Communicated 8 May 1957 by EINAR HILLE and OTTO FROSTMAN

Sums and products of commuting spectral operators¹

By S. R. FOGUEL

1. Introduction

Given two spectral operators T_1 and T_2 , on a complex Banach space \mathfrak{X} , it is interesting to know if $T_1 + T_2$ and T_1T_2 are spectral operators too. This problem is treated in [3] and [4]. It is proved there that if the space \mathfrak{X} is weakly complete, and the operators T_1 and T_2 commute and the Boolean algebra of projections generated by the resolutions of the identity of T_1 and T_2 is bounded, then both $T_1 + T_2$ and T_1T_2 are spectral operators. Moreover, if $T_1 = S_1 + N_1$, $T_2 = S_2 + N_2$, where S_1 and S_2 are scalar operators and N_1 , N_2 are generalized nilpotents and S_1 , N_1 , S_2 , N_2 commute, then $S_1 + S_2$ and S_1S_2 are scalar operators and $N_1 + N_2$, $S_1N_2 + S_2N_1 + N_1N_2$ are generalized nilpotents. The main problem in this paper will be to determine the resolutions of the identity of $T_1 + T_2$ and T_1T_2 . By the above remark it is enough to consider the case where T_1 and T_2 are scalar operators. A second problem treated here is to find the poles of the resolvents of $T_1 + T_2$ and T_1T_2 . In this part we do not assume that T_1 and T_2 are spectral operators.

2. Notation

We use here the notation and definitions of [3]. Let \mathfrak{X} be a complex Banach space. A spectral measure is a set function $E(\cdot)$ defined on Borel sets in the complex plane whose values are projections on \mathfrak{X} which satisfy:

- 1. For any two Borel sets σ and δ , $E(\sigma) E(\delta) = E(\sigma \cap \delta)$.
- 2. Let ϕ be the void set and P the complex plane, then

$$E(\phi) = 0$$
 and $E(P) = I$.

- 3. There exists a constant M such that $|E(\sigma)| \leq M$, for every Borel set σ .
- 4. The vector valued set function $E(\cdot)x$ is countably additive for each $x \in \mathcal{X}$.

T is a spectral operator whose resolution of the identity is the spectral measure $E(\cdot)$ if

¹ This paper is a part of a dissertation presented for the degree of Doctor of Philosophy in Yale University. The author wishes to express his thanks to Professor N. Dunford for his guidance and kind encouragement.

- (a) For any Borel set σ , $T E(\sigma) = E(\sigma) T$.
- (b) If $T \mid E(\alpha) \mathfrak{X}$ is the restriction of T to the subspace $E(\alpha) \mathfrak{X}$, then

 $\sigma\left(T\,\middle|\, E\left(\alpha\right)\mathfrak{X}\right)\subset\bar{\alpha},$

where $\sigma(A)$ denotes the spectrum of A.

If T is a spectral operator the operator $S = \int \lambda E(d\lambda)$ is its scalar part and N = T - S its radical. The operator N is a generalized nilpotent (see [3], p. 333). The operators T, S, N, $E(\alpha)$ commute (α a Borel set). The operator T is called a scalar operator if T = S.

3. Sums and products of projections

In this section we shall find the resolutions of the identity of the sum and product of two scalar operators when one of them has a finite spectrum.

Lemma 1. If S is a scalar operator whose resolution of the identity is $E(\cdot)$, and F a projection commuting with S, then $S + \mu F$ is a scalar operator whose resolution of the identity is given by the projection valued set function $G(\cdot)$

$$G(\alpha) = E(\alpha - \mu) F + E(\alpha) F',$$

where F' is the complement of F, namely I - F, and α is a Borel set.

Proof. Let α and β be Borel sets.

$$G(\alpha) G(\beta) = (E(\alpha - \mu) F + E(\alpha) F') (E(\beta - \mu) F + E(\beta) F')$$

= $E(\alpha \cap \beta - \mu) F + E(\alpha \cap \beta) F'$
= $G(\alpha \cap \beta)$

because E and F commute. (See [3], p. 329.)

$$G(\phi) = 0$$
 and $G(P) = I \cdot F + I F' = I$.

$$\begin{split} |G(\alpha)| &= |E(\alpha - \mu) F + E(\alpha) F'| \\ &\leq |E(\alpha - \mu)| |F| + |E(\alpha)|F'| \\ &\leq \sup \{|E(\alpha)| |\alpha \text{ a Borel set}\} (|F| + |F'|). \end{split}$$

It is clear that $G(\alpha)x$ is countably additive. Now

$$\int \lambda E (d \lambda) + \mu F = \int (\lambda + \mu) E (d \lambda) F + \int \lambda E (d \lambda) F'$$
$$= \int \lambda [E (d \lambda - \mu) F + E (d \lambda) F']$$
$$= \int \lambda G (d \lambda).$$

 $\mathbf{450}$

Theorem 1. Let $T = S + \sum_{i=1}^{n} \mu_i F_i$, where S is a scalar operator whose resolution of the identity is $E(\cdot)$ and

$$F_i S = S F_i,$$
 $\sum_{i=1}^n F_i = I,$ $F_i F_j = 0$ $i = j,$ $F_i^2 = F_i,$

then T is a scalar operator whose resolution of the identity G is given by

$$G(\alpha) = \sum_{i=1}^{n} E(\alpha - \mu_i) F_i$$

for any Borel set a.

Proof. By Lemma 1 the theorem holds for m = 1. Let us assume its validity for m = n - 1. On the space $Y = \sum_{i=1}^{n-1} F_i \mathcal{X}$ by assumption

$$S + \sum_{i=1}^{n-1} \mu_i F_i = \int \lambda G_1 (d \lambda),$$
$$G_1 (\alpha) = \sum_{i=1}^{n-1} E (\alpha - \mu_i) F_i.$$

Thus for every $x \in \mathfrak{X}$

$$\begin{pmatrix} S + \sum_{i=1}^{n-1} \mu_i F_i \end{pmatrix} x = \left(S + \sum_{i=1}^{n-1} \mu_i F_i \right) \sum_{i=1}^{n-1} F_i x + S F_n x = \int \lambda G_1 (d \lambda) \left(\sum_{i=1}^{n-1} F_i x \right) + \int \lambda E (d \lambda) F_n x = \int \lambda G_2 (d \lambda) x, G_2 (\alpha) x = \left(\sum_{i=1}^{n-1} E (\alpha - \mu_i) F_i \right) \sum_{i=1}^{n-1} F_i x + E (\alpha) F_n x$$

where

It is easy to verify that
$$G_2$$
 is a spectral measure. Using Lemma 1 again

 $=\sum_{i=1}^{n-1}E\left(\alpha-\mu_{i}\right)F_{i}x+E\left(\alpha\right)F_{n}x.$

$$\left(S+\sum_{i=1}^{n-1}\mu_iF_i\right)+\mu_nF_n=\int\lambda G(d\lambda),$$

33*

where

$$G(\alpha) = G_2(\alpha - \mu_n) F_n + G_2(\alpha) F'_n$$
$$= E(\alpha - \mu_n) F_n + \sum_{i=1}^{n-1} E(\alpha - \mu_i) F_i$$
$$= \sum_{i=1}^n E(\alpha - \mu_i) F_i.$$

By a similar proof one can derive the following theorem.

Theorem 2. Let $T = \left(S \cdot \sum_{i=1}^{n} \mu_i F_i\right)$, where S and F_i satisfy the conditions of Theorem 1 and $\mu_i \neq 0$, then T is a scalar operator whose resolution of the identity G is given by

$$G(\alpha) = \sum_{i=1}^{n} E\left(\frac{\alpha}{\mu_i}\right) F_i.$$

The restriction $\mu_i \neq 0$ is not essential and is introduced here to simplify notation.

Corollary 1. Let S_1 and S_2 be two commuting scalar operators given by

$$S_1 = \sum_{i=1}^n \lambda_i E_i, \qquad S_2 = \sum_{i=1}^m \mu_i F_i, \qquad \sum_{i=1}^n E_i = I = \sum_{i=1}^m F_i,$$

then the spectrum of $S_1 + S_2$ is contained in the set $\{\lambda_i + \mu_j \mid 1 \le i \le n, 1 \le j \le m\}$ and the value of the resolution of the identity of $S_1 + S_2$ at the point δ is equal to $\sum_{\lambda_i + \mu_j = \delta} E_i F_j$. Also, the spectrum of $S_1 S_2$ is contained in the set $\{\lambda_i \mu_j \mid 1 \le i \le n, 1 \le j \le m\}$ and the value of the resolution of the identity of $S_1 S_2$ at the point δ is equal to $\sum_{\lambda_i \mu_i = \delta} E_i F_j$.

By Lemma 1 if E_1 and E_2 are two commuting projections then

$$E_1 + E_2 = 2 E_1 E_2 + (E_1 E_2' + E_2 E_1').$$

This can be generalized as follows.

Corollary 2. Let $E_i \ 1 \le i \le n$ be *n* commuting projections then $\sum_{i=1}^{n} E_i$ is a scalar operator whose spectrum is contained in the set $\{0, 1, 2, ..., n\}$ and at the point $i \ 1 \le i \le n$ the value of the spectral measure is

$$G_{i} = \sum_{1 \leq j_{1} < j_{2} < \cdots < j_{n-i} \leq n} \prod_{\substack{1 \leq K \leq n \\ K \neq j_{p}}} E_{K} E'_{j_{1}} \cdots E'_{j_{n-i}}$$
$$G_{0} = \prod_{i=1}^{n} G'_{i}.$$

and

 $\mathbf{452}$

Proof. Let us prove by induction. For m=2 the equation holds. Assume that the theorem is true for m=n.

$$\sum_{j=1}^{n+1} E_j = 0 \cdot G_0 + \sum_{i=1}^n i G_i + E_{n+1} + 0 \cdot E'_{n+1}.$$

By Theorem 1, the value of the resolution of the identity of $\sum_{j=1}^{n+1} E_j$ at the point *i*, $1 \le i \le n+1$, is

$$F_{i} = G_{i-1} E_{n+1} + G_{i} E'_{n+1}$$

$$= \sum_{1 \le j_{i} < \dots < j_{n-i+1} \le n} \prod_{\substack{1 \le K \le n \\ K \ne j_{y}}} E_{K} E_{n+1} E'_{j_{1}} \dots E'_{j_{n-i+1}} + \sum_{\substack{1 \le j_{i} < \dots < j_{n-i} \le n}} \prod_{\substack{1 \le K \le n \\ K \ne j_{y}}} E_{K} E'_{j_{1}} \dots E'_{j_{n-i}} E'_{n+1}}$$

$$= \sum_{1 \le j_{i} \le j_{i} < \dots < j_{n+1-i} \le n+1} \prod_{\substack{1 \le K \le n+1 \\ K \ne j_{y}}} E_{K} E'_{j_{1}} \dots E'_{j_{n+1-i}}.$$

$$F_{0} + \sum_{i=1}^{n+1} F_{i} = I,$$

Now

$$F_0 = \prod_{i=1}^{n+1} F'_i.$$

hence

4. Poles of the resolvents of the sum and product of two commuting operators

The operators discussed in this section are not assumed to be spectral. We shall say that λ is a pole of an operator T if λ is a pole of the resolvent of T. The following theorem will be used.

Theorem A. If λ is an isolated point of the spectrum of an operator T, then there exists a projection E and a generalized nilpotent N such that

$$E\ T = T\ E,$$
 $N\ T = T\ N,$ $N\ E = E\ N = N$
 $T = (\lambda I + N)\ E + K$ with $K = E'\ K = K\ E'$ and $\lambda \notin \sigma(K).$

The number λ is a pole of order n if and only if $N^n = 0$, $N^{n-1} \neq 0$. In addition, if an operator A commutes with T then A commutes with E, N, K.

See [4] Theorem VII.3.18. E is given by

$$E=\int\limits_{c}R\left(\mu\,;\,T\right)d\,\mu,$$

where c is a circle around λ which does not contain any other point of the spectrum of T.

If
$$T = \sum_{i=1}^{m} T E_i$$
, where $E_i E_j = 0$ $i \neq j$, $E_i^2 = E_i$ and $T E_i = E_i T$, then

$$\sigma(T) = \bigcup_{i=1}^{n} \sigma(T \mid E_i \mathcal{X}),$$

and if $\lambda \notin \sigma(T)$,

$$(\lambda I - T)^{-1} = \sum_{i=1}^{n} R_i(\lambda) E_i,$$

where $R_i(\lambda)$ is the inverse of $(\lambda I - T) E_i$ on the space $E_i \mathfrak{X}$.

Let T_1 and T_2 be two commuting operators. There exists an algebra \mathfrak{a} of operators, containing T_1 and T_2 such that \mathfrak{a} is a commutative algebra and if $U \in \mathfrak{a}$ and U^{-1} exists then $U^{-1} \in \mathfrak{a}$. By the Gelfand theory [5] if $\sigma_\mathfrak{a}(U)$ denotes the spectrum of U as an element of \mathfrak{a} then $\sigma_\mathfrak{a}(T_1 + T_2) \subset \sigma_\mathfrak{a}(T_1) + \sigma_\mathfrak{a}(T_2)$, but for each $U \in \mathfrak{a}$, $\sigma_\mathfrak{a}(U) = \sigma(U)$, hence $\sigma(T_1 + T_2) \subset \sigma(T_1) + \sigma(T_2)$. If δ is an isolated point of $\sigma(T_1) + \sigma(T_2)$ then

$$\sigma(T_1) = \{\lambda_1, \ldots, \lambda_n\} \cup \sigma_1, \qquad \sigma(T_2) = \{\mu_1, \ldots, \mu_n\} \cup \sigma_2$$
$$\lambda_i + \mu_i = \delta \ 1 \le i \le n$$

 \mathbf{but}

with

$$\delta \notin (\sigma_1 + \sigma(T_2)) \cup (\sigma_2 + \sigma(T_1)).$$

Theorem 3. If T_1 and T_2 are two commuting operators, and δ is an isolated point of $\sigma(T_1) + \sigma(T_2)$, and λ_i is a pole of T_1 of order n_i , μ_i is a pole of T_2 of order m_i , where $\{\lambda_i\}$, $\{\mu_i\}$, σ_1 , σ_2 are defined above, then δ is a pole of order not greater than max $[(m_i + n_i - 1) \ 1 \le i \le n]$.

Proof. By repeated application of Theorem A we have

$$T_{1} = \sum_{i=1}^{n} (\lambda_{i}I + N_{i}) E_{i} + K_{1}$$

$$K_{1} \sum_{i=1}^{n} E_{i} = \sum_{i=1}^{n} E_{i}K_{1} = 0, \qquad E_{i}^{2} = E_{i}, \qquad E_{i}E_{j} = 0 \quad i \neq j,$$

$$N_{i}^{n}i = 0 \quad \sigma(K_{1}) = \sigma_{1},$$

$$T_{2} = \sum_{i=1}^{n} (\mu_{i}I + M_{i}) F_{i} + K_{2}$$

with

with

$$K_{2} \sum_{i=1}^{n} F_{i} = \sum_{i=1}^{n} F_{i} K_{2} = 0, \qquad F_{i}^{2} = F_{i}, \qquad F_{i} F_{j} = 0 \quad i \neq j,$$
$$M_{i}^{m} i = 0, \qquad \sigma(K_{2}) = \sigma_{2}.$$

 $\mathbf{454}$

The operators E_i , F_i , M_i , N_i , K_1 , K_2 commute. Now

$$T_1 + T_2 = K_1 + K_2 + \left(\sum_{i=1}^n (\lambda_i I + N_i) E_i + \sum_{i=1}^n (\mu_i I + M_i) F_i\right).$$
(1)

By Corollary 1 of Theorem 1

$$\sum_{i=1}^{n} \lambda_{i} E_{i} + \sum_{i=1}^{n} \mu_{i} F_{i} = \delta \sum_{i=1}^{n} E_{i} F_{i} + \sum \delta_{i} A_{i} + \sum_{i=1}^{n} \lambda_{i} E_{i} F_{0} + \sum_{i=1}^{n} \mu_{i} F_{i} E_{0},$$

where

and

$$\begin{split} \delta_i &= \delta, \qquad A_i \left(\sum_{j=1}^n E_j F_j \right) = 0, \qquad A_j^2 = A_j, \qquad A_j \left(\sum_{i=1}^n E_i \right) \left(\sum_{i=1}^n F_i \right) = A_j, \\ E_0 \text{ is } I - \sum_{i=1}^n E_i, \ F_0 \text{ is } I - \sum_{i=1}^n F_i. \end{split}$$

Thus (1) takes the form

$$T_{1} + T_{2} = \delta \sum_{i=1}^{n} E_{i} F_{i} + \sum \delta_{i} A_{i} + \left(K_{1} + \sum_{i=1}^{n} \mu_{i} F_{i} E_{0} \right) + \left(K_{2} + \sum_{i=1}^{n} \lambda_{i} E_{i} F_{0} \right) + M.$$
 (2)

The operator M is a nilpotent operator on the space

$$\left(\sum_{i=1}^{n} E_{i}\right)\left(\sum_{i=1}^{n} F_{i}\right)\mathcal{X}.$$

$$G_{1} = \sum_{i=1}^{n} E_{i}, \qquad G_{2} = \sum_{i=1}^{n} F_{i},$$

$$E_{0} + G_{1} = F_{0} + G_{2} = I, \qquad E_{0} G_{1} = F_{0} G_{2} = 0,$$

$$K_{1} E_{0} = K_{1}, \qquad K_{2} F_{0} = K_{2}.$$

$$T = T_{1} + T_{2},$$

Let

Let

$$\begin{split} T &= T \, G_1 \, G_2 + T \, E_0 \, G_2 + T \, F_0 \, G_1 + T \, E_0 \, F_0, \\ (\lambda I - T)^{-1} &= ((\lambda I - T) \mid G_1 \, G_2 \, \mathfrak{X})^{-1} \, G_1 \, G_2 + ((\lambda I - T) \mid E_0 \, G_2 \, \mathfrak{X})^{-1} \, E_0 \, G_2 \, + \\ &+ ((\lambda I - T) \mid F_0 \, G_1 \, \mathfrak{X})^{-1} \, F_0 \, G_1 + ((\lambda I - T) \mid E_0 \, F_0 \, \mathfrak{X})^{-1} \, E_0 \, F_0. \end{split}$$

On the space $E_0 F_0 \mathfrak{X}$, T has the form

$$(K_1 + K_2) E_0 F_0,$$

 $\delta \notin \sigma_1 + \sigma_2$, but $\sigma(K_1 + K_2) \subset \sigma(K_1) + \sigma(K_2) = \sigma_1 + \sigma_2$.

Thus on $E_0 F_0 \mathfrak{X}$, $(\lambda I - T)^{-1}$ is regular at the point δ .

On the space $E_0 G_2 \mathfrak{X}$, T has the form

σ

$$T \mid E_0 G_2 \mathfrak{X} = K_1 G_2 + \sum_{i=1}^n \mu_i F_i E_0 = \sum_{i=1}^n (K_1 + \mu_i I) F_i E_0.$$

Hence

$$(T \mid E_0 G_2 \mathfrak{X}) = \bigcup_{i=1}^n \sigma \left(K_1 + \mu_i I \mid E_0 F_i \mathfrak{X} \right) \subset \bigcup_{i=1}^n \sigma \left(K_1 + \mu_i I \right)$$
$$= \sigma_1 + \{ \mu_1 \dots \mu_n \}.$$
$$\delta \notin \sigma \left(T \mid E_0 G_2 \mathfrak{X} \right).$$

Thus

By the same argument $\delta \notin \sigma(T \mid F_0 G_1 \mathfrak{X})$. The number δ is a regular point of T restricted to $G_1 G_2 \mathfrak{X}$ if and only if $\sum_{i=1}^{n} E_i F_i = 0$, in this case δ is a regular point of T. The nilpotent operator associated with the point δ is $\sum_{i=1}^{n} (N_i + M_i) E_i F_i$ by (1) and (2). Let $k = \max[(m_i + n_i - 1) \ 1 \le i \le n]$

$$\left(\sum_{i=1}^{n} (N_i + M_i) E_i F_i\right)^k = \sum_{i=1}^{n} (N_i + M_i)^k E_i F_i = 0.$$

Hence δ is a pole of $T|G_1G_2\mathfrak{X}$ of order at most k, but by the preceding discussion δ is a pole of T of the same order.

Using Theorem 2 and a similar proof we arrive at the following theorem.

Theorem 4. If T_1 and T_2 are two commuting operators and

$$\sigma(T_1) = \{\lambda_1, \dots, \lambda_n\} \cup \sigma_1, \qquad \sigma(T_2) = \{\mu_1, \dots, \mu_n\} \cup \sigma_2,$$
$$0 = \delta = \lambda_i \mu_i, \quad 1 \le i \le n, \qquad \delta \notin (\sigma_1 \cdot \sigma(T_2)) \cup (\sigma_2 \cdot \sigma(T_1))$$

(these conditions are equivalent to: $0 \neq \delta$ is an isolated point of $\sigma(T_1) \cdot \sigma(T_2)$), and if λ_i is a pole of order n_i of T_1 , μ_i is a pole of order m_i of T_2 , then δ is a pole of $T_1 T_2$ of order at most

$$\max[(m_i+n_i-1), 1 \le i \le n].$$

5. Application

Let C be a linear operator in the space \mathfrak{X} . Define the operators T_1 and T_2 on the space $B(\mathfrak{X})$ of bounded linear operators in \mathfrak{X} by

$$T_1(A) = CA, \qquad T_2(A) = AC, \qquad A \in B(\mathfrak{X}).$$

In this section we study the relations between the poles of C and those of $T = T_1 - T_2$. (This problem was raised by Professor E. Hille.) It is easy to see from the proof of Theorem 1 in [5] that $\sigma(C) = \sigma(T_1) = \sigma(T_2)$. By Theorem A λ is a pole of C if and only if it is a pole of T_1 and T_2 of the same order.

Theorem 5. Let $\sigma(C)$ be decomposed

$$\sigma(C) = \{\lambda_1, \ldots, \lambda_n\} \cup \sigma_1,$$
$$\sigma(C) = \{\mu_1, \ldots, \mu_n\} \cup \sigma_2,$$

with $\lambda_i - \mu_i = \delta$ $1 \leq i \leq n$, and $\delta \notin (\sigma_1 - \sigma(C)) \cup (\sigma(C) - \sigma_2)$, and λ_i , μ_i , are poles of order n_i , m_i respectively of C, then δ is a pole of the operator T on the space $B(\mathfrak{X})$ defined by

$$T(A) = CA - AC, \quad A \in B(\mathfrak{X})$$

of order $\max[(m_i + n_i - 1), 1 \le i \le n]$.

Proof. In order to use Theorem 3 we note

1.
$$T_1T_2(A) = T_2T_1(A) = CAC, A \in B(\mathfrak{X}).$$

- 2. If E and F are projections on \mathfrak{X} , then the operators \overline{E} , $\overline{E}(A) = EA$, and $\overline{F}, \overline{F}(A) = AF, A \in B(\mathfrak{X})$, are two commuting projections.
- 3. If N is a nilpotent operator on \mathfrak{X} of order n then \overline{N} , $\overline{N}(A) = NA$, $A \in B(\mathfrak{X})$, is a nilpotent operator on $B(\mathfrak{X})$ of order n.

To show that δ is a singular point of T we prove the following lemma.

Lemma 2. Let V_1 and V_2 be two non-zero operators on \mathfrak{X} , then the operator V on $B(\mathfrak{X})$ defined by

$$V(A) = V_1 A V_2, \quad A \in B(\mathfrak{X})$$

is different from zero.

Proof. Let us choose $x \in \mathcal{X} y \in \mathcal{X}$ such that $V_2 x \neq 0$, $V_1 y \neq 0$ and $x^* \in \mathcal{X}^*$ such that $x^* (V_2 x) \neq 0$. Define A by $z \in \mathcal{X}$, $A z = x^* (z) \cdot y$. Then

$$(V_1 A V_2)(x) = x^* (V_2 x) \cdot V_1 y = 0.$$

Now to conclude the proof of Theorem 5 let E_i , N_i be the projections and nilpotents respectively corresponding to λ_i , and F_i , M_i the ones associated with μ_i . By theorem 3 the projection associated with δ with respect to T is G

$$G(A) = \sum_{i=1}^{n} E_i A F_i \quad A \in B(\mathfrak{X}).$$

The corresponding nilpotent is given by

$$M(A) = \sum_{i=1}^{n} (N_i (E_i A F_i) - (E_i A F_i) M_i)$$

 $E_jG(A)$ $F_j = E_jA$ $F_j \neq 0$ by Lemma 2, thus $G \neq 0$ and δ is a singular point of T. If $l = \max[(m_i + n_i - 2), 1 \le i \le n] = m_{j_a} + n_{j_a} - 2$, then

$$E_{j_0}M^{l}(A) F_{j_0} = \sum_{v=0}^{l} \alpha_v N_{j_0}^{v} E_{j_0} A F_{j_0} M_{j_0}^{l-v},$$

where α_v are non zero numbers, hence

$$E_{j_{\bullet}} M^{l}(A) F_{j_{\bullet}} = \alpha_{n_{j_{\bullet}-1}} N_{j_{\bullet}}^{n_{j_{\bullet}-1}} A M_{j_{\bullet}}^{m_{j_{\bullet}-1}} = 0$$

if A is properly chosen.

6. Sum and product of two commuting scalar operators

Throughout this section we assume that the space \mathfrak{X} is weakly complete.

Theorem 6. Let $\{S_n\}$ be a sequence of commuting scalar operators which converge uniformly to the operator S. If the Boolean algebra of projections, generated by the resolutions of the identity of the operators S_n , is bounded, then S is a scalar operator, and if E_n , E, are the spectral measures of S_n and S respectively, then for each Borel set α

- (1) If for some $x \in \mathcal{X}$, E (boundary α) x = 0, then $E(\alpha) x = \lim_{n \to \infty} E_n(\alpha) x$.
- (2) If for some $x \in \mathcal{X}$ and $x^* \in \mathcal{X}^*$, $x^* E$ (boundary α) x = 0, then $x^* E(\alpha) x = 0$ $\lim x^* E_n(\alpha) x.$

Proof. By [4], Theorems XVII.2.5 and XVII.2.1, there exists a set function $F(\cdot)$ defined on a compact set Λ such that for each Borel set α in Λ , $F(\alpha)$ is a projection satisfying conditions 1, 2, 3, 4 of the Introduction (where the complex plane should be replaced by Λ), and for every T in the uniformly closed algebra generated by the resolutions of the identity of S_n , there exists a continuous function f defined on Λ such that

$$T=\int_{\Lambda}f(\lambda) F(d\lambda),$$

and this correspondence is an isomorphic homeomorphism if the norm of f is taken to be

$$|f| = \max_{\lambda \in \Lambda} |f(\lambda)|.$$

Let f_n and f correspond to S_n and S. By assumption $S_n \rightarrow S$, hence f_n tends to f uniformly.

$$S_n = \int_{\Lambda} f_n(\gamma) F(d\gamma), \qquad S = \int_{\Lambda} f(\gamma) F(d\gamma),$$

hence

for

for every Borel set
$$\alpha$$
 in the complex plane. Let $A_n = \{\gamma | f_n(\gamma) \in \alpha\}$ and $A = \{\gamma | f(\gamma) \in \alpha\}$, then

 $E_n(\alpha) = F\{\gamma \mid f_n(\gamma) \in \alpha\}, \qquad E(\alpha) = F\{\gamma \mid f(\gamma) \in \alpha\}$

$$E_{n}(\alpha) x = \int_{\Lambda} \chi_{A_{n}}(\gamma) F(d\gamma) x, \qquad E(\alpha) x = \int_{\Lambda} \chi_{A}(\gamma) F(d\gamma) x,$$

where χ_B denotes the characteristic function of *B*. In order to prove (1) it is enough to show that $\chi_{A_n}(\gamma)$ converges almost everywhere, with respect to the measure $F(\cdot)x$, to $\chi_A(\gamma)$. (See [4], Theorem IV.10.10.) If $f(\gamma) \in \alpha^0$ then for $n > n_0 f_n(\gamma) \in \alpha^0$. If $f(\gamma) \in (\Lambda - \alpha)^0$ then for $n > n_1 f_n(\gamma) \in (\Lambda - \alpha)^0$. By α^0 we mean the interior of α . Let $F\{\gamma \mid f(\gamma) \in \text{boundary } \alpha\} x = 0$, then because of the multiplicity property of F

$$\sup\left\{\left|\sum_{i=1}^n \varepsilon_i F(B_i) x\right|, \qquad B_i \cap B_j = \phi \quad i \neq j,\right.$$

 $B_i \subset \{\gamma | f(\gamma) \in \text{boundary } \alpha\}, \quad \varepsilon_i \text{ complex number with } |\varepsilon_i| \leq 1 \} = 0.$

Thus $E_n(\alpha) x \rightarrow E(\alpha) x$ whenever

$$F \{ \gamma \mid f(\gamma) \in \text{boundary } \alpha \} x = 0,$$
$$F \{ \gamma \mid f(\gamma) \in \text{boundary } \alpha \} = E \{ \text{boundary } \alpha \}$$

but

and so (1) is proved. (2) is proved in the same way.

Remark. This is a perturbation theorem similar to Rellich Theorem [6] and to Theorem 2.6 of [2], p. 402. By [1], p. 351, for each $x \in \mathcal{X}$ there exists a functional x^* with the properties

1. $x^* E(\alpha) x \ge 0$ for any Borel set α . 2. If $x^* E(\alpha) x = 0$, then $E(\alpha) x = 0$.

Thus $E(\alpha) x = 0$ if and only if $x^* E(\alpha) x = 0$. Now for any collection of Borel sets $\{\alpha_t\}$ with $\alpha_{t_1} \cap \alpha_{t_2} = \phi$ whenever $t_1 = t_2$, only a countable number of terms in the set $\{x^* E(\alpha_t) x\}$ are different from zero, because of countable additivity. This shows that there are enough Borel sets α with E (boundary α) x = 0 to compute the value of the Riemann Integral $\int g(\lambda) E(d\lambda) x$ for every continuous function g.

Theorem 7. Let S_1 and S_2 be two commuting scalar operators with resolutions of the identity $E(\cdot)$ and $F(\cdot)$ respectively. If the Boolean algebra of projections generated by $E(\alpha)$, $F(\beta)$ is bounded then $T_1 = S_1 + S_2$ and $T_2 = S_1 S_2$ are scalar operators whose resolutions of the identity $G_1(\cdot)$ and $G_2(\cdot)$ respectively, are

$$G_{1}(\alpha) x = \int E(\alpha - \mu) F(d\mu) x \quad if \quad G_{1} (boundary \alpha) x = 0,$$
$$G_{2}(\alpha) x = \int E\left(\frac{\alpha}{\mu}\right) F(d\mu) x \quad if \quad G_{2} (boundary \alpha) x = 0,$$

where the integrals exist in the sense of Riemann, provided that in the sums $\sum_{i=1}^{n} E\left(\frac{\alpha}{\mu_i}\right) F(\Delta_i) x$ approximating $G_2(\alpha) x$ we take $\mu_i \neq 0$. The integrals are evaluated over any rectangle containing $\sigma(S_2)$.

Proof. Let K be a rectangle containing $\sigma(S_2)$ and let $\{\pi_n\}$ be a sequence of partitions of K.

$$\pi_n = \{ \Delta_1^n, \dots, \Delta_n^n \}, \qquad \Delta_i^n \cap \Delta_j^n = \phi \quad i \neq j,$$
$$\bigcup_{i=1}^n \Delta_i^n = K, \qquad \max \left[\operatorname{diam} \left(\Delta_i^n \right), \ 1 \le i \le n \right] \to 0.$$
$$\mu_i^n \in \Delta_i^n, \qquad \mu_i^n = 0.$$

Let

$$S_1 + S_2 = \lim \left(S_1 + \sum_{i=1}^n F(\Delta_i^n) \mu_i^n \right) = \lim R_n.$$

By Theorem 1, R_n is a scalar operator whose resolution of the identity G_1^n , is

$$G_1^n(\alpha) = \sum_{i=1}^n E(\alpha - \mu_i^n) F(\Delta_i^n).$$

By Theorem 6, $G_1^n(\alpha) \xrightarrow{x \to G_1(\alpha) x} if$

$$G_1$$
 (boundary α) $x = 0$.

Similarly $S_1S_2 = \lim U_n$, and the resolution of the identity of U_n , G_2^n is by Theorem 2

$$G_2^n(\alpha) = \sum_{i=1}^n E\left(\frac{\alpha}{\mu_i^n}\right) F(\Delta_i^n).$$

Thus if G_2 (boundary α) x = 0 then $G_2(\alpha) x = \int E\left(\frac{\alpha}{\mu}\right) F(d\mu) x$.

Remark. Let S be a scalar operator with resolution of the identity $E(\cdot)$, and let the set function $E(\cdot)$ be chosen in such a way that for every point λ_0 , $E((\lambda_0)) = 0$. Let $S_1 = I + S$ and $S_2 = I - S$ then $S_1 + S_2 = 2I$ the spectral measure of the operator 2I is concentrated at the point 2. The resolution of the identity of S_1 is given by

$$E_1(\alpha) = E(\alpha - 1)$$
 for any Borel set α .

The resolution of the identity of S_2 is

$$E_{\alpha}(\alpha) = E(1-\alpha)$$
 for any Borel set α .

The Boolean algebra of projections generated by E_1 , E_2 is bounded, but $E_1((\lambda_0)) = 0$ for every point λ_0 , hence

$$\int E_1((2-\mu)) E_2(d\mu) = 0 = I.$$

Yale University.

REFERENCES

- BADE, W. G., On Boolean algebras of projections and algebras of operators. Trans. Amer. Math. Soc. 80 (1955), 345-360.
- Math. Soc. 80 (1955), 345-360.
 2. Weak and strong limits of spectral operators. Pacific J. Math. 4 (1954), 393-413.
 3. DUNFORD, N., Spectral operators. Pacific J. Math. 4 (1954), 321-354.
 4. DUNFORD, N., and SCHWARTZ, J., Linear operators, forthcoming.
 5. GELFAND, I. M., Normierte Ringe. Math. Sbornik. N. S. 9 (51), 3-24 (1941).
 6. RELLICH, F., Störungstheorie der Spektralzerlegung II. Math. Ann. 113 (1936), 677-685.

Tryckt den 15 oktober 1957

Uppsala 1957. Almqvist & Wiksells Boktryckeri AB