# Sums and products of commuting spectral operators ${ }^{1}$ 

By S. R. Foguel

## 1. Introduction

Given two spectral operators $T_{1}$ and $T_{2}$, on a complex Banach space $\mathcal{X}$, it is interesting to know if $T_{1}+T_{2}$ and $T_{1} T_{2}$ are spectral operators too. This problem is treated in [3] and [4]. It is proved there that if the space $\mathfrak{X}$ is weakly complete, and the operators $T_{1}$ and $T_{2}$ commute and the Boolean algebra of projections generated by the resolutions of the identity of $T_{1}$ and $T_{2}$ is bounded, then both $T_{1}+T_{2}$ and $T_{1} T_{2}$ are spectral operators. Moreover, if $T_{1}=S_{1}+N_{1}, T_{2}=S_{2}+N_{2}$, where $S_{1}$ and $S_{2}$ are scalar operators and $N_{1}, N_{2}$ are generalized nilpotents and $S_{1}, N_{1}, S_{2}, N_{2}$ commute, then $S_{1}+S_{2}$ and $S_{1} S_{2}$ are scalar operators and $N_{1}+N_{2}, S_{1} N_{2}+S_{2} N_{1}+N_{1} N_{2}$ are generalized nilpotents. The main problem in this paper will be to determine the resolutions of the identity of $T_{1}+T_{2}$ and $T_{1} T_{2}$. By the above remark it is enough to consider the case where $T_{1}$ and $T_{2}$ are scalar operators. A second problem treated here is to find the poles of the resolvents of $T_{1}+T_{2}$ and $T_{1} T_{2}$. In this part we do not assume that $T_{1}$ and $T_{2}$ are spectral operators.

## 2. Notation

We use here the notation and definitions of [3]. Let $\mathfrak{X}$ be a complex Banach space. A spectral measure is a set function $E(\cdot)$ defined on Borel sets in the complex plane whose values are projections on $\mathfrak{X}$ which satisfy:

1. For any two Borel sets $\sigma$ and $\delta, E(\sigma) E(\delta)=E(\sigma \cap \delta)$.
2. Let $\phi$ be the void set and $P$ the complex plane, then

$$
E(\phi)=0 \quad \text { and } \quad E(P)=I
$$

3. There exists a constant $M$ such that $|E(\sigma)| \leq M$, for every Borel set $\sigma$.
4. The vector valued set function $E(\cdot) x$ is countably additive for each $x \in \mathfrak{X}$.
$T$ is a spectral operator whose resolution of the identity is the spectral measure $E(\cdot)$ if

[^0]S. r. FOGUEL, Sums and products of commuting spectral operators
(a) For any Borel set $\sigma, T E(\sigma)=E(\sigma) T$.
(b) If $T \mid E(\alpha) \mathfrak{X}$ is the restriction of $T$ to the subspace $E(\alpha) \mathfrak{X}$, then
$$
\sigma(T \mid E(\alpha) X) \subset \bar{\alpha},
$$
where $\sigma(A)$ denotes the spectrum of $A$.
If $T$ is a spectral operator the operator $S=\int \lambda E(d \lambda)$ is its scalar part and $N=T-S$ its radical. The operator $N$ is a generalized nilpotent (see [3], p. 333). The operators $T, S, N, E(\alpha)$ commute ( $\alpha$ a Borel set). The operator $T$ is called a scalar operator if $T=S$.

## 3. Sums and products of projections

In this section we shall find the resolutions of the identity of the sum and product of two scalar operators when one of them has a finite spectrum.

Lemma 1. If $S$ is a scalar operator whose resolution of the identity is $E(\cdot)$, and $F$ a projection commuting with $S$, then $S+\mu F$ is a scalar operator whose resolution of the identity is given by the projection valued set function $G(\cdot)$

$$
G(\alpha)=E(\alpha-\mu) F+E(\alpha) F^{\prime}
$$

where $F^{\prime}$ is the complement of $F$, namely $I-F$, and $\alpha$ is a Borel set.
Proof. Let $\alpha$ and $\beta$ be Borel sets.

$$
\begin{aligned}
G(\alpha) G(\beta) & =\left(E(\alpha-\mu) F+E(\alpha) F^{\prime}\right)\left(E(\beta-\mu) F+E(\beta) F^{\prime}\right) \\
& =E(\alpha \cap \beta-\mu) F+E(\alpha \cap \beta) F^{\prime} \\
& =G(\alpha \cap \beta)
\end{aligned}
$$

because $E$ and $F$ commute. (See [3], p. 329.)

$$
\begin{aligned}
& G(\phi)=0 \quad \text { and } \quad G(P)=I \cdot F+I F^{\prime}=I \\
|G(\alpha)|= & \left|E(\alpha-\mu) F+E(\alpha) F^{\prime}\right| \\
\leq & |E(\alpha-\mu)||F|+|E(\alpha)| F^{\prime} \mid \\
\leq & \operatorname{Sup}\{|E(\alpha)| \mid \alpha \text { a Borel set }\}\left(|F|+\left|F^{\prime}\right|\right)
\end{aligned}
$$

It is clear that $G(\alpha) x$ is countably additive. Now

$$
\begin{aligned}
\int \lambda E(d \lambda)+\mu F & =\int(\lambda+\mu) E(d \lambda) F+\int \lambda E(d \lambda) F^{\prime} \\
& =\int \lambda\left[E(d \lambda-\mu) F+E(d \lambda) F^{\prime}\right] \\
& =\int \lambda G(d \lambda)
\end{aligned}
$$

## arkiv för matematik. Bd 3 nr 41

Theorem 1. Let $T=S+\sum_{i=1}^{n} \mu_{i} F_{i}$, where $S$ is a scalar operator whose resolution of the identity is $E(\cdot)$ and

$$
F_{i} S=S F_{i}, \quad \sum_{i=1}^{n} F_{i}=I, \quad F_{i} F_{j}=0 \quad i \neq j, \quad F_{i}^{2}=F_{i}
$$

then $T$ is a scalar operator whose resolution of the identity $G$ is given by

$$
G(\alpha)=\sum_{i=1}^{n} E\left(\alpha-\mu_{i}\right) F_{i}
$$

for any Borel set $\alpha$.
Proof. By Lemma 1 the theorem holds for $m=1$. Let us assume its validity for $m=n-1$. On the space $Y=\sum_{i=1}^{n-1} F_{i} X$ by assumption

$$
\begin{gathered}
S+\sum_{i=1}^{n-1} \mu_{i} F_{i}=\int \lambda G_{1}(d \lambda) \\
G_{1}(\alpha)=\sum_{i=1}^{n-1} E\left(\alpha-\mu_{i}\right) F_{i}
\end{gathered}
$$

Thus for every $x \in \mathfrak{X}$

$$
\begin{aligned}
\left(S+\sum_{i=1}^{n-1} \mu_{i} F_{i}\right) x & \\
& =\left(S+\sum_{i=1}^{n-1} \mu_{i} F_{i}\right) \sum_{i=1}^{n-1} F_{i} x+S F_{n} x \\
& =\int \lambda G_{1}(d \lambda)\left(\sum_{i=1}^{n-1} F_{i} x\right)+\int \lambda E(d \lambda) F_{n} x \\
& =\int \lambda G_{2}(d \lambda) x
\end{aligned}
$$

where

$$
\begin{aligned}
G_{2}(\alpha) x & =\left(\sum_{i=1}^{n-1} E\left(\alpha-\mu_{i}\right) F_{i}\right) \sum_{i=1}^{n-1} F_{i} x+E(\alpha) F_{n} x \\
& =\sum_{i=1}^{n-1} E\left(\alpha-\mu_{i}\right) F_{i} x+E(\alpha) F_{n} x
\end{aligned}
$$

It is easy to verify that $G_{2}$ is a spectral measure. Using Lemma 1 again

$$
\left(S+\sum_{i=1}^{n-1} \mu_{i} F_{i}\right)+\mu_{n} F_{n}=\int \lambda G(d \lambda)
$$

where

$$
\begin{aligned}
G(\alpha) & =G_{2}\left(\alpha-\mu_{n}\right) F_{n}+G_{2}(\alpha) F_{n}^{\prime} \\
& =E\left(\alpha-\mu_{n}\right) F_{n}+\sum_{i=1}^{n-1} E\left(\alpha-\mu_{i}\right) F_{i} \\
& =\sum_{i=1}^{n} E\left(\alpha-\mu_{i}\right) F_{i} .
\end{aligned}
$$

By a similar proof one can derive the following theorem.
Theorem 2. Let $T=\left(S \cdot \sum_{i=1}^{n} \mu_{i} F_{i}^{\prime}\right)$, where $S$ and $F_{i}$ satisfy the conditions of Theorem 1 and $\mu_{i} \neq 0$, then $T$ is a scalar operator whose resolution of the identity $G$ is given by

$$
G(\alpha)=\sum_{i=1}^{n} E\left(\frac{\alpha}{\mu_{i}}\right) F_{i} .
$$

The restriction $\mu_{i} \neq 0$ is not essential and is introduced here to simplify notation.

Corollary 1. Let $S_{1}$ and $S_{2}$ be two commuting scalar operators given by

$$
S_{1}=\sum_{i=1}^{n} \lambda_{i} E_{i}, \quad S_{2}=\sum_{i=1}^{m} \mu_{i} F_{i}, \quad \sum_{i=1}^{n} E_{i}=I=\sum_{i=1}^{m} F_{i}
$$

then the spectrum of $S_{1}+S_{2}$ is contained in the set $\left\{\lambda_{i}+\mu_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and the value of the resolution of the identity of $S_{1}+S_{2}$ at the point $\delta$ is equal to $\sum_{\lambda_{i}+\mu_{j=\delta}} E_{i} F_{j}$. Also, the spectrum of $S_{1} S_{2}$ is contained in the set $\left\{\lambda_{i} \mu_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and the value of the resolution of the identity of $S_{1} S_{2}$ at the point $\delta$ is equal to $\sum_{\lambda_{i} \mu_{i}=\delta} E_{i} F_{j}$.

By Lemma 1 if $E_{1}$ and $E_{2}$ are two commuting projections then

$$
E_{1}+E_{2}=2 E_{1} E_{2}+\left(E_{1} E_{2}^{\prime}+E_{2} E_{1}^{\prime}\right)
$$

This can be generalized as follows.
Corollary 2. Let $E_{i} 1 \leq i \leq n$ be $n$ commuting projections then $\sum_{i=1}^{n} E_{i}$ is a scalar operator whose spectrum is contained in the set $\{0,1,2, \ldots, n\}$ and at the point $i l \leq i \leq n$ the value of the spectral measure is

$$
G_{i}=\sum_{1 \leq j_{1}<j_{3}<} \sum_{j_{j-i} \leq n} \prod_{\substack{1 \leq K \leq n \\ K \neq j_{v}}} E_{K} E_{j_{1}}^{\prime} \ldots E_{j_{n-i}}^{\prime}
$$

and

$$
G_{0}=\prod_{i=1}^{n} G_{i}^{\prime}
$$

Proof. Let us prove by induction. For $m=2$ the equation holds. Assume that the theorem is true for $m=n$.

$$
\sum_{j=1}^{n+1} E_{j}=0 \cdot G_{0}+\sum_{i=1}^{n} i G_{i}+E_{n+1}+0 \cdot E_{n+1}^{\prime}
$$

By Theorem 1, the value of the resolution of the identity of $\sum_{j=1}^{n+1} E_{j}$ at the point $i$, $1 \leq i \leq n+1$, is

$$
\begin{aligned}
& F_{i}=G_{i-1} E_{n+1}+G_{i} E_{n+1}^{\prime} \\
& =\sum_{1 \leq j_{1}<\cdots<j_{n-i+1} \leq n} \prod_{\substack{1 \leq K \leq n \\
K \neq j_{v}}} E_{K} E_{n+1} B_{j_{1}}^{\prime} \ldots E_{j_{n-i+1}}^{\prime}+ \\
& +\sum_{1 \leq j_{1}<\ldots<j_{n-i} \leq n} \prod_{\substack{1 \leq K \leq n \\
K \neq j_{v}}} E_{K} E_{j_{1}}^{\prime} \ldots E_{j_{n-i}}^{\prime} E_{n+1}^{\prime} \\
& =\sum_{1 \leq j_{1} \leq j_{2}<\ldots<j_{n+1-i} \leq n+1} \prod_{\substack{1 \leq K \leq n+1 \\
K \neq j_{v}}} E_{K} E_{j_{2}}^{\prime} \ldots E_{j_{n+1-i}}^{\prime} . \\
& F_{0}+\sum_{i=1}^{n+1} F_{i}=I, \\
& F_{0}=\prod_{i=1}^{n+1} F_{i}^{\prime} .
\end{aligned}
$$

Now
hence

## 4. Poles of the resolvents of the sum and product of two commuting operators

The operators discussed in this section are not assumed to be spectral. We shall say that $\lambda$ is a pole of an operator $T$ if $\lambda$ is a pole of the resolvent of $T$. The following theorem will be used.

Theorem A. If $\lambda$ is an isolated point of the spectrum of an operator $T$, then there exists a projection $E$ and a generalized nilpotent $N$ such that

$$
\begin{gathered}
E T=T E, \quad N T=T N, \quad N E=E N=N \\
T=(\lambda I+N) E+K \quad \text { with } \quad K=E^{\prime} K=K E^{\prime} \quad \text { and } \quad \lambda \notin \sigma(K) .
\end{gathered}
$$

The number $\lambda$ is a pole of order $n$ if and only if $N^{n}=0, N^{n-1} \neq 0$. In addition, if an operator $A$ commutes with $T$ then $A$ commutes with $E, N, K$.

See [4] Theorem VII.3.18. $E$ is given by

$$
E=\int_{c} R(\mu ; T) d \mu
$$

where $c$ is a circle around $\lambda$ which does not contain any other point of the spectrum of $T$.
S. r. foguel, Sums and products of commuting spectral operators

If $T=\sum_{i=1}^{m} T E_{i}$, where $E_{i} E_{j}=0 \quad i \neq j, E_{i}^{2}=E_{i}$ and $T E_{i}=E_{i} T$, then

$$
\sigma(T)=\bigcup_{i=1}^{n} \sigma\left(T \mid E_{i} \mathfrak{X}\right)
$$

and if $\lambda \notin \sigma(T)$,

$$
(\lambda I-T)^{-1}=\sum_{i=1}^{n} R_{i}(\lambda) E_{i}
$$

where $R_{i}(\lambda)$ is the inverse of $(\lambda I-T) E_{i}$ on the space $E_{i} \mathfrak{X}$.
Let $T_{1}$ and $T_{2}$ be two commuting operators. There exists an algebra $\mathfrak{a}$ of operators, containing $T_{1}$ and $T_{2}$ such that $\mathfrak{a}$ is a commutative algebra and if $U \in \mathfrak{a}$ and $U^{-1}$ exists then $U^{-1} \in \mathfrak{a}$. By the Gelfand theory [5] if $\sigma_{\mathfrak{a}}(U)$ denotes the spectrum of $U$ as an element of $a$ then $\sigma_{a}\left(T_{1}+T_{2}\right) \subset \sigma_{a}\left(T_{1}\right)+\sigma_{a}\left(T_{2}\right)$, but for each $U \in a, \sigma_{a}(U)=\sigma(U)$, hence $\sigma\left(T_{1}+T_{2}\right) \subset \sigma\left(T_{1}\right)+\sigma\left(T_{2}\right)$. If $\delta$ is an isolated point of $\sigma\left(T_{1}\right)+\sigma\left(T_{2}\right)$ then

$$
\sigma\left(T_{1}\right)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \cup \sigma_{1}, \quad \sigma\left(T_{2}\right)=\left\{\mu_{1}, \ldots, \mu_{n}\right\} \cup \sigma_{2}
$$

with

$$
\lambda_{i}+\mu_{i}=\delta \quad \mathbf{l} \leq i \leq n
$$

but

$$
\delta \notin\left(\sigma_{1}+\sigma\left(T_{2}\right)\right) \cup\left(\sigma_{2}+\sigma\left(T_{1}\right)\right) .
$$

Theorem 3. If $T_{1}$ and $T_{2}$ are two commuting operators, and $\delta$ is an isolated point of $\sigma\left(T_{1}\right)+\sigma\left(T_{2}\right)$, and $\lambda_{i}$ is a pole of $T_{1}$ of order $n_{i}, \mu_{i}$ is a pole of $T_{2}$ of order $m_{i}$, where $\left\{\lambda_{i}\right\},\left\{\mu_{i}\right\}, \sigma_{1}, \sigma_{2}$ are defined above, then $\delta$ is a pole of order not greater than max $\left[\left(m_{i}+n_{i}-1\right) 1 \leq i \leq n\right]$.

Proof. By repeated application of Theorem A we have
with

$$
\begin{gathered}
T_{1}=\sum_{i=1}^{n}\left(\lambda_{i} I+N_{i}\right) E_{i}+K_{1} \\
K_{1} \sum_{i=1}^{n} E_{i}=\sum_{i=1}^{n} E_{i} K_{1}=0, \quad E_{i}^{2}=E_{i}, \quad E_{i} E_{j}=0 \quad i \neq j \\
N_{i}^{n_{i}}=0 \quad \sigma\left(K_{1}\right)=\sigma_{1} \\
T_{2}=\sum_{i=1}^{n}\left(\mu_{i} I+M_{i}\right) F_{i}+K_{2}
\end{gathered}
$$

with

$$
\begin{gathered}
K_{2} \sum_{i=1}^{n} F_{i}=\sum_{i=1}^{n} F_{i} K_{2}=0, \quad F_{i}^{2}=F_{i}, \quad F_{i} F_{j}=0 \quad i \neq j, \\
M_{i}^{m} i=0, \quad \sigma\left(K_{2}\right)=\sigma_{2}
\end{gathered}
$$

The operators $E_{i}, F_{i}, M_{i}, N_{i}, K_{1}, K_{2}$ commute. Now

$$
\begin{equation*}
T_{1}+T_{2}=K_{1}+K_{2}+\left(\sum_{i=1}^{n}\left(\lambda_{i} I+N_{i}\right) E_{i}+\sum_{i=1}^{n}\left(\mu_{i} I+M_{i}\right) F_{i}\right) \tag{1}
\end{equation*}
$$

By Corollary 1 of Theorem 1

$$
\sum_{i=1}^{n} \lambda_{i} E_{i}+\sum_{i=1}^{n} \mu_{i} F_{i}=\delta \sum_{i=1}^{n} E_{i} F_{i}+\sum \delta_{i} A_{i}+\sum_{i=1}^{n} \lambda_{i} E_{i} F_{0}+\sum_{i=1}^{n} \mu_{i} F_{i} E_{0},
$$

where

$$
\delta_{i} \neq \delta, \quad A_{i}\left(\sum_{j=1}^{n} E_{j} F_{j}\right)=0, \quad A_{j}^{2}=A_{j}, \quad A_{j}\left(\sum_{i=1}^{n} E_{i}\right)\left(\sum_{i=1}^{n} F_{i}\right)=A_{j},
$$

and $E_{0}$ is $I-\sum_{i=1}^{n} E_{i}, F_{0}$ is $I-\sum_{i=1}^{n} F_{i}$.
Thus (1) takes the form

$$
\begin{equation*}
T_{1}+T_{2}=\delta \sum_{i=1}^{n} E_{i} F_{i}+\sum \delta_{i} A_{i}+\left(K_{1}+\sum_{i=1}^{n} \mu_{i} F_{i} E_{0}\right)+\left(K_{2}+\sum_{i=1}^{n} \lambda_{i} E_{i} F_{0}\right)+M . \tag{2}
\end{equation*}
$$

The operator $M$ is a nilpotent operator on the space

Let

$$
\begin{gathered}
\left(\sum_{i=1}^{n} E_{i}\right)\left(\sum_{i=1}^{n} F_{i}\right) \mathfrak{X} . \\
G_{1}=\sum_{i=1}^{n} E_{i}, \quad G_{2}=\sum_{i=1}^{n} F_{i}, \\
E_{0}+G_{1}=F_{0}+G_{2}=I, \quad E_{0} G_{1}=F_{0} G_{2}=0, \\
K_{1} E_{0}=K_{1}, \quad K_{2} F_{0}=K_{2} . \\
T=T_{1}+T_{2}, \\
T=T G_{1} G_{2}+T E_{0} G_{2}+T F_{0} G_{1}+T E_{0} F_{0}, \\
(\lambda I-T)^{-1}=\left((\lambda I-T) \mid G_{1} G_{2} \mathfrak{X}\right)^{-1} G_{1} G_{2}+\left((\lambda I-T) \mid E_{0} G_{2} \mathfrak{X}\right)^{-1} E_{0} G_{2}+ \\
+\left((\lambda I-T) \mid F_{0} G_{1} \mathfrak{X}\right)^{-1} F_{0} G_{1}+\left((\lambda I-T) \mid E_{0} F_{0} \mathfrak{X}\right)^{-1} E_{0} F_{0} .
\end{gathered}
$$

Let

On the space $E_{0} F_{0} \mathfrak{X}, T$ has the form

$$
\begin{gathered}
\left(K_{1}+K_{2}\right) E_{0} F_{0}^{\prime}, \\
\delta \notin \sigma_{1}+\sigma_{2}, \text { but } \sigma\left(K_{1}+K_{2}\right) \subset \sigma\left(K_{1}\right)+\sigma\left(K_{2}\right)=\sigma_{1}+\sigma_{2} .
\end{gathered}
$$

Thus on $E_{0} F_{0} \mathfrak{X},(\lambda I-T)^{-1}$ is regular at the point $\delta$.
S. r. foguel, Sums and products of commuting spectral operators

On the space $E_{0} G_{2} \mathfrak{X}, T$ has the form

Hence

$$
T \mid E_{0} G_{2} \mathfrak{X}=K_{1} G_{2}+\sum_{i=1}^{n} \mu_{i} F_{i} E_{0}=\sum_{i=1}^{n}\left(K_{1}+\mu_{i} I\right) F_{i} E_{0}
$$

Hence

$$
\begin{aligned}
\sigma\left(T \mid E_{0} G_{2} \mathfrak{X}\right) & =\bigcup_{i=1}^{n} \sigma\left(K_{1}+\mu_{i} I \mid E_{0} F_{i} \mathfrak{X}\right) \subset \bigcup_{i=1}^{n} \sigma\left(K_{1}+\mu_{i} I\right) \\
& =\sigma_{1}+\left\{\mu_{1} \ldots \mu_{n}\right\}
\end{aligned}
$$

Thus

$$
\delta \notin \sigma\left(T \mid E_{0} G_{2} \mathfrak{X}\right)
$$

By the same argument $\delta \notin \sigma\left(T \mid F_{0} G_{1} \mathfrak{X}\right)$. The number $\delta$ is a regular point of $T$ restricted to $G_{1} G_{2} \mathfrak{X}$ if and only if $\sum_{i=1}^{n} E_{i} F_{i}=0$, in this case $\delta$ is a regular point of $T$. The nilpotent operator associated with the point $\delta$ is $\sum_{i=1}^{n}\left(N_{i}+M_{i}\right) E_{i} F_{i}$ by (1) and (2). Let $k=\max \left[\left(m_{i}+n_{i}-1\right) 1 \leq i \leq n\right]$

$$
\left(\sum_{i=1}^{n}\left(N_{i}+M_{i}\right) E_{i} F_{i}\right)^{k}=\sum_{i=1}^{n}\left(N_{i}+M_{i}\right)^{k} E_{i} F_{i}=0
$$

Hence $\delta$ is a pole of $T \mid G_{1} G_{2} \mathfrak{X}$ of order at most $k$, but by the preceding discussion $\delta$ is a pole of $T$ of the same order.

Using Theorem 2 and a similar proof we arrive at the following theorem.
Theorem 4. If $T_{1}$ and $T_{2}$ are two commuting operators and

$$
\begin{gathered}
\sigma\left(T_{1}\right)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \cup \sigma_{1}, \quad \sigma\left(T_{2}\right)=\left\{\mu_{1}, \ldots, \mu_{n}\right\} \cup \sigma_{2}, \\
0 \neq \delta=\lambda_{i} \mu_{i}, \quad 1 \leq i \leq n, \quad \delta \notin\left(\sigma_{1} \cdot \sigma\left(T_{2}\right)\right) \cup\left(\sigma_{2} \cdot \sigma\left(T_{1}\right)\right)
\end{gathered}
$$

(these conditions are equivalent to: $0 \neq \delta$ is an isolated point of $\sigma\left(T_{1}\right) \cdot \sigma\left(T_{2}\right)$ ), and if $\lambda_{i}$ is a pole of order $n_{i}$ of $T_{1}, \mu_{i}$ is a pole of order $m_{i}$ of $T_{2}$, then $\delta$ is a pole of $T_{1} T_{2}$ of order at most

$$
\max \left[\left(m_{i}+n_{i}-1\right), 1 \leq i \leq n\right]
$$

## 5. Application

Let $C$ be a linear operator in the space $\mathscr{X}$. Define the operators $T_{1}$ and $T_{2}$ on the space $B(X)$ of bounded linear operators in $\mathfrak{X}$ by

$$
T_{1}(A)=C A, \quad T_{2}(A)=A C, \quad A \in B(X)
$$

In this section we study the relations between the poles of $C$ and those of $T=T_{1}-T_{2}$. (This problem was raised by Professor E. Hille.) It is easy to see from the proof of Theorem 1 in [5] that $\sigma(C)=\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)$. By Theorem A $\lambda$ is a pole of $C$ if and only if it is a pole of $T_{1}$ and $T_{2}$ of the same order.

Theorem 5. Let $\sigma(C)$ be decomposed

$$
\begin{aligned}
& \sigma(C)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \cup \sigma_{1} \\
& \sigma(C)=\left\{\mu_{1}, \ldots, \mu_{n}\right\} \cup \sigma_{2},
\end{aligned}
$$

with $\lambda_{i}-\mu_{i}=\delta \mathbf{l} \leq i \leq n$, and $\delta \notin\left(\sigma_{1}-\sigma(C)\right) \cup\left(\sigma(C)-\sigma_{2}\right)$, and $\lambda_{i}$, $\mu_{i}$, are poles of order $n_{i}, m_{i}$ respectively of $C$, then $\delta$ is a pole of the operator $T$ on the space $B(X)$ defined by

$$
T(A)=C A-A C, \quad A \in B(\mathfrak{X})
$$

of order $\max \left[\left(m_{i}+n_{i}-1\right), \quad 1 \leq i \leq n\right]$.
Proof. In order to use Theorem 3 we note
1.

$$
T_{1} T_{2}(A)=T_{2} T_{1}(A)=C A C, A \in B(\mathfrak{X})
$$

2. If $E$ and $F$ are projections on $\mathfrak{X}$, then the operators $\bar{E}, \bar{E}(A)=E A$, and $\bar{F}, \bar{F}(A)=A \bar{F}, A \in B(X)$, are two commuting projections.
3. If $N$ is a nilpotent operator on $\mathfrak{X}$ of order $n$ then $\bar{N}, \bar{N}(A)=N A, A \in B(\mathfrak{X})$, is a nilpotent operator on $B(X)$ of order $n$.

To show that $\delta$ is a singular point of $T$ we prove the following lemma.
Lemma 2. Let $V_{1}$ and $V_{2}$ be two non-zero operators on $\mathfrak{X}$, then the operator $V$ on $B(X)$ defined by

$$
V(A)=V_{1} A V_{2}, \quad A \in B(\mathfrak{X})
$$

is different from zero.
Proof. Let us choose $x \in \mathscr{X} y \in \mathfrak{X}$ such that $V_{2} x \neq 0, V_{1} y \neq 0$ and $x^{*} \in \mathfrak{X}^{*}$ such that $x^{*}\left(V_{2} x\right) \neq 0$. Define $A$ by $z \in \mathfrak{X}, A z=x^{*}(z) \cdot y$. Then

$$
\left(V_{1} A V_{2}\right)(x)=x^{*}\left(V_{2} x\right) \cdot V_{1} y \neq 0
$$

Now to conclude the proof of Theorem 5 let $E_{i}, N_{i}$ be the projections and nilpotents respectively corresponding to $\lambda_{i}$, and $F_{i}, M_{i}$ the ones associated with $\mu_{i}$. By theorem 3 the projection associated with $\delta$ with respect to $T$ is $G$

$$
G(A)=\sum_{i=1}^{n} E_{i} A F_{i} \quad A \in B(\mathfrak{X})
$$

The corresponding nilpotent is given by

$$
M(A)=\sum_{i=1}^{n}\left(N_{i}\left(E_{i} A F_{i}\right)-\left(E_{1} A F_{i}\right) M_{i}\right)
$$

$E_{j} G(A) F_{j}=E_{j} A F_{f} \neq 0$ by Lemma 2, thus $G \neq 0$ and $\delta$ is a singular point of $T$. If $l=\max \left[\left(m_{i}+n_{i}-2\right), \quad 1 \leq i \leq n\right]=m_{j_{0}}+n_{j_{0}}-2$, then
S. r. foguel, Sums and products of commuting spectral operators

$$
E_{j_{0}} M^{l}(A) F_{j_{0}}=\sum_{v=0}^{l} \alpha_{v} N_{j_{0}}^{v} E_{j_{0}} A F_{j_{0}} M_{j_{0}}^{l-v}
$$

where $\alpha_{v}$ are non zero numbers, hence

$$
E_{j_{0}} M^{l}(A) F_{j_{0}}=\alpha_{n_{j_{0}-1}} N_{j_{0}}^{n_{j_{0}}-1} A M_{j_{0}}^{m_{j_{0}-1}} \neq 0
$$

if $A$ is properly chosen.

## 6. Sum and product of two commuting scalar operators

Throughout this section we assume that the space $\mathfrak{X}$ is weakly complete.
Theorem 6. Let $\left\{S_{n}\right\}$ be a sequence of commuting scalar operators which converge uniformly to the operator S. If the Boolean algebra of projections, generated by the resolutions of the identity of the operators $S_{n}$, is bounded, then $S$ is a scalar operator, and if $E_{n}, E$, are the spectral measures of $S_{n}$ and $S$ respectively, then for each Borel set $\alpha$
(1) If for some $x \in \mathfrak{X}, E$ (boundary $\alpha) x=0$, then $E(\alpha) x=\lim E_{n}(\alpha) x$.
(2) If for some $x \in \mathfrak{X}$ and $x^{*} \in \mathfrak{X}^{*}, x^{*} E$ (boundary $\left.\alpha\right) x=0$, then $x^{*} E(\alpha) x=$ $\lim x^{*} E_{n}(\alpha) x$.

Proof. By [4], Theorems XVII.2.5 and XVII.2.1, there exists a set function $F(\cdot)$ defined on a compact set $\Lambda$ such that for each Borel set $\alpha$ in $\Lambda, F(\alpha)$ is a projection satisfying conditions $1,2,3,4$ of the Introduction (where the complex plane should be replaced by $\Lambda$ ), and for every $T$ in the uniformly closed algebra generated by the resolutions of the identity of $S_{n}$, there exists a continuous function $f$ defined on $\Lambda$ such that

$$
T=\int_{\Lambda} f(\lambda) F(d \lambda)
$$

and this correspondence is an isomorphic homeomorphism if the norm of $f$ is taken to be

$$
|f|=\max _{\lambda \in \Lambda}|f(\lambda)|
$$

Let $f_{n}$ and $f$ correspond to $S_{n}$ and $S$. By assumption $S_{n} \rightarrow S$, hence $f_{n}$ tends to $f$ uniformly.

$$
S_{n}=\int_{\Lambda} f_{n}(\gamma) F(d \gamma), \quad S=\int_{\Lambda} f(\gamma) F(d \gamma)
$$

hence

$$
E_{n}(\alpha)=F\left\{\gamma \mid f_{n}(\gamma) \in \alpha\right\}, \quad E(\alpha)=F\{\gamma \mid f(\gamma) \in \alpha\}
$$

for every Borel set $\alpha$ in the complex plane. Let $A_{n}=\left\{\gamma \mid f_{n}(\gamma) \in \alpha\right\}$ and $A=$ $\{\gamma \mid f(\gamma) \in \alpha\}$, then

$$
E_{n}(\alpha) x=\int_{\Lambda} \chi_{A_{n}}(\gamma) F(d \gamma) x, \quad E(\alpha) x=\int_{\Lambda} \chi_{A}(\gamma) F(d \gamma) x
$$

where $\chi_{B}$ denotes the characteristic function of $B$. In order to prove (1) it is enough to show that $\chi_{A_{n}}(\gamma)$ converges almost everywhere, with respect to the measure $F(\cdot) x$, to $\chi_{A}(\gamma)$. (See [4], Theorem IV.10.10.) If $f(\gamma) \in \alpha^{0}$ then for $n>n_{0} f_{n}(\gamma) \in \alpha^{0}$. If $f(\gamma) \in(\Lambda-\alpha)^{0}$ then for $n>n_{1} f_{n}(\gamma) \in(\Lambda-\alpha)^{0}$. By $\alpha^{0}$ we mean the interior of $\alpha$. Let $F\{y \mid f(\gamma) \in$ boundary $\alpha\} x=0$, then because of the multiplicity property of $F$

$$
\begin{gathered}
\sup \left\{\left|\sum_{i=1}^{n} \varepsilon_{i} F\left(B_{i}\right) x\right|, \quad B_{i} \cap B_{j}=\phi \quad i \neq j,\right. \\
\left.B_{i} \subset\{\gamma \mid f(\gamma) \in \text { boundary } \alpha\}, \quad \varepsilon_{i} \text { complex number with }\left|\varepsilon_{i}\right| \leq 1\right\} \quad=0 .
\end{gathered}
$$

Thus $E_{n}(\alpha) x \rightarrow E(\alpha) x$ whenever

$$
F\{\gamma \mid f(\gamma) \in \text { boundary } \alpha\} x=0
$$

but

$$
F\{\gamma \mid f(\gamma) \in \text { boundary } \alpha\}=E\{\text { boundary } \alpha\}
$$

and so (1) is proved. (2) is proved in the same way.
Remark. This is a perturbation theorem similar to Rellich Theorem [6] and to Theorem 2.6 of [2], p. 402. By [1], p. 351, for each $x \in \mathfrak{X}$ there exists a functional $x^{*}$ with the properties

1. $x^{*} E(\alpha) x \geq 0$ for any Borel set $\alpha$.
2. If $x^{*} E(\alpha) x=0$, then $E(\alpha) x=0$.

Thus $E(\alpha) x=0$ if and only if $x^{*} E(\alpha) x=0$. Now for any collection of Borel sets $\left\{\alpha_{t}\right\}$ with $\alpha_{t_{1}} \cap \alpha_{t_{2}}=\phi$ whenever $t_{1} \neq t_{2}$, only a countable number of terms in the set $\left\{x^{*} E\left(\alpha_{t}\right) x\right\}$ are different from zero, because of countable additivity. This shows that there are enough Borel sets $\alpha$ with $E$ (boundary $\alpha$ ) $x=0$ to compute the value of the Riemann Integral $\int g(\lambda) E(d \lambda) x$ for every continuous function $g$.

Theorem 7. Let $S_{1}$ and $S_{2}$ be two commuting scalar operators with resolutions of the identity $E(\cdot)$ and $F(\cdot)$ respectively. If the Boolean algebra of projections generated by $E(\alpha), F(\beta)$ is bounded then $T_{1}=S_{1}+S_{2}$ and $T_{2}=S_{1} S_{2}$ are scalar operators whose resolutions of the identity $G_{1}(\cdot)$ and $G_{2}(\cdot)$ respectively, are

$$
\begin{aligned}
& G_{1}(\alpha) x=\int E(\alpha-\mu) F(d \mu) x \quad \text { if } G_{1}(\text { boundary } \alpha) x=0, \\
& G_{2}(\alpha) x=\int E\left(\frac{\alpha}{\mu}\right) F(d \mu) x \quad \text { if } \quad G_{2}(\text { boundary } \alpha) x=0
\end{aligned}
$$

where the integrals exist in the sense of Riemann, provided that in the sums $\sum_{i=1}^{n} E\left(\frac{\alpha}{\mu_{i}}\right) F\left(\Delta_{i}\right) x$ approximating $G_{2}(\alpha) x$ we take $\mu_{i} \neq 0$. The integrals are evaluated over any rectangle containing $\sigma\left(S_{2}\right)$.
S. r. foguel, Sums and products of commuting spectral operators

Proof. Let $K$ be a rectangle containing $\sigma\left(S_{2}\right)$ and let $\left\{\pi_{n}\right\}$ be a sequence of partitions of $K$.

$$
\begin{gathered}
\pi_{n}=\left\{\Delta_{1}^{n}, \ldots, \Delta_{n}^{n}\right\}, \quad \Delta_{i}^{n} \cap \Delta_{j}^{n}=\phi \quad i \neq j, \\
\bigcup_{i=1}^{n} \Delta_{i}^{n}=K, \quad \max \left[\operatorname{diam}\left(\Delta_{i}^{n}\right), 1 \leq i \leq n\right] \rightarrow 0 .
\end{gathered}
$$

Let

$$
\mu_{i}^{n} \in \Delta_{i}^{n}, \quad \mu_{i}^{n} \neq 0
$$

$$
S_{1}+S_{2}=\lim \left(S_{1}+\sum_{i=1}^{n} F\left(\Delta_{i}^{n}\right) \mu_{i}^{n}\right)=\lim R_{n}
$$

By Theorem 1, $R_{n}$ is a scalar operator whose resolution of the identity $G_{1}^{n}$, is

$$
G_{1}^{n}(\alpha)=\sum_{i=1}^{n} E\left(\alpha-\mu_{i}^{n}\right) F\left(\Delta_{i}^{n}\right)
$$

By Theorem 6, $G_{1}^{n}(\alpha) x \rightarrow G_{1}(\alpha) x$ if

$$
G_{1}(\text { boundary } \alpha) x=0
$$

Similarly $S_{1} S_{2}=\lim U_{n}$, and the resolution of the identity of $U_{n}, G_{2}^{n}$ is by Theorem 2

$$
G_{2}^{n}(\alpha)=\sum_{i=1}^{n} E\left(\frac{\alpha}{\mu_{i}^{n}}\right) F\left(\Delta_{i}^{n}\right) .
$$

Thus if $G_{2}$ (boundary $\left.\alpha\right) x=0$ then $G_{2}(\alpha) x=\int E\left(\frac{\alpha}{\mu}\right) F(d \mu) x$.
Remark. Let $S$ be a scalar operator with resolution of the identity $E(\cdot)$, and let the set function $E(\cdot)$ be chosen in such a way that for every point $\lambda_{0}, E\left(\left(\lambda_{0}\right)\right)=0$. Let $S_{1}=I+S$ and $S_{2}=I-S$ then $S_{1}+S_{2}=2 I$ the spectral measure of the operator $2 I$ is concentrated at the point 2 . The resolution of the identity of $S_{1}$ is given by

$$
E_{1}(\alpha)=E(\alpha-1) \quad \text { for any Borel set } \alpha
$$

The resolution of the identity of $S_{2}$ is

$$
E_{2}(\alpha)=E(1-\alpha) \quad \text { for any Borel set } \alpha
$$

The Boolean algebra of projections generated by $E_{1}, E_{2}$ is bounded, but $E_{1}\left(\left(\lambda_{0}\right)\right)=0$ for every point $\lambda_{0}$, hence

$$
\int E_{1}((2-\mu)) E_{2}(d \mu)=0 \neq I .
$$

Yale University.

## REFERENCES

1. Bade, W. G., On Boolean algebras of projections and algebras of operators. Trans. Amer. Math. Soc. 80 (1955), 345-360.
2.     - Weak and strong limits of spectral operators. Pacific J. Math. 4 (1954), 393-413.
3. Dunford, N., Spectral operators. Pacific J. Math. 4 (1954), 321-354.
4. Dunford, N., and Schwartz, J., Linear operators, fortheoming.
5. Gelfand, I. M., Normierte Ringe. Math. Sbornik. N. S. 9 (51), 3-24 (1941).
6. Rellich, F., Störungstheorie der Spektralzerlegung II. Math. Ann. 113 (1936), 677-685.

[^0]:    ${ }^{1}$ This paper is a part of a dissertation presented for the degree of Doctor of Philosophy in Yale University. The author wishes to express his thanks to Professor N. Dunford for his guidance and kind encouragement.

