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On weak and strong extensions of  partial differential 
operators with constant coefficients 

By S T E P H A N  SCHWARZ 

Introduction 

Let  f~ be a bounded domain in RL We denote by  G ~ ( f2) the  set of infinitely 
differentiable functions defined in f2, and by Cg  (f2) the set of those functions 
in C ~ (f2) which have compact  support  in ~2. 

With  the notations of H6rmander  [1], there is a one to one correspondence 
between the partial  differential operators on the functions in R ~ 

1 0 1 0 
P(D)=Ya  ...... ~iOx~ ' iOx~-Y.a~D~ (~=(el-.-~)) 

and the polynomials in the dual space C, 

The algebraic adjoint of P(D) is P(D)=~5~D~.  

Definition. (Cf. [1] p. 168 and p. 241.) The closure Po o[ the operator in L ~ 
with domain C~ (f2) defined by P (D) is called the minimal operator defined by P (D). 

The ad]oint P~o (f2) of the minimal operator Po ([2) defined by ff  (D) is called the 
maximal operator defined by P(D) or the weak extension of P(D). 

The closure Ps (f2) o/the operator P (D) defined in the set {u ]u e C ~ (f~), u e L 2 (~2), 
P (D) u e L 2 (f~)} is called the strong extension of P (D). 

I t  is natural  to suppose tha t  the weak and strong extensions should generally 
be equal. A result confirming this hypothesis was given by HSrmander  ([1], 
Theorem 3.12) who proved tha t  it is true when P(D) is of local type  and f2 is 
any  domain. Another result of the same author [3] secures the assertion for any  
operator with constant coefficients as soon as the boundary  of the domain ~2 
satisfies certain regularity properties. 

I t  seems likely that,  unless P(D) is of local type,  i t  is necessary to impose 
some condition on f~ in order tha t  P~ (f2)= Pw(f2). I t  is the aim of this paper  
to prove this under the additional assumption tha t  P(D) is homogeneous. This 
will be done by  modifying an unpublished example given by  L. HSrmander  for 
P (D) = 02//~ x a y (Theorem 1 below). 

I want  to take the opportuni ty to thank m y  teacher, Professor Lars  H6rman-  
der, for his constant interest and assistance. 

515 



s. SCHWArtZ, Extensions of partial differential operators 

L e m m a  1. The integral 
1. Algebraic lemmas 

f f 1 ~2)ld~d~2 1 + ~ +  ~ +  IP(~x, 

is convergent i/ and only i/ the degree n o/ the polynomial P(~z, ~2) exceeds two. 

Proo/: Firs t  consider a sector be tween  a character is t ic  of the  po lynomia l  P (~ ,  ~2) 
and  a ha l f - ray  f rom the origin, leaving the  sector  free f rom other  characteris t ics .  
We  m a y  assume t h a t  these lines are ~2 = 0 and  l(~1,~2)= 0. Consider a curve  
~2 = r~= ( ~  + ~ = r~, ~ > 1) and  a circle (C) wi th  radius  r 0, where ~ and  r 0 will be 
chosen in ( I I I )  below. W e  now get  the  following es t imate  for the  denomina to r  
_N(~, ~2) of the  in tegrand  in the  sector :  

(i) 
(iI) 

(m) 

Ins ide  t he  circle (C) we have  N>~ 1. 
Outside the  circle, be tween the  line ~ = 0 and  the  curve  ~2 = rl/= we 
have  N >/r  2. I f  (r, q0) are polar  coordinates  of a poin t  on the  curve we 
get,  set t ing (1 - a - l )  = e, t h a t  ~0 = arcsin r -"  = 0 (r-t).  
Be tween  the  line l (~x ,~2)=0 and  the  curve  ~ = r  TM we have  N>~Cr n-~ 
where we can m a k e  ~ a rb i t ra r i ly  small  if we choose e small  enough. 
I n  fact ,  let  the  pr incipal  p a r t  of P (~x, ~2) be p (~z, ~2) = ~ q (~1, ~2), (m/> 1), 
where  q (~1, ~2) is a homogeneous  po lynomia l  of degree ( n - m ) ,  q # 0 in 
and  on the  bounda ry  of the  sector  except  a t  the  origin. Le t  min  
I q (~x, ~2) I = #  when  the  point  (~x, ~ )  moves  on the  p a r t  of the  uni t  
circle lying in the  sector. Then  for a po in t  in the  sector  wi th  coordi- 
na tes  (r, ¢) we have  I q (~ ,  ~2) [ >~ # r"-a"  Wi th in  the  domain  ( I I I )  we h a v e  
~2~>r TM. Thus  in ( I I I )  we get  Ip(~l,~2) l>~Cr"-m~. Choosing ~ so t h a t  

= m e  < 1 we now conclude 

N/>  ] P (~1, ~2) I ~> C r n-6 (1 - 0 (r -ca-~))) >i C'r" -~ 

when r > r  o. (C and O' denote  different  constants . )  

We now es t ima te  the  integral  in the  sector, using t h a t  n > 2 .  

O(r -e) 

f 
r<r ,  r=r ,  &=0 (III) 

I n  the  remain ing  sectors,  i.e. those which are no t  bounded  b y  characteris t ics ,  
we get  the  e s t ima tes :  

N/> C when r < r 0 

N ~ C r n when r >~ r o 

Now the  convergence follows in the  whole plane.  

F r o m  [1] we a d o p t  the  no ta t ion  /3 (~)2 = ~lpc=)(~)13. 

L e m m a  2. I /  P (~) is a complete polynomial o] two variables ~1 and ~ ,  the integral 
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is convergent unless with suitable coordinates 

P (~) = C [(~i + i ~i) + (~  + i ~2)~], (~i and :¢2 denote real constants). 

Proo]. If  the principal pa r t  of P(~) is complete we know from Lemma 2.13 
in [1] tha t  the set 

{ReP(~)(~); ImP'~)(~)} ( l a [ = n - 1 )  

contains two real linearly independent linear forms l 1 and l~. We may assume 
the coordinates so chosen that  l 1 = $1, /2 = ~ .  This gives the estimate 

/5~>~ C(1 + ~ 

Thus in this case the integral converges according to Lemma 1. 
If  the principal par t  of P(~) is not complete we can set, with coordinates 

conveniently chosen, 
P(~) = c ~ + Q (~1, ~2), 

where Q is a polynomial of degree < n not independent of ~1 and c is a con- 
stant. Now 

~ - 1  -- a l  (~2 + a2) (a I # 0 a n d  a S are  cons t an t s ) ,  

and for some a we get P(~) (~)=aa(~l+R(~)) ,  (%#0) .  With S(~2)=Re R(~z) we 
get the estimate 

We now set # l = ~ + S ( ~ )  t D(~'~2) 1. 

We get from the above inequality 

/5~ >~ e (1 + ~ + ~ + I P (yx - s (~), ~2)]2). 

Now if the degree of the polynomial P ( ~ -  S (~2), ~ )  is >~ two, the integral will 
converge according to Lemma 1. 

If  this is not the case we have 

P 071 - S 0]2), ~]~) = A ~h + B ~7~. + E (A, B,  E are constants). 

This gives P (~1, ~2) = A (~1 + S (~2)) + B ~ + E. 

Since P(})  is complete we conclude that  A # 0 .  Now if 3(}2) is of degree ex- 
ceeding two we have 
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s. SCHWA~Z, Extensions of partial differential operators 

The non-shlgular transformation 

~1 = $1"~-S  ($2) + R e ( ~ )  

~ = ~ 

now gives t33/> C (1 + ~ + ¢~ + T ($~)), 

where T denotes a positive polynomial of degree >/ 4. So the integral converges. 
Finally if the degree of S($2) is two we have the exceptional case. 

I t  is easily verified that  the integral diverges in this case. We get 

P '  < c (1 + (~1 + }[)~ + }~). 

The transformation ~1 = $1 + ~2, rh = ~, gives 

Thus we have logarithmieal divergence. 

Lemma 3. I / P ( $ )  is a homogeneous polynomial in C, where $1 and ~ occur 
with total degree m >1 2, and i/ the lineality space A (P) is de/ined by ~1 = $~ . . . . .  
$~=0, the /unction 1 / [  9 is uni/ormly square integrable in the varieties Z parallel 
to the $1$2-plane, i.e. f l /P~d$1d$~<Cp,  where the constant Ce depends on_P but 
is independent o/ ($a-. .  ~). 

Proo/: Suppose the degree of P($) is = n. In view of the fact that  P (~)= 
P ( ~ I . . - ~ )  is complete and homogeneous in the variables ($1. . -$,)  we infer 
from Lemma 2.13 in [1] that  the set 

{Re P(~)($),Im P(~)($)} ([~l = n -  1) 

contains u linearly independent linear homogeneous forms (11... 1.) of the 
variables (~1.-.  ~,). Hence there are constants C 1 > 0  and C2 > 0  so that  

x 2 

Cx < i=~---L- < C2- 
Z 

f=l  

Now select in P(~) one term, where ~1 and ~2 occur with maximal total degree 
m>~2, say 

' -  

We study instead of P(~) the weaker polynomial 

g~ P 
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We  set  Q (2) = Qo (2) + Q1 (2) + "'" + Qz (2), where Qt (2) is homogeneous  of degree 
i in (21,22) and  of degree ( m - i )  in (23"'" 2~). 

Af ter  these r emarks  we get  the  e s t ima te :  

P~(2)> c(I Q(2)]~+ ~ 2,~+ 1). 
t - 1  

2 t~. We use the  no ta t ion  2~ + 2[ + " "  + 2~ = Le t  £5~ (2) denote  the  res t r ic t ion of 

~2(2) to z .  
I f  t I> 1 we t r ans fo rm b y  the  formulas  2t = t .  ~t (i = 1 . . .  u). Set t ing ~2 + ~ = r ~ 

we get  

/5~ (2) >/C (I R2 m-1 (Vl, ~2) + IQz (~1 ~7~)[~l ~em + ( rz + 1)sz + 1). 

Here  R~m-1 (UI ,~)  denotes  a real po lynomia l  of degree 2 m - 1  a t  most ,  the  co- 
efficients depending on ~ 3 . - .  ~7~- We  now get  the  es t imates :  

f i d 2 1 d 2 2 < . . . C f  1 
P~. (21, 25) 

f 
We now use the  m e t h o d  of proof  of L e m m a  1. We can de te rmine  cons tan t s  C 
and  r 0 and  an  a rb i t ra r i ly  small  f ixed number  d such tha t ,  if r > r0, the  t e r m  

IR~m_l+lQzl21 will be >~Cr ez-e 
except  in nar row domains  enclosing the  character is t ics  of the  polynomia l  Qz (~1, ~ ) -  
The  cons tan ts  in these  inequali t ies can be de te rmined  independent ly  of (2a. • • 2,) 

x 
because the  coefficients of R2m-1 are bounded  when ~ =  1, while the  coefli- 

t=3 
cients of Qz are independen t  of ( ~ a . . .  ~,). I n  the  nar row domains  jus t  referred 
to  we replace the  denomina to r  b y  the  smaller  quan t i t y  r 2 and  inside the  circle 
r~<r 0 by  + 1 .  In  this way  we get  the  es t imate  

f~  d21d2~<--.C'e ( t )  1). 
P~  (2) 

z 

Now suppose t <  1. We get  

~5~ (2) >/C (I R2 ~_~ (21, 22) ~- t Qm (21, 22)121 -]- 22 -}- 22 -F 1 ). 

Here  we can app ly  the  same me thod  as before wi thout  any  p re l iminary  t rans-  
fo rmat ion  get t ing the  es t imate  

f~d21d2g~C~ ( t<  l).  

Combining these results,  the proof is complete.  
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s. SCHWARZ, Extensions of partial differential operators 

2. Homogeneous operators of two variables 

Let  ~ denote a bounded domain containing the origin and ~ the same domain 
with the origin left out. 

Theorem 1. P~ (1]) # P~ (~) i/ P (D) = ~ / ~  x ~ ~ xL 

Proo/: We are going to prove the equivalent assertion 

P* (~) ~ P* (~) =Po (~) 

by  indicating an example of a function u E~v*,u f~Po" 
From direct computat ion or Lemma 2 or 3 we get 

f ~ l  d~< oo. 
p (~)2 

Applying [1] Theorem 2.6 with Q ( ~ ) ~ I  we realize that ,  after correction on a 
null set, every function v E O~ 0 is continuous and vanishes on the boundary  of 
1~, thus in particular a t  the origin. Accordingly the theorem follows f rom the 
following 

Lemma 4. I /  ~ E C~ (~) and d = constant = c # 0 in a neighbourhood co of the 
origin, and i/ u is the restriction o/ ~ to ~ ,  we have u E~)p*. 

Proo/: We have to prove the relation 

(P  (D) u, v)n - (u, P (D) v)~ = 0 for every v E Des. 

In  view of the definition of P~ (~) it is sufficient to show this for any  v E C ~ (~), 
satisfying the conditions vELZ(~)  and P ( D ) v E L 2 ( ~ ) .  In  the present case the 
relation can be writ ten 

.] \OxlOx ~ ~ -  U'~x~-~x~) dx ldxZ=O.  

Let  ~ denote the domain obtained from ~ by  excluding the rectangle I x~ I < ½ e, 
Ix2[< ½ ($ and let  R~ be the boundary of this rectangle. Suppose tha t  the quan- 
tities e and ~ are small enough to make R~ lie entirely inside co. Set 

I:= j j toxlox 'v- exlex2. 
~e 

Rewrit ing and integrating by  parts  we get 

L= LOx~\ox ~'~ -Sx~ u'~-x~ dxldx~=- ~ .6dxX+u.~-~x2dx ) 
f~e e 
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since ziE C~ (~) and hence vanishes in a neighbourhood of the boundary of ~ .  
I f  we now introduce the condition u (x)= c ¢  0 in co we get :  

I ~ =  - c  [~(e, a ) - ~ ( e , -  ~ ) +  ~ ( -  ~, - a ) -  ~ ( -  e, a)]. 

We finally use tha t  v eC :¢ (~), which gives, with e fixed, 

lira I~ = 0. 
~-->0 

Since ~ -  ~o is a null set and ~ is absolutely convergent we get 

lim 1~ = 0 = (P (D) u, v) - (u, P (D) v) 
6-->0 

which completes the proof. 

Theorem 2. P~ (~) ¢ P~ (E2) i/ the corresponding polynomial P (~1, ~ )  is complete, 
homogeneous and non-elliptic. 

Proo/: We again prove P* io~ -~ p* , . . ,  ~ ~ (~)  = P0 (~). 

Since the polynomial has a t  least one real characteristic we can, with suitable 
coordinates write 

P ( ~ ) = ~ x ' Q ( ~ )  and P(D)=~.  ~--Q axl  (D). 

Application of Lemma 2 or 3 combined with [1] Theorem 2.6 shows as in the 
proof of Theorem 1 tha t  we need only prove Lemma 4 for the present opera- 
tor  P (D). 

Let  ~ and u satisfy the conditions of Lemma 4. Let  v be any  function in 
C ~ (~) satisfying v e L ~ (£2) and P (D)v E L 2 (~). We are going to show the equation 

(P (D) u, v) - (u, P (D) v) = 0 

f f [ ( 1 0 )  ] Q(D)i~x~ u . ~ - u  .~Ox---~ Q(D)v dxldx~=O. 

We use the same notations ~ and R~ as in the proof of Theorem 1. We have 

f f (~(D)~u).Odxldx~= f f~u.Q(D)vdxldx~ 
~e 

for (1/ i ) (Ou/~xl)EC~(~) in view of the fact tha t  ~ e C ~ ( ~ )  and is constant  
in a neighbourhood oJ of the origin enclosing R~ and this means tha t  the bound- 
ary  integrals which arise all vanish. 

I f  we make another  partial  integration we get 

. l a  
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s. SCHWARZ, Extensions of partial differential operators 

Since v E C ~ (f2) the function [ Q (D) v I is bounded on R~. Let  MQ denote the  
maximal value on the sides parallel to the x2-direetion. Then the curve integral 
in the last equation is bounded by the quanti ty 2]c] .  5-MQ---> 0 if ~--> 0 with 

fixed. We now set 

I~, = f f  (P (D) u .  ~ - u .  P (D) v) d x ~ d x ~. 
a~ 

Since f~_f~0 is a null set and the integral Io ° is absolutely convergent 
according to the assumptions, we get when ~-> 0 with e fixed 

] im ~ I ,  = 0 = ( P  (D) u, v) - (u, P (D) v) 
~--~0 

and the proof is complete. 
Let  ~ be defined as before. As a supplement to the results of Theorems 1-2 

we prove 

Theorem 3. Let the polynomial P (~x, ~ )  be complete, homogeneous and non-elliptic. 
1/ E is any proper /undamental solution (c/. [2]) o/ the operator P (D) and i / e  is 
the restriction o[ E to ~,  then eE~Op~(~),e~Ops(~). 

Proof: According to [2] Theorem 2.2 we have E E L~oo if and only if 

In view of Lemma 2 this condition is s~tisfied. Now since P (D)E = 5 o by de- 
finition, we have P(D)E=O in ~ ,  and consequently P(D)e belongs to L2(~).  
Therefore e E Des (~). 

Since a EC~ (f~) we get in the sense of distribution theory 

f e . P ( D ) u . d x = f E . P ( D ) 4 . d x = < P ( D ) E , ~ u > =  (50,~>=4(0)=e # O. 

On the other hand we know from Lemma 4 that  u E~p* so tha t  

f e . P ( D ) u d x = f e . P * u . d x .  
gt 

Now if it were true tha t  eEOes(~  ) we would get 

f e. P*--~d~= f e ~ . ~ d ~  f P ~ e . ~ d ~ O  
f~ t~ f~ 

because the integrand equals zero. This gives a contradiction, i.e. 

eEOe~(gt) but  e¢Oe , (~ ) .  
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3. Homogeneous operators of v variables 

We shall now extend Theorem 2. 

Theorem 4. I] the polynomial P(~) is homogeneous and non-elliptic modulo the 
lineality space A(P)  there is an open set ~ such thnt Ps ( ~ ) ¢  Pw(~). 

Proo]: Let  the polynomial  be defined in C~. According to the assumptions we 
can find a real vector e ~ 0  not in A(P) ,  such tha t  

(1) P(te~)=O for every real t. 

In  view of the definition of A(P)  ([1], Definition 2.2) there exists a second 
real vector e 1 so tha t  

(2) P(ea+te~)¢P(e l )  for some real t. 

This shows tha t  e 1 and e~ are not proportional. We further conclude t ha t  
P (~1 el + ~2 e2) has ~1 as a factor and is not independent of ~2, hence is a com- 
plete polynomial of the two variables ~1 and ~2. 

We now introduce a coordinate system such tha t  the l ineahty space is defined 
by  the equations ~1 = ~ . . . . .  ~ = 0 and with the $1- and ~-axes  along e I and 
e~ respectively. In  this system we write 

(3) p (e) = P0 (e) + P1 (~) + " "  -~- P,n (~e). 

Here  P~ (8) denotes  a po lynomia l  t h a t  is homogeneous  of degree i in (81, 8~) and  
of degree ( m -  i) in (83 . .  • ~ ) .  I n  par t icular  we notice t h a t  P~  (8) = P (8~ ex +'8~ e2). 

Le t  ~ denote  a bounded  domain  in R ~ containing the  origin, and  let  kQ be  
the domain obtained by excluding from ~ a cut F defined by  x ~ - x 2 = 0, [ z~[ ~< ½ e 
(i= 3 . . . . .  v), where ~ is so small tha t  the cut is enclosed in ~ .  

Applying [1] Theorem 2.8 and Lemma 3 above we conclude tha t  if uE~0(~2 )  
is distinguished ([1] p. 195) the restriction of u to any  var ie ty  F '  parallel to F 
is in L 2 (F') and converges strongly to zero when F ' - +  F. (We observe at  this 
stage tha t  the cut need not  always be taken of dimension ( ~ - 2 ) .  In  fact i t  
is sufficient for our purpose tha t  the function 1///~ is uniformly square integrable 
in the varieties X orthogonal to F.) 

P~ ( ~ ) ¢ P ~  ( ~ ) = P 0 ( ~ ) .  To this end we As before we are going to prove tha t  * * 
adap t  Lemma 4 to the new situation: 

Lemma 5. I [  d E C~ (~) and d = c ¢  0 in a neighbourhood (9 of the cut F, and 
i/ u is the restriction o/ 4 to ~ we have u E~p~. 

Proo/: As before we have to prove the equation 

S (P ( D ) u . v - u  . P (D)v) .dx=O 
a 

for every v E C ~ ( ~ )  satisfying the conditions vEL2(~)  and P(D)vEL2(~) .  
Let ~ ,  denote the domain obtained from ~ by  excluding the "parallelepipcd" 

R~q. defined by  I x~ ] ~< ½ e, Ix ~ ]~< ½ (~, ]x~l~< 1~, (i = 3 . . .  ~). We suppose the parame- 
ters e, ~ and ~' >~  are so determined as to let /~q, lie entirely in w. 
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Consider the operator P (D) -Pm (D) = Po (D) + P1 (D) + ... + Pro-1 (D) 
corresponding to the decomposition of P(~) given by (3). An arbi t rary term 
may be writ ten:  

l ~ ~_Lil ~ l ~ D ( l ~ ' = m - I  ) 
C _ ~  I ] - ~ = C ~  ~ C=cons t an t  • 

i ~TX" ]=1 $ O X '  / # 1 , 2  

We have 1 ~ ( ~ 1  ~ u).D~vdx 

for (1/i)(~u/Ox~)EC~(~¢) in view of the fact tha t  d ECf f (~ )  and is constant 
in a neighbourhood of the cut F containing R~q.. If  we make another partial  
integration we get 

f(c .D vg,l+ fu • u C-~-~iD~v ,dx. 

The surface integral is here extended over the two faces A z of R~q,, orthogonal 
to the xZ-direction. The absolute value of this integral is thus bounded by the 
quanti ty 21c I" I C I" ~" 8" Q"-a" M~, where M~ denotes the maximum of the funct ion  
[D~,v (x) l on Al, and hence--> 0 when (~--> 0 with ~ and Q' fixed. 

When the method used in the proof of Theorem 2 is applied to the operator 
Pm(D)=(1/i) (O/~xl)Q(D) corresponding to P,~(~)=~IQ(~), we get the result 
tha t  the absolute value of 

f (Pm(D) u)~dx- f u. Pm(D)vdx 

is smaller than 2 I c (~ .~,~-s. MQ, where MQ denotes the greatest value of the 
function I Q(D)v(x) on the faces of R~q, orthogonal to the xl-direction. 

If we now set 
I~o,= f (P(D)u.~-u.P(D)v)dx 

we get, since ~ -  Roe, is a null set and the integral I°~ is absolutely convergent 
according to the assumptions, 

lim I~q. = 0 = (P (D) u, v) - (u, P (D) v) 
(~--~ 0 

which completes the proof. 

We finally generalize Theorem 3. Let  the coordinate system be defined in 
relation to P(~) as in Theorem 4 and let ~ ,  ~ and P denote the same sets as 
before. We set 5 = -  5 = {x I - x e ~ )  and similarly, for the sake of symmetry  
of notations, F = - F  (=  F). We further denote by Z '  the subspace of R ~ defined 
by the equations xl=x~=O. Let v 2 be a function in Z'  satisfying ~pEC~ ( F ) a n d  
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SYJda¢O, where d a  is the element of surface of Z ' .  Denote by # the measure 
~0da in R" with support  in F. 

Theorem 5. Let P(~) be homogeneous and non-elliptic modulo the lineality space 
A (P). I /  E is any proper /undamental solution o/ P (D) and i / e  is the restriction 
to ~ o/ E-~ #, we have eeOp:(~)  and e+O1, (~). 

Proo/: We first prove tha t  the restriction of E ++ # to ~ is in L ~ (~). This will 
follow from a theorem of F. Riesz if we prove tha t  ( E + e # , u )  is a linear 
functional of u EL~{~) or, equivalently, an inequality of the form 

}(E++~,u>l<Cllul].<~> if ueV3"(~). 

Let  ~ denote a function in Cff (~) for which the restriction to Z '  is ----+ 1 in 
and let u be any  function in C~ ¢ (~). We set 4 (x)= u ( -  x). Applying Leib- 

niz'  formula we get 

P (D) (~ (E + 4)) = 5 (P<~)(D) (E + 4))D~ ~/I  ~ [!. 

Since E is proper we have (ef. [2] formula (1.11)) 

I] pc:)(D) (E + 4)IIL,<5) < C [[4 ]IL,(5) = C [I u I]L:(5>. 

Hence with v = ~ (E + 4) 

II P (D) v IIL,<~) < C H u ]I L:<~). 

From Lemma 3 we know tha t  the function ] / /Sz is uniformly square integrable 

in the varieties Z parallel to the ~1 ~2-P Iane" Since v = ~ (E + 4) E Cff (~) ([4] VI, 
Thgor~me XI)  we can apply [1] Theorem 2.8 getting 

II E + 4 II~=<~) = II v Ii-<~) < [I v I1-<~,> < C II P (D)  v HL'(h)~< C' H u ]tL'(5)- 

Now we get by  Schwarz' inequality 

]( E++4,h )I<OIIE +411L:<~) 

and making use of the associativity and commutat iv i ty  of the convolution when 
all but  one of the components have compact  support  ([4] VI, Th6orbme VII )  

( E-)+ #,u }= E + #-)+4(O)=( E ++4,~ }. 

Combining these results we get 

Now we can reproduce the method of Theorem 3 almost  word for word. We 
infer from what  was just proved tha t  e E L 2 (~). Since P (D) E -)+ # = ~ ++ # = # we 
have P (D) E -)+ # = 0 in ~ and consequently P (D) e belongs to L 2 (~). Therefore 
we have e e ~ (~). 
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I f  dE C~ (~), 4 =  c # 0  in a neighbourhood of F we get in the sense of dis- 
t r ibution theory 

f e. P ( D ) u . d x =  f (E ~e #)P (D) ;udx= ( P (D) E ~ t~, ~u ) = 
g~ Rn 

F F 

On the other hand we know from Lemma 5 tha t  u f i ~ e * ( ~ )  so tha t  

fe.~(D)udx=fe.P*u.dx. 

Now if it were true tha t  e E Op~ (g2) we would get 

because the integrand equals zero. This gives a contradiction, i.e. 

eeDp~(g~) but eCD~,(g~). 
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