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A generalization of  Picard's theorem ~ 

B y  OLLI LEHTO 

1. Introduction 

1. Let  /(z) be meromorphic outside a closed point set E in the complex plane, 
and let /(z) possess a t  least one singularity in E.  I f  f (z) cannot omit  more than  
two values in the complement of E, we call E a Picard  set. 

By Picard 's  theorem, sets with only a finite number  of points are Picard sets. 
I n  this paper, we shall generalize this result and show tha t  all sufficiently thin 
countable sets with one limit point are also Picard sets. 

Let  E: al, % . . . .  be a point set whose points converge to infinity. I f  a func- 
t ion ](z),  meromorphie outside E, is singular a t  some point a,, then of course 
/(z) cannot omit  more than  two values. Hence, on studying whether E is a Picard 
set or not, we may  restrict ourselves to functions f (z) possessing their only sin- 
gulari ty a t  infinity. In  other words, we consider functions / ( z )meromorph ie  for 

2. I f  [ (z) omits two values w 1 and w 2 in the whole finite plane, i t  is clear 
tha t  /(z) takes all other values outside E if the points of E tend to infinity 
with sufficient rapidity.  For  ](z) is then at  least of order 1, and this implies an 
upper  bound for the velocity with which for any  w #  wl, w ~, the w-points con- 
verge towards infinity. 

I f  however, [ (z) omits  only one value or none a t  all for z # oo, no similar 
conclusions can be drawn. For it is possible to construct entire or meromorphie 
functions for which all w-points tend to infinity as rapidly as we please. Re- 
moving from the plane the w-points for three different values w (for two values 
for entire functions), we obtain sets E which are certainly not  Picard sets. 

The following example shows tha t  in such a case, even the distance of any  
two points of E can be made arbitrari ly large. Pu t  

1 - z / b ~  
/ (z) = ~_l l + z /b  , (1) 

where b ,>0 ,  b 1 <  b t <  . . . ,  and b, tends rapidly to infinity. Clearly, [(z) has its 
zeros at  z = b,, poles a t  z = -  b,, and 1-points on the imaginary axis. I f  the 1- 
points are denoted by  + i c ,  c0=0, c , > 0 , v = l , 2  . . . . .  we have the identi ty 

x This research was done a t  the  Univers i ty  of Uppsala  under  a grant  f rom the )]Iittag-Leffler 
Foundat ion.  The  au thor  takes  pleasure in thank ing  Professor Lennar t  Carleson for helpful  
suggestions.  
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~-~(1 - i ck /b , )= f i ( l+ ick /b , ) ,  k = 0 ,  1, 2 . . . .  
v - 1  vffil 

This can also be written in the form 

ar--c tg (ck/b,) = n ~t, 
vffil 

where n is a positive integer. I f  the points b~ tend to infinity with sufficient 
rapidity,  this implies that,  except for co, there is just  one ck in every interval 
(bgk, b2~+1). Hence, e~ - ck-1 > bk+l -- b~. Puncturing the plane a t  the zeros, 1-points 
and poles of the function (1), we thus obtain sets E the points of which tend 
to infinity as rapidly as we please and in which the distance of any  two points 
can be made arbitrari ly large. In  spite of this, these sets are not Picard sets. 

3. Hence, neither the rapidity of convergence of the points of E towards in- 
finity nor large distances between individual points of E are sufficient to ensure 
E to be a Picard set. There is, however, still another way to make the set E 
th in ,  namely, to impose the condition tha t  for large values of v, I a,+l] mus t  be  
much larger than  l a, I. I f  this requirement is strong enough, we arrive a t  sets 
which are always Picard sets. 

With this result, which will be established below, the s tudy on Picard sets is 
by  no means completed. The given density condition, guaranteeing E to be al- 
ways a Picard set, is scarcely necessary. Moreover, besides these thin Picard sets, 
there m a y  also exist much denser Picard sets. Even the existence of arbi trar i ly 
dense Pieard sets is not unlikely. 

H. Existence o f  Pieard sets 

4. The result to be established is as follows: 

Theorem 1. Let /(z) be meromorphic outside a set E: al, a 2 . . . . .  U v - - ~  ° o  , an(~ 
possess at least one singularity in E. I /  the points o/ E satis/y the condition 

(log (log la,+,l), a>0, (2) 

then E is a Picard set, i.e. ] (z) can omit at most two values outside E. 

Proof, I t  is obviously sufficient if we can prove tha t  the assumption of the 
existence of a function /(z), meromorphic and non-rational for z #  ¢o and  differ- 
ent from 0, 1, oo outside E, leads to a contradiction. 

We introduce the s tandard notations: T (r) is the characteristic function of /(z),. 
N(r,a)  the counting function, and 2~(r,a) the counting function which counts 
all a-points only once, irrespective of multiplicity. 

Nevanlinna 's  second main theorem, applied to ] (z) for the values w = 0, 1, ~ ,  
yields 

T(r)<_~ (r,O)+ ~ (r, 1) + ~ (r, ~ ) + O  (log r). 

Hence, considering the density condition (2), i t  follows by  an easy computa t ion  
t ha t  for any 71 > 0, 

T (r) = o (log 1+~ r). (3) 
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Let  b~, cj, dk denote the zeros, 1-points and poles, respectively, of / (z ) .  By  (3), 
a t  least two of the sequences b, cj, dk contain an infinite number of points. In  
view of the transformations 1/~ and 1 - / ,  permuting the zeros, 1-points and 
poles, there is no restriction to suppose that  the number of zeros and 1-points 
is infinite. 

From (3) it  also follows that  /(z) admits a representation 

II ( 1  - z/bi) ~' 
f ( z ) = / ( O ) i i ( 1 . z / d k ) ~ ,  ~ ( / ( 0 ) ¢ 0 , ~ ) ,  

where ~tt and F~ denote the multiplicity of the zero or pole in question. The 
product  over the poles may be finite or even reduce to the constant 1. 

Setting z=  c~, we get the relations 

/(0)1-[(1 -cs//b=) ~' =i-I(1 -cj/d,~) ~k, i =  1, 2 . . . .  (4) 
! k 

between the zeroS, 1-points and poles. 

5. We shall now prove that,  under the condition (2), the equations (4) cannot 
be true for all values of ~. To begin with, we point out tha t  the numbers 24 
and /xk cannot be very large. 

In  fact, we conclude from (3) tha t  

N (r, 0) = o (logl+~ r). 

Hence, N (2lb, l, 0) = o (log z+'7 I b, I), 

while on the other hand, 

N(21b, l, 0)= 5 
Ibhl<21bil  

Consequently, ht = o (log1+' I bi I), (5) 

and similarly, /zk = o (logl+']dk I)- (5') 

6. Reverting f~ the relation (4), we start  from the identi ty 

l - [ (1-cJb~)  ~'= l-[ (cJb~) ~ 1--[ (b , /c j -1)  A' 1-~ ( 1 - c j b , )  ~ (6) 
t I b i l  < Icjl Ib~l < Ic11 I b t [ >  Ictl 

and show tha t  for ~-+co, the moduli of the two last products tend to 1. 
For  the first of these products we get, considering (5), 

IlOgbfl~<lcjllbi/cj-- x l~il~O~b~l~<lc,[~tlbt/c]l)=o(Ic, l-1 l o g  l+~lC]lbil~<lvtllbtl ). 

If  b~ is the zero with largest modulus less than tcj], i t  follows immediately from 
(2) that  

N 
, llb, l= O(IbNI). 
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Hence, loglbtl~<lJb,/c ¢-  1 I~'=o(IbN/c, llogl+'~lc, I), 

and b y  (2), the  lef t -hand side tends  to  zero as j - + ~ .  
I n  a similar manne r  we obta in  for the  last  p roduc t  in (6), 

Ilog,~,~,~j,ll-ej/b,l~J=O(,~,,>,~,,~ A,l~Jb, I)=o(IcJb~+~llogl+~lb~+~l)=o(1), 

Hence,  i t  follows t h a t  the  relat ion (4) can be wr i t t en  in the  fo rm 

ej z " k - z ~  1-[ b~'=As I-[ d~k, 
Ibtl<lcil ldkl<lcjl 

(7) 

where Aj is bounded  with respect  to j. 
I t  is the  handl ing of the  equat ion  (7) t h a t  has determined the  densi ty  con- 

di t ion (2). B y  this condition, ]cj] is so much  larger t han  I I ]dk[  ~ and  II lb~l  ~' 
for large values of j t h a t  a contradic t ion follows immedia te ly ,  unless 

Z ) t t =  Z/~k. 

I f  this  condit ion is satisfied, 

As I I  d ~  = I I  b~'. (8) 

B u t  again,  as j--> c~ the  t e r m  corresponding to the  largest  of the  number s  I b~ [, 
I d~ I becomes so large compared  with  all o ther  t e rms  t h a t  (8) cannot  remain  true.  
A contradict ion has  thus  been found, and  the  proof  is completed.  

7. T h e  condit ion (2), guarantee ing E to  be a P icard  Set, yields qui te  th in  sets. 
On the  o ther  hand,  E m u s t  no t  be too dense in order to  a lways be a P icard  
set, as we shall now show b y  means  of an  example .  

W e  shall cons t ruc t  a set  E which is no t  a P icard  set, a l though 

[a,+~/a~[>~q>l (9) 
f rom a cer ta in  v on. 

Le t  F (w) be a double-periodic funct ion with  periods to > 0 and  2 ~ i. Le t  fur- 
the r  F (w) be even  and  take  every  value twice in i ts  per iodici ty  rectangle.  

The  funct ion F (log z) is then  single-valued and  meromorph ic  for z # 0, ~ .  
Obviously,  i t  admi t s  a representa t ion  

F (log z) = / (z) + g (z), 

where ] (z) and  g(z) are meromorphic  for z # ~o and  z # 0, respect ively,  and  
g(~)=o.  

Le t  now - co/2 < ~1 < ~2 < ~3 < e°//2 such t h a t  F ( ~ )  = w~, i = 1, 2, 3, are different 
f rom each other.  The  funct ion F (log z) t akes  the  three  Values wt a t  the  points  
z=e +~J:''~, v = 0 ,  1, 2 . . . .  Le t  ~ = e  i~t+,~ denote  an a rb i t r a ry  wi-point of F ( l o g  z) 
in the  v ic in i ty  of z =  ~ .  F r o m  IF ( log  z) - / ( z ) l=O(1/ Iz[ )  i t  follows t h a t  there  
is jus t  one w~-point of f (z) in the  disc I z - ~ I < e, where  e = 0 (1/]  ~ I)- Moreover,  
outside such discs, [(z)#wt. Hence,  the  wl-points of /(z) sat isfy (9), thus  con- 
s t i tu t ing a desired example.  
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III .  Ent ire  f u n c t i o n s  

8. Le t  /(z) be  a non-ra t ional  entire funct ion for  z ~ oo. We  call E a Picard 
set /or entire /unctions if / (z)  cannot  omi t  more  t han  one finite value outside E .  
Of course, e v e r y  P icard  set  in the  above more  general  sense is a P iea rd  set  for 
entire functions,  while the  converse need not  a lways be  t rue.  

I n  the  special case of entire functions, the dens i ty  condi t ion (2) can be con- 
s iderably re laxed:  

Theorem 2. A set E:  al, a2 . . . . .  a~---> ~ ,  is a Picard set /or entire/unctions i/ 

l a,lav+x [ = 0 (~-~).  (10)  

Proof. L e t / ( z )  be non-ra t ional  and  entire for z ¢ o% and  l e t / ( z )  5 0 , 1  outside E.  
Adopt ing  the  same notat ions,  as above,  we conclude f irst  t h a t  

T (r) = o (log ~ r). 

Hence ,  /(z)  m u s t  possess an infinite n u m b e r  of bo th  zeros and  1-points and  

W e  write as above,  

H ( 1  - = 

25 = o (log 2 ]b, [)" 

]-[ (eJb,) a' I-[ (b , / c j -1 )  ~' 1-I (1 -cJb~)  ~. (11) 
[bfl<lcil [btl<lc 1] ]bil>]ctl 

F o r  the  last  p roduc t  we obta in  

l°g~ I b' l) 

and by  the  condit ion (10), this  is O (log lcj I). The  same holds for the  second prod-  
uc t  in (11), and  it  follows t h a t  the  relat ion corresponding to (7) now becomes 

log /-1 cJb, I a' = 0 (log I c,]). 
I b, J<tcil [ 

This,  however,  contains a contradict ion.  For  the  le f t -hand side is the  count ing 
funct ion  N i l e j l ,  0), and  sinee cannot  have  a n y  finite values  with posi t ive 
deficiency, the  re la t ion N (1 cj I, 0) = O (log I cj l) is impossible.  

9. I f  the  points  of E lie on a ray,  the  condition (10) can still be weakened.  
I n  this ease, the  condit ion 

I a.+~/a, 1 i> q > 1 (12) 

a l ready ensures E to  be a Picard set. 1 
Fo r  if /(z) is entire and ¢ 0,1 outside a set  E lying on a r ay  F, i t  follows 

f rom the Weiers t rass ian p roduc t  representa t ion t h a t  /(z) is bounded  on cer tain 
segments  (a~i , av~+l ) of 1 ~ clustering to infinity. Since / (z) omi ts  three  values  out-  
side E,  an  uppe r  bound is obta ined  for the  spherical der iva t ive  of ] (z) in t e rms  
of the  hyperbol ic  metr ic  d a of the  complement  of E :  

x This  is a j o i n t  r e su l t  w i t h  :Dr. K.  I .  V i r t anen .  
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l + l / ( z ) [  ~ = 0  [-d~ " 

By the condition (12), this implies tha t  on all rays sufficiently near I ' ,  the lower 
limit a t  infinity of /(z) is finite. This, however, contradicts the fact  tha t  /(z) 
must  tend go infinity on every ray  except for F. 

The sufficient condition (12) cannot be very far from a necessary condition. 
In  fact, the entire function ~ (1 + cos ~/z) takes the values 0 and 1 a t  the points 
z=~2z~ 2, ~ = 0 ,  1, 2 . . . .  Hence, 

2 
la, . l /a, l  > 1 + -  

does not  imply E to be a Picard set. 
Le t  i t  be recalled that,  as we showed above, (12) is not  a sufficient condition 

in the general ease of meromorphic functions. 

10. Certain well-known modifications of Pieard's theorem concerning non-zero 
entire functions admit  obvious generalizations for functions with zeros in a Picard 
set. For  instance, we obtain immediately. 

Theorem 3. I /  /1 and /~ are entire /unctions with zeros in a Picard set /or en- 
tire /unctions, and i/ identically /1 +/2 = 1, then ]1 and /2 are rational /unctions. 

I /  /1/3,/8 are entire /unctions with zeros lying in a Picard set /or  meromorphic 
/unctions, and i/  identically 

clh +c2/~+c3/3=0 

with non-zero coe//icients, then the quotient o/ any two o/ these /unctions is a ra- 
tional /unction. 

University ol Helsinki. 
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