Communicated 23 April 1958 by OTTO FROSTMAN

On weak and strong extensions of partial differential operators with constant coefficients

By STEPHAN SCHWARZ

Introduction

Let Ω be a bounded domain in \mathbb{R}^{ν} . We denote by $C^{\infty}(\Omega)$ the set of infinitely differentiable functions defined in Ω , and by $C_0^{\infty}(\Omega)$ the set of those functions in $C^{\infty}(\Omega)$ which have compact support in Ω .

With the notations of Hörmander [1], there is a one to one correspondence between the partial differential operators on the functions in R^{ν}

$$P(D) = \sum_{\alpha} a^{\alpha_1 \dots \alpha_k} \frac{1}{i} \frac{\partial}{\partial x^{\alpha_1}} \cdots \frac{1}{i} \frac{\partial}{\partial x^{\alpha_k}} = \sum_{\alpha} a^{\alpha} D_{\alpha} \quad (\alpha = (\alpha_1 \dots \alpha_k))$$

and the polynomials in the dual space C_{ν}

$$P(\xi) = \sum_{\alpha} a^{\alpha_1 \cdots \alpha_k} \xi_{\alpha_1} \cdots \xi_{\alpha_k} = \sum_{\alpha} a^{\alpha} \xi_{\alpha}.$$

The algebraic adjoint of P(D) is $\overline{P}(D) = \sum \overline{a}^{\alpha} D_{\alpha}$.

Definition. (Cf. [1] p. 168 and p. 241.) The closure P_0 of the operator in L^2 with domain $C_0^{\infty}(\Omega)$ defined by P(D) is called the minimal operator defined by P(D).

The adjoint $P_w(\Omega)$ of the minimal operator $\overline{P}_0(\Omega)$ defined by $\overline{P}(D)$ is called the maximal operator defined by P(D) or the weak extension of P(D).

The closure $P_s(\Omega)$ of the operator P(D) defined in the set $\{u \mid u \in C^{\infty}(\Omega), u \in L^2(\Omega), P(D) u \in L^2(\Omega)\}$ is called the strong extension of P(D).

It is natural to suppose that the weak and strong extensions should generally be equal. A result confirming this hypothesis was given by Hörmander ([1], Theorem 3.12) who proved that it is true when P(D) is of local type and Ω is any domain. Another result of the same author [3] secures the assertion for any operator with constant coefficients as soon as the boundary of the domain Ω satisfies certain regularity properties.

It seems likely that, unless P(D) is of local type, it is necessary to impose some condition on Ω in order that $P_s(\Omega) = P_w(\Omega)$. It is the aim of this paper to prove this under the additional assumption that P(D) is homogeneous. This will be done by modifying an unpublished example given by L. Hörmander for $P(D) = \frac{\partial^2}{\partial x \partial y}$ (Theorem 1 below).

I want to take the opportunity to thank my teacher, Professor Lars Hörmander, for his constant interest and assistance.

1. Algebraic lemmas

Lemma 1. The integral

$$\int \int \frac{1}{1+\xi_1^2+\xi_2^2+|P(\xi_1,\xi_2)|} d\xi_1 d\xi_2$$

is convergent if and only if the degree n of the polynomial $P(\xi_1,\xi_2)$ exceeds two.

Proof: First consider a sector between a characteristic of the polynomial $P(\xi_1, \xi_2)$ and a half-ray from the origin, leaving the sector free from other characteristics. We may assume that these lines are $\xi_2 = 0$ and $l(\xi_1, \xi_2) = 0$. Consider a curve $\xi_2 = r^{1/\alpha} (\xi_1^2 + \xi_2^2 = r^2, \alpha > 1)$ and a circle (C) with radius r_0 , where α and r_0 will be chosen in (III) below. We now get the following estimate for the denominator $N(\xi_1, \xi_2)$ of the integrand in the sector:

- (I) Inside the circle (C) we have $N \ge 1$.
- (II) Outside the circle, between the line ξ₂=0 and the curve ξ₂=r_{1/α} we have N≥r². If (r, φ) are polar coordinates of a point on the curve we get, setting (1-α⁻¹)=ε, that φ = arcsin r^{-ε} = O(r^{-ε}).
 (III) Between the line l(ξ₁, ξ₂) = 0 and the curve ξ₂=r^{1/α} we have N≥Cr^{n-δ}
- (III) Between the line $l(\xi_1, \xi_2) = 0$ and the curve $\xi_2 = r^{1/\alpha}$ we have $N \ge Cr^{n-\delta}$ where we can make δ arbitrarily small if we choose ε small enough. In fact, let the principal part of $P(\xi_1, \xi_2)$ be $p(\xi_1, \xi_2) = \xi_2^m q(\xi_1, \xi_2), (m \ge 1)$, where $q(\xi_1, \xi_2)$ is a homogeneous polynomial of degree $(n-m), q \ne 0$ in and on the boundary of the sector except at the origin. Let min $|q(\xi_1, \xi_2)| = \mu$ when the point (ξ_1, ξ_2) moves on the part of the unit circle lying in the sector. Then for a point in the sector with coordinates (r, φ) we have $|q(\xi_1, \xi_2)| \ge \mu r^{n-m}$. Within the domain (III) we have $\xi_2 \ge r^{1/\alpha}$. Thus in (III) we get $|p(\xi_1, \xi_2)| \ge Cr^{n-m\varepsilon}$. Choosing α so that $\delta = m\varepsilon < 1$ we now conclude

$$N \ge |P(\xi_1, \xi_2)| \ge C r^{n-\delta} (1 - O(r^{-(1-\delta)})) \ge C' r^{n-\delta}$$

when $r > r_0$. (C and C' denote different constants.)

We now estimate the integral in the sector, using that n > 2.

In the remaining sectors, i.e. those which are not bounded by characteristics, we get the estimates:

$$N \ge C \qquad \text{when } r < r_0$$
$$N \ge C r^n \quad \text{when } r \ge r_0$$

Now the convergence follows in the whole plane.

From [1] we adopt the notation $\tilde{P}(\xi)^2 = \sum_{\alpha} |P^{(\alpha)}(\xi)|^2$.

Lemma 2. If $P(\xi)$ is a complete polynomial of two variables ξ_1 and ξ_2 , the integral

$$\int\!\!\frac{1}{\tilde{P}(\xi)^2}d\,\xi$$

is convergent unless with suitable coordinates

 $P\left(\xi\right)=C\left[(\xi_1+i\,\alpha_1)+(\xi_2+i\,\alpha_2)^2\right],\quad (\alpha_1 \ and \ \alpha_2 \ denote \ real \ constants).$

Proof. If the principal part of $P(\xi)$ is complete we know from Lemma 2.13 in [1] that the set

$$\{\operatorname{Re} P^{(\alpha)}(\xi) ; \operatorname{Im} P^{(\alpha)}(\xi)\} \quad (|\alpha| = n - 1)$$

contains two real linearly independent linear forms l_1 and l_2 . We may assume the coordinates so chosen that $l_1 = \xi_1$, $l_2 = \xi_2$. This gives the estimate

$$P^{2} \geq C \left(1 + \xi_{1}^{2} + \xi_{2}^{2} + \left| P(\xi_{1}, \xi_{2}) \right|^{2} \right).$$

Thus in this case the integral converges according to Lemma 1.

If the principal part of $P(\xi)$ is not complete we can set, with coordinates conveniently chosen,

$$P(\xi) = c\,\xi_2^n + Q\,(\xi_1,\xi_2)$$

where Q is a polynomial of degree < n not independent of ξ_1 and c is a constant. Now

$$\frac{\partial^{n-1}P}{\partial \xi_2^{n-1}} = a_1 (\xi_2 + a_2)$$
 $(a_1 \neq 0 \text{ and } a_2 \text{ are constants}),$

and for some α we get $P^{(\alpha)}(\xi) = a_3(\xi_1 + R(\xi_2)), (a_3 \neq 0)$. With $S(\xi_2) = \text{Re } R(\xi_2)$ we get the estimate

$$P^{2} \geq C \left(1 + \xi_{2}^{2} + \left|\xi_{1} + S(\xi_{2})\right|^{2} + \left|P(\xi)\right|^{2}\right).$$

We now set

$$\begin{array}{c} \eta_1 = \xi_1 + S\left(\xi_2\right) \\ \eta_2 = \xi_2 \end{array} \right\} \quad \begin{array}{c} D\left(\xi_1,\xi_2\right) \\ D\left(\eta_1,\eta_2\right) = 1 \,. \end{array}$$

We get from the above inequality

$$P^{2} \geq C \left(1 + \eta_{1}^{2} + \eta_{2}^{2} + \left| P(\eta_{1} - S(\eta_{2}), \eta_{2}) \right|^{2} \right).$$

Now if the degree of the polynomial $P(\eta_1 - S(\eta_2), \eta_2)$ is \geq two, the integral will converge according to Lemma 1.

If this is not the case we have

$$P(\eta_1 - S(\eta_2), \eta_2) = A \eta_1 + B \eta_2 + E (A, B, E \text{ are constants}).$$

This gives

$$P(\xi_{1},\xi_{2}) = A(\xi_{1} + S(\xi_{2})) + B\xi_{2} + E.$$

Since $P(\xi)$ is complete we conclude that $A \neq 0$. Now if $S(\xi_2)$ is of degree exceeding two we have

$$\tilde{P}^2 \ge C\left(1+\xi_2^2+\left|\xi_1+S\left(\xi_2\right)+\operatorname{Re}\left(\frac{B\xi_2+E}{A}\right)\right|^2+\left|\frac{\partial}{\partial\xi_2}S\left(\xi_2\right)+\operatorname{Re}\frac{B}{A}\right|^2\right).$$

The non-singular transformation

$$\begin{aligned} \zeta_1 &= \xi_1 + S\left(\xi_2\right) + \operatorname{Re}\left(\frac{B\xi_2 + E}{A}\right) \\ \zeta_2 &= \xi_2 \end{aligned}$$

now gives

where T denotes a positive polynomial of degree ≥ 4 . So the integral converges. Finally if the degree of $S(\xi_2)$ is two we have the exceptional case.

 $\tilde{P}^2 \ge C (1 + \zeta_1^2 + \zeta_2^2 + T(\zeta_2)),$

It is easily verified that the integral diverges in this case. We get

$$\tilde{P}^2 \leq C \left(1 + (\xi_1 + \xi_2^2)^2 + \xi_2^2 \right).$$

The transformation $\eta_1 = \xi_1 + \xi_2^2, \eta_2 = \xi_2$ gives

$$\tilde{P^2} \leq C (1 + \eta_1^2 + \eta_2^2).$$

Thus we have logarithmical divergence.

Lemma 3. If $P(\xi)$ is a homogeneous polynomial in C_r where ξ_1 and ξ_2 occur with total degree $m \ge 2$, and if the lineality space $\Lambda(P)$ is defined by $\xi_1 = \xi_2 = \cdots = \xi_x = 0$, the function $1/\tilde{P}$ is uniformly square integrable in the varieties Σ parallel to the $\xi_1 \xi_2$ -plane, i.e. $\int 1/\tilde{P}^2 d\xi_1 d\xi_2 < C_P$, where the constant C_P depends on P but is independent of $(\xi_3 \ldots \xi_r)$.

Proof: Suppose the degree of $P(\xi)$ is = n. In view of the fact that $P(\xi) = P(\xi_1 \dots \xi_n)$ is complete and homogeneous in the variables $(\xi_1 \dots \xi_n)$ we infer from Lemma 2.13 in [1] that the set

{Re
$$P^{(\alpha)}(\xi)$$
, Im $P^{(\alpha)}(\xi)$ } $(|\alpha| = n-1)$

contains \varkappa linearly independent linear homogeneous forms $(l_1 \ldots l_{\varkappa})$ of the variables $(\xi_1 \ldots \xi_{\varkappa})$. Hence there are constants $C_1 > 0$ and $C_2 > 0$ so that

$$C_1 \! < \! \frac{\sum\limits_{i=1}^{\varkappa} l_i^2}{\sum\limits_{i=1}^{\varkappa} \xi_i^2} \! < \! C_2$$

Now select in $P(\xi)$ one term, where ξ_1 and ξ_2 occur with maximal total degree $m \ge 2$, say

$$a\cdot\xi_1^l\cdot\xi_2^{m-l}\cdot\prod_{i=3}^{\varkappa}\xi_i^{l_i}.$$

We study instead of $P(\xi)$ the weaker polynomial

$$Q(\xi) = \prod_{3}^{\kappa} \left(\frac{\partial}{\partial \xi_{i}}\right)^{l_{i}} P(\xi).$$

We set $Q(\xi) = Q_0(\xi) + Q_1(\xi) + \dots + Q_m(\xi)$, where $Q_i(\xi)$ is homogeneous of degree i in (ξ_1, ξ_2) and of degree (m-i) in $(\xi_3 \cdots \xi_{\varkappa})$.

After these remarks we get the estimate:

$$\tilde{P}^{2}(\xi) \ge C(|Q(\xi)|^{2} + \sum_{i=1}^{\kappa} \xi_{i}^{2} + 1).$$

We use the notation $\xi_3^2 + \xi_4^2 + \dots + \xi_{\varkappa}^2 = t^2$. Let $\tilde{P}_{\Sigma}^2(\xi)$ denote the restriction of $\tilde{P}^2(\xi)$ to Σ .

If $t \ge 1$ we transform by the formulas $\xi_i = t \cdot \eta_i \ (i = 1 \dots \varkappa)$. Setting $\eta_1^2 + \eta_2^2 = r^2$ we get

$$P_{\Sigma}^{2}(\xi) \geq C\left(\left|R_{2m-1}(\eta_{1},\eta_{2})+\left|Q_{m}(\eta_{1}\eta_{2})\right|^{2}\right|t^{2m}+(r^{2}+1)t^{2}+1\right).$$

Here $R_{2m-1}(\eta_1, \eta_2)$ denotes a real polynomial of degree 2m-1 at most, the coefficients depending on $\eta_3 \ldots \eta_n$. We now get the estimates:

$$\begin{split} \int_{\Sigma} \frac{1}{\tilde{P}_{\Sigma}^{2}(\xi_{1},\xi_{2})} d\xi_{1} d\xi_{2} &\leq C \int_{T} \frac{1}{t^{2(m-1)} |R_{2(m-1)} + |Q_{m}|^{2} |+r^{2} + 1 + t^{-2}} d\eta_{1} d\eta_{2} \\ &\leq C \int_{T} \frac{1}{|R_{2m-1} + |Q_{m}|^{2} |+r^{2} + 1} d\eta_{1} d\eta_{2}. \end{split}$$

We now use the method of proof of Lemma 1. We can determine constants C and r_0 and an arbitrarily small fixed number δ such that, if $r > r_0$, the term

$$ig| R_{2\,m-1} + ig| Q_m ig|^2 ig| \quad ext{will be} \quad \geqslant C\,r^{2\,m-\delta}$$

except in narrow domains enclosing the characteristics of the polynomial $Q_m(\eta_1, \eta_2)$. The constants in these inequalities can be determined independently of $(\xi_3 \dots \xi_{\varkappa})$ because the coefficients of R_{2m-1} are bounded when $\sum_{i=3}^{\kappa} \eta_i^2 = 1$, while the coefficients of Q_m are independent of $(\eta_3 \dots \eta_{\varkappa})$. In the narrow domains just referred to we replace the denominator by the smaller quantity r^2 and inside the circle $r \leq r_0$ by +1. In this way we get the estimate

$$\int_{\Sigma} \frac{1}{\tilde{P}_{\Sigma}^2(\xi)} d\xi_1 d\xi_2 \leqslant C'_P \quad (t \ge 1).$$

Now suppose t < 1. We get

$$\tilde{P}_{\Sigma}^{2}(\xi) \geq C\left(\left|R_{2m-1}(\xi_{1},\xi_{2})+\left|Q_{m}(\xi_{1},\xi_{2})\right|^{2}\right|+\xi_{1}^{2}+\xi_{2}^{2}+1\right).$$

Here we can apply the same method as before without any preliminary transformation getting the estimate

$$\int_{\Sigma} \frac{1}{\tilde{P}_{\Sigma}^{2}(\xi)} d\xi_{1} d\xi_{2} \leqslant C_{P}^{\prime \prime} \quad (t < 1)$$

Combining these results, the proof is complete.

2. Homogeneous operators of two variables

Let $\hat{\Omega}$ denote a bounded domain containing the origin and Ω the same domain with the origin left out.

Theorem 1. $P_s(\Omega) \neq P_w(\Omega)$ if $P(D) = \partial^2 / \partial x^1 \partial x^2$.

Proof: We are going to prove the equivalent assertion

$$P_s^*(\Omega) \neq P_w^*(\Omega) = \overline{P}_0(\Omega)$$

by indicating an example of a function $u \in \mathcal{D}_{P_{e}^{*}}, u \notin \mathcal{D}_{P_{e}}$.

From direct computation or Lemma 2 or 3 we get

$$\int \frac{1}{\tilde{\bar{P}}(\xi)^2} d\xi < \infty$$

Applying [1] Theorem 2.6 with $Q(\xi) \equiv 1$ we realize that, after correction on a null set, every function $v \in \mathcal{D}_{\overline{P}_0}$ is continuous and vanishes on the boundary of Ω , thus in particular at the origin. Accordingly the theorem follows from the following

Lemma 4. If $\hat{u} \in C_0^{\infty}(\hat{\Omega})$ and $\hat{u} = constant = c \neq 0$ in a neighbourhood ω of the origin, and if u is the restriction of \hat{u} to Ω , we have $u \in D_{P_s^*}$.

Proof: We have to prove the relation

$$(P(D)u,v)_{\Omega} - (u, P(D)v)_{\Omega} = 0$$
 for every $v \in \mathcal{D}_{P_s}$.

In view of the definition of $P_s(\Omega)$ it is sufficient to show this for any $v \in C^{\infty}(\Omega)$, satisfying the conditions $v \in L^2(\Omega)$ and $P(D)v \in L^2(\Omega)$. In the present case the relation can be written

$$\int_{\Omega} \int \left(\frac{\partial^2 u}{\partial x^1 \partial x^2} \cdot \bar{v} - u \cdot \frac{\partial^2 \bar{v}}{\partial x^1 \partial x^2} \right) dx^1 dx^2 = 0.$$

Let $\Omega_{\varepsilon}^{\delta}$ denote the domain obtained from Ω by excluding the rectangle $|x^{1}| < \frac{1}{2}\varepsilon$, $|x^{2}| < \frac{1}{2}\delta$ and let R_{ε}^{δ} be the boundary of this rectangle. Suppose that the quantities ε and δ are small enough to make R_{ε}^{δ} lie entirely inside ω . Set

$$I_{\varepsilon}^{\delta} = \iint_{\Omega_{\varepsilon}^{\delta}} \left(\frac{\partial^2 u}{\partial x^1 \partial x^2} \cdot \tilde{v} - u \cdot \frac{\partial^2 \tilde{v}}{\partial x^1 \partial x^2} \right) dx^1 dx^2.$$

Rewriting and integrating by parts we get

$$I_{\varepsilon}^{\delta} = \iint_{\Omega_{\varepsilon}^{\delta}} \left[\frac{\partial}{\partial x^{2}} \left(\frac{\partial u}{\partial x^{1}} \cdot \bar{v} \right) - \frac{\partial}{\partial x^{1}} \left(u \cdot \frac{\partial \bar{v}}{\partial x^{2}} \right) \right] dx^{1} dx^{2} = -\iint_{R_{\varepsilon}^{\delta}} \left(\frac{\partial u}{\partial x^{1}} \cdot \bar{v} dx^{1} + u \cdot \frac{\partial \bar{v}}{\partial x^{2}} dx^{2} \right)$$

since $\hat{u} \in C_0^{\infty}(\hat{\Omega})$ and hence vanishes in a neighbourhood of the boundary of $\hat{\Omega}$. If we now introduce the condition $u(x) = c \neq 0$ in ω we get:

$$I_{arepsilon}^{\delta}=-\,c\,[ar v\,(arepsilon,\delta)-ar v\,(arepsilon,-\delta)+ar v\,(-arepsilon,-\delta)-ar v\,(-arepsilon,\delta)].$$

We finally use that $v \in C^{\infty}(\Omega)$, which gives, with ε fixed,

$$\lim_{\delta\to 0} I_{\varepsilon}^{\delta} = 0.$$

Since $\Omega - \Omega_{\varepsilon}^{0}$ is a null set and I_{0}^{0} is absolutely convergent we get

$$\lim_{\delta \to 0} I_{\varepsilon}^{\delta} = 0 = (\overline{P}(D)u, v) - (u, P(D)v)$$

which completes the proof.

Theorem 2. $P_s(\Omega) \neq P_w(\Omega)$ if the corresponding polynomial $P(\xi_1, \xi_2)$ is complete, homogeneous and non-elliptic.

Proof: We again prove $P_s^*(\Omega) \neq P_w^*(\Omega) = \overline{P}_0(\Omega)$.

Since the polynomial has at least one real characteristic we can, with suitable coordinates write

$$P(\xi) = \xi_1 \cdot Q(\xi)$$
 and $P(D) = \frac{1}{i} \cdot \frac{\partial}{\partial x^1} Q(D)$.

Application of Lemma 2 or 3 combined with [1] Theorem 2.6 shows as in the proof of Theorem 1 that we need only prove Lemma 4 for the present operator P(D).

Let \hat{u} and u satisfy the conditions of Lemma 4. Let v be any function in $C^{\infty}(\Omega)$ satisfying $v \in L^2(\Omega)$ and $P(D)v \in L^2(\Omega)$. We are going to show the equation

$$(P(D)u, v) - (u, P(D)v) = 0$$

i.e.
$$\int_{\Omega} \int_{\Omega} \left[\left(\overline{Q}(D) \frac{1}{i} \frac{\partial}{\partial x^{1}} u \right) \cdot \overline{v} - u \cdot \frac{1}{i} \frac{\partial}{\partial x^{1}} Q(D) v \right] dx^{1} dx^{2} = 0$$

We use the same notations $\Omega^{\delta}_{\epsilon}$ and R^{δ}_{ϵ} as in the proof of Theorem 1. We have

$$\int_{\Omega_{\varepsilon}^{\delta}} \int \left(\overline{Q} \left(D \right) \frac{1}{i} \frac{\partial}{\partial x^{1}} u \right) \cdot \overline{v} \, d \, x^{1} \, d \, x^{2} = \int_{\Omega_{\varepsilon}^{\delta}} \int \frac{1}{i} \frac{\partial}{\partial x^{1}} u \, \cdot \overline{Q \left(D \right) v} \, d \, x^{1} \, d \, x^{2}$$

for $(1/i)(\partial u/\partial x^1) \in C_0^{\infty}(\Omega_{\epsilon}^{\delta})$ in view of the fact that $\hat{u} \in C_0^{\infty}(\widehat{\Omega})$ and is constant in a neighbourhood ω of the origin enclosing R_{ϵ}^{δ} and this means that the boundary integrals which arise all vanish.

If we make another partial integration we get

$$\iint_{\Omega_{\varepsilon}^{\delta}} \left(\overline{Q}(D)\frac{1}{i}\frac{\partial}{\partial x^{1}}u\right) \cdot \overline{v} \, dx^{1} \, dx^{2} = \int_{R_{\varepsilon}^{\delta}} \frac{1}{i} \, u \cdot \overline{Q(D)v} \, dx^{2} + \iint_{\Omega_{\varepsilon}^{\delta}} \int u \cdot \frac{1}{i} \frac{\partial}{\partial x^{1}} Q(D)v \cdot dx^{1} \, dx^{2}.$$

Since $v \in C^{\infty}(\Omega)$ the function |Q(D)v| is bounded on R_{ε}^{δ} . Let M_{Q} denote the maximal value on the sides parallel to the x^{2} -direction. Then the curve integral in the last equation is bounded by the quantity $2|c| \cdot \delta \cdot M_{Q} \to 0$ if $\delta \to 0$ with ε fixed. We now set

$$I_{\varepsilon}^{\delta} = \iint_{\Omega_{\varepsilon}^{\delta}} \left(\overline{P} \left(D \right) u \cdot \overline{v} - u \cdot \overline{P \left(D \right) v} \right) dx^{1} dx^{2}.$$

Since $\Omega - \Omega_{\varepsilon}^{0}$ is a null set and the integral I_{0}^{0} is absolutely convergent according to the assumptions, we get when $\delta \to 0$ with ε fixed

$$\lim_{\delta \to 0} I_{\varepsilon}^{\delta} = 0 = (\overline{P}(D)u, v) - (u, P(D)v)$$

and the proof is complete.

Let Ω be defined as before. As a supplement to the results of Theorems 1–2 we prove

Theorem 3. Let the polynomial $P(\xi_1, \xi_2)$ be complete, homogeneous and non-elliptic. If E is any proper fundamental solution (cf. [2]) of the operator P(D) and if e is the restriction of E to Ω , then $e \in \mathcal{D}_{P_w}(\Omega)$, $e \notin \mathcal{D}_{P_s}(\Omega)$.

Proof: According to [2] Theorem 2.2 we have $E \in L^2_{loc}$ if and only if

$$\int \! rac{1}{ ilde{P}^2\left(\xi
ight)} d\,\xi\!<\infty\,,$$

In view of Lemma 2 this condition is satisfied. Now since $P(D)E = \delta_0$ by definition, we have P(D)E = 0 in Ω , and consequently P(D)e belongs to $L^2(\Omega)$. Therefore $e \in \mathcal{D}_{P_{in}}(\Omega)$.

Since $\hat{u} \in C_0^{\infty}(\hat{\Omega})$ we get in the sense of distribution theory

$$\int_{\Omega} e \cdot \overline{\overline{P}(D) u} \cdot dx = \int_{R^*} E \cdot \overline{\overline{P}(D) u} \cdot dx = \langle P(D) E, \overline{u} \rangle = \langle \delta_0, \overline{u} \rangle = \overline{u}(0) = \overline{c} \neq 0.$$

On the other hand we know from Lemma 4 that $u \in \mathcal{D}_{P_s^*}$ so that

$$\int_{\Omega} e \cdot \overline{\overline{P}(D) u} \, dx = \int_{\Omega} e \cdot \overline{P_s^* u} \cdot dx.$$

Now if it were true that $e \in \mathcal{D}_{P_s}(\Omega)$ we would get

$$\int_{\Omega} e \cdot \overline{P_s^* u} \, dx = \int_{\Omega} P_s e \cdot \bar{u} \, dx = \int_{\Omega} P_w e \cdot \bar{u} \, dx = 0$$

because the integrand equals zero. This gives a contradiction, i.e.

 $e \in \mathcal{D}_{P_w}(\Omega)$ but $e \notin \mathcal{D}_{P_s}(\Omega)$.

3. Homogeneous operators of v variables

We shall now extend Theorem 2.

Theorem 4. If the polynomial $P(\xi)$ is homogeneous and non-elliptic modulo the lineality space $\Lambda(P)$ there is an open set Ω such that $P_s(\Omega) \neq P_w(\Omega)$.

Proof: Let the polynomial be defined in C_{ν} . According to the assumptions we can find a real vector $e_2 \neq 0$ not in $\Lambda(P)$, such that

(1)
$$P(te_2) = 0$$
 for every real t.

In view of the definition of $\Lambda(P)$ ([1], Definition 2.2) there exists a second real vector e_1 so that

(2)
$$P(e_1 + t e_2) \neq P(e_1)$$
 for some real t.

This shows that e_1 and e_2 are not proportional. We further conclude that $P(\xi_1 e_1 + \xi_2 e_2)$ has ξ_1 as a factor and is not independent of ξ_2 , hence is a complete polynomial of the two variables ξ_1 and ξ_2 .

We now introduce a coordinate system such that the lineality space is defined by the equations $\xi_1 = \xi_2 = \cdots = \xi_{\varkappa} = 0$ and with the ξ_1 - and ξ_2 -axes along e_1 and e_2 respectively. In this system we write

(3)
$$P(\xi) = P_0(\xi) + P_1(\xi) + \dots + P_m(\xi).$$

Here $P_i(\xi)$ denotes a polynomial that is homogeneous of degree *i* in (ξ_1, ξ_2) and of degree (m-i) in $(\xi_3 \ldots \xi_*)$. In particular we notice that $P_m(\xi) = P(\xi_1 e_1 + \xi_2 e_2)$.

Let $\hat{\Omega}$ denote a bounded domain in \mathbb{R}^{ν} containing the origin, and let Ω be the domain obtained by excluding from $\hat{\Omega}$ a cut Γ defined by $x^1 = x^2 = 0$, $|x^i| \leq \frac{1}{2}\rho$ $(i=3,\ldots,\nu)$, where ρ is so small that the cut is enclosed in Ω .

Applying [1] Theorem 2.8 and Lemma 3 above we conclude that if $u \in \mathcal{D}_{\overline{P}_*}(\Omega)$ is distinguished ([1] p. 195) the restriction of u to any variety Γ' parallel to Γ is in $L^2(\Gamma')$ and converges strongly to zero when $\Gamma' \to \Gamma$. (We observe at this stage that the cut need not always be taken of dimension $(\nu-2)$. In fact it is sufficient for our purpose that the function $1/\tilde{P}$ is uniformly square integrable in the varieties Σ orthogonal to Γ .)

As before we are going to prove that $P_s^*(\Omega) \neq P_w^*(\Omega) = \overline{P}_0(\Omega)$. To this end we adapt Lemma 4 to the new situation:

Lemma 5. If $\hat{u} \in C_0^{\infty}(\hat{\Omega})$ and $\hat{u} = c \neq 0$ in a neighbourhood ω of the cut Γ , and if u is the restriction of \hat{u} to Ω we have $u \in \mathcal{D}_{P_s}^*$.

Proof: As before we have to prove the equation

$$\int_{\Omega} \left(\overline{P}(D) \, u \cdot v - u \cdot \overline{P(D) \, v} \right) \cdot d \, x = 0$$

for every $v \in C^{\infty}(\Omega)$ satisfying the conditions $v \in L^{2}(\Omega)$ and $P(D) v \in L^{2}(\Omega)$.

Let $\Omega_{\varepsilon \varrho'}^{\delta}$ denote the domain obtained from Ω by excluding the "parallelepiped" $R_{\varepsilon \varrho'}^{\delta}$ defined by $|x^{1}| \leq \frac{1}{2}\varepsilon, |x^{2}| \leq \frac{1}{2}\delta, |x^{i}| \leq \frac{1}{2}\varrho'$ $(i=3\ldots\nu)$. We suppose the parameters ε, δ and $\varrho' > \varrho$ are so determined as to let $R_{\varepsilon \varrho'}^{\delta}$ lie entirely in ω .

Consider the operator $P(D) - P_m(D) = P_0(D) + P_1(D) + \cdots + P_{m-1}(D)$ corresponding to the decomposition of $P(\xi)$ given by (3). An arbitrary term may be written:

$$C\frac{1}{i}\frac{\partial}{\partial x^{l}}\prod_{j=1}^{m-1}\frac{1}{i}\frac{\partial}{\partial x^{l_{j}}} = C\frac{1}{i}\frac{\partial}{\partial x^{l}}D_{\alpha} \qquad \begin{pmatrix} |\alpha| = m-1\\ C = \text{constant} \\ l \neq 1, 2 \end{pmatrix}.$$

$$\int_{\Omega_{\varepsilon q'}^{\delta}} \left(\overline{C} \cdot D_{\alpha}\frac{1}{i}\frac{\partial}{\partial x^{l}}u \right) \cdot \overline{v} \cdot dx = \int_{\Omega_{\varepsilon q'}^{\delta}} \left(\overline{C}\frac{1}{i}\frac{\partial}{\partial x^{l}}u \right) \cdot \overline{D_{\alpha}v} dx$$

We have

for $(1/i)(\partial u/\partial x^{l}) \in C_{0}^{\infty}(\Omega_{\varepsilon \varrho'}^{\delta})$ in view of the fact that $\hat{u} \in C_{0}^{\infty}(\widehat{\Omega})$ and is constant in a neighbourhood of the cut Γ containing $R_{\varepsilon \varrho'}^{\delta}$. If we make another partial integration we get

$$\int_{\Omega_{\varepsilon\varrho'}^{\delta}} \left(\overline{C} \cdot \frac{1}{i} \frac{\partial}{\partial x^{l}} D_{\alpha} u \right) \cdot \overline{v} \cdot dx = \int_{\Delta_{l}} \overline{C} \frac{1}{i} u \cdot \overline{D_{\alpha} v} d\sigma + \int_{\Omega_{\varepsilon\varrho'}^{\delta}} u \cdot \overline{C} \frac{1}{i} \frac{\partial}{\partial x^{l}} D_{\alpha} v \cdot dx.$$

The surface integral is here extended over the two faces Δ_l of $R_{\varepsilon\varrho'}^{\delta}$, orthogonal to the x^l -direction. The absolute value of this integral is thus bounded by the quantity $2|c| \cdot |C| \cdot \varepsilon \cdot \delta \cdot \varrho''^{-3} \cdot M_{\alpha}$, where M_{α} denotes the maximum of the function $|D_{\alpha}v(x)|$ on Δ_l , and hence $\rightarrow 0$ when $\delta \rightarrow 0$ with ε and ϱ' fixed.

When the method used in the proof of Theorem 2 is applied to the operator $P_m(D) = (1/i) (\partial/\partial x^1) Q(D)$ corresponding to $P_m(\xi) = \xi_1 Q(\xi)$, we get the result that the absolute value of

$$\int_{\Omega_{\varepsilon\varrho'}^{\delta}} (\overline{P}_m(D) u) \, \overline{v} \, d \, x - \int_{\Omega_{\varepsilon\varrho'}^{\delta}} u \cdot \overline{P_m(D) v} \, d \, x$$

is smaller than $2|c|\delta \cdot e^{v-2} \cdot M_Q$, where M_Q denotes the greatest value of the function |Q(D)v(x)| on the faces of $R_{\varepsilon \varrho'}^{\delta}$ orthogonal to the x^1 -direction.

If we now set

$$I^{\delta}_{\varepsilon_{\ell'}} = \int\limits_{\Omega^{\delta}_{\varepsilon_{\ell'}}} (\overline{P}(D) \, u \cdot \overline{v} - u \cdot \overline{P(D) \, v}) \, dx$$

we get, since $\Omega - \Omega_{\epsilon \varrho}^0$ is a null set and the integral $I_{0\varrho}^0$ is absolutely convergent according to the assumptions,

$$\lim_{\delta \to 0} I^{\delta}_{\varepsilon \varrho'} = 0 = (\overline{P}(D)u, v) - (u, P(D)v)$$

which completes the proof.

We finally generalize Theorem 3. Let the coordinate system be defined in relation to $P(\xi)$ as in Theorem 4 and let $\hat{\Omega}$, Ω and Γ denote the same sets as before. We set $\check{\Omega} = -\hat{\Omega} = \{x \mid -x \in \hat{\Omega}\}$ and similarly, for the sake of symmetry of notations, $\check{\Gamma} = -\Gamma(=\Gamma)$. We further denote by Σ' the subspace of R'' defined by the equations $x^1 = x^2 = 0$. Let ψ be a function in Σ' satisfying $\psi \in C_0^{\infty}(\Gamma)$ and $\int \psi d\sigma \neq 0$, where $d\sigma$ is the element of surface of Σ' . Denote by μ the measure $\psi d\sigma$ in \mathbb{R}^r with support in Γ .

Theorem 5. Let $P(\xi)$ be homogeneous and non-elliptic modulo the lineality space $\Lambda(P)$. If E is any proper fundamental solution of P(D) and if e is the restriction to Ω of $E \times \mu$, we have $e \in \mathcal{D}_{P_w}(\Omega)$ and $e \notin \mathcal{D}_{P_s}(\Omega)$.

Proof: We first prove that the restriction of $E \times \mu$ to $\hat{\Omega}$ is in $L^2(\hat{\Omega})$. This will follow from a theorem of F. Riesz if we prove that $\langle E \times \mu, u \rangle$ is a linear functional of $u \in L^2(\hat{\Omega})$ or, equivalently, an inequality of the form

$$|\langle E \times \mu, u \rangle| \leq C ||u||_{L^2(\widehat{\Omega})}$$
 if $u \in C_0^{\infty}(\widehat{\Omega})$.

Let $\check{\varphi}$ denote a function in $C_0^{\infty}(\check{\Omega})$ for which the restriction to Σ' is $\equiv +1$ in $\check{\Gamma}$ and let u be any function in $C_0^{\infty}(\hat{\Omega})$. We set $\check{u}(x) = u(-x)$. Applying Leibniz' formula we get

$$P(D)(\check{\varphi}(E \star \check{u})) = \sum_{\alpha} (P^{(\alpha)}(D)(E \star \check{u})) D_{\alpha} \check{\varphi} / |\alpha|!.$$

Since E is proper we have (cf. [2] formula (1.11))

$$\|P^{(\alpha)}(D)(E \times \check{u})\|_{L^{2}(\widehat{\Omega})} \leq C \|\check{u}\|_{L^{1}(\check{\Omega})} = C \|u\|_{L^{2}(\widehat{\Omega})}.$$

Hence with $v = \check{\varphi} (E \times \check{u})$

$$\|P(D)v\|_{L^{2}(\check{\Omega})} \leq C \|u\|_{L^{2}(\hat{\Omega})}.$$

From Lemma 3 we know that the function $1/\tilde{P}_{\Sigma}$ is uniformly square integrable in the varieties Σ parallel to the $\xi_1 \xi_2$ -plane. Since $v = \check{\varphi} (E \times \check{u}) \in C_0^{\infty}(\check{\Omega})$ ([4] VI, Théorème XI) we can apply [1] Theorem 2.8 getting

$$\|E \times \breve{u}\|_{L^{2}(\check{\Gamma})} = \|v\|_{L^{2}(\check{\Gamma})} \leq \|v\|_{L^{2}(\Sigma')} \leq C \|P(D)v\|_{L^{2}(\check{\Omega})} \leq C' \|u\|_{L^{2}(\hat{\Omega})}.$$

Now we get by Schwarz' inequality

$$|\langle E \times \check{u}, \check{\mu} \rangle| \leq C ||E \times \check{u}||_{L^{2}(\check{\Gamma})}$$

and making use of the associativity and commutativity of the convolution when all but one of the components have compact support ([4] VI, Théorème VII)

$$\langle E \times \mu, u \rangle = E \times \mu \times \check{u}(0) = \langle E \times \check{u}, \check{\mu} \rangle.$$

Combining these results we get

$$|\langle E \times \mu, u \rangle| \leq C ||u||_{L^{2}(\hat{\Omega})}.$$

Now we can reproduce the method of Theorem 3 almost word for word. We infer from what was just proved that $e \in L^2(\Omega)$. Since $P(D) E \neq \mu = \delta \neq \mu = \mu$ we have $P(D) E \neq \mu = 0$ in Ω and consequently P(D) e belongs to $L^2(\Omega)$. Therefore we have $e \in \mathcal{D}_{P_{un}}(\Omega)$.

If $\hat{u} \in C_0^{\infty}(\hat{\Omega})$, $\hat{u} = c \neq 0$ in a neighbourhood of Γ we get in the sense of distribution theory

$$\int_{\Omega} e \cdot \overline{\overline{P}(D) u} \cdot dx = \int_{R^n} (E \times \mu) \overline{\overline{P}(D) \hat{u}} dx = \langle P(D) E \times \mu, \overline{\hat{u}} \rangle = \\ = \langle \delta \times \mu, \overline{\hat{u}} \rangle = \int_{\Gamma} \psi \cdot \overline{\hat{u}} \cdot d\sigma = \overline{c} \int_{\Gamma} \psi d\sigma \neq 0.$$

On the other hand we know from Lemma 5 that $u \in \mathcal{D}_{P_s^*}(\Omega)$ so that

$$\int_{\Omega} e \cdot \overline{\overline{P}(D) u} \, dx = \int_{\Omega} e \cdot \overline{P_s^* u} \cdot dx.$$

Now if it were true that $e \in \mathcal{D}_{P_s}(\Omega)$ we would get

$$\int_{\Omega} e \cdot \overline{P_s^* u} \, dx = \int_{\Omega} P_s e \cdot \bar{u} \cdot dx = \int_{\Omega} P_w e \cdot \bar{u} \, dx = 0$$

because the integrand equals zero. This gives a contradiction, i.e.

$$e \in \mathcal{D}_{P_w}(\Omega)$$
 but $e \notin \mathcal{D}_{P_s}(\Omega)$.

REFERENCES

- 1. HÖRMANDER, L., On the theory of general partial differential operators. Acta Math. 94 (1955), 161-248.
 Local and global properties of fundamental solutions. Math. Scand. 5 (1957), 27-39.
 Definitions of maximal differential operators. (To appear in this journal.)
 SCHWARZ, L., Thèorie des distributions T. I-II. Paris, 1950-51.

Tryckt den 14 november 1958

Uppsala 1958. Almqvist & Wiksells Boktryckeri AB