^{-1}-\lambda(f, f)^{-1}[d \mu(g, f)+d \bar{\mu}(f, g)] \\
& =d \mu[(A g, f)-\lambda(g, f)](f, f)^{-1} \\
& =d \mu\left(g, A^{*} f-\bar{\lambda} f\right)(f, f)^{-1} .
\end{aligned}
$$

Since, however, $d \lambda$ is restricted because λ lies on the boundary of $W(A)$ but $d \mu$ is not, we must have

$$
\left(g, A^{*} f-\bar{\lambda} f\right)=0
$$

for all $g \in F$, which proves the theorem.

REFERENCES

1. von Neumann, J., Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4, 258-281 (1951).
2. Moyls, B. N., and Marcus, M. D., Field convexity of a square matrix, Proc. Amer. Math. Soc. 6, 981-983 (1955).

[^0]: ${ }^{1}$ This article was written at the Department of Mathematics, Royal Institute of Technology, Stockholm, while the author was holding a scholarship from the State Council for Technical Research.

[^1]: ${ }^{1}$ This equivalency was pointed out to us by Vidar Thomée.

