On weak and strong extensions of partial differential operators with constant coefficients

By Stephan Schwarz

Introduction

Let Ω be a bounded domain in R^{v}. We denote by $C^{\infty}(\Omega)$ the set of infinitely differentiable functions defined in Ω, and by $C_{0}^{\infty}(\Omega)$ the set of those functions in $C^{\infty}(\Omega)$ which have compact support in Ω.

With the notations of Hörmander [1], there is a one to one correspondence between the partial differential operators on the functions in R^{v}

$$
P(D)=\sum_{\alpha} a^{\alpha_{1} \ldots \alpha_{k}} \frac{1}{i} \frac{\partial}{\partial x^{\alpha_{1}}} \cdots \frac{1}{i} \frac{\partial}{\partial x^{\alpha_{k}}}=\sum_{\alpha} a^{\alpha} D_{\alpha} \quad\left(\alpha=\left(\alpha_{1} \ldots \alpha_{k}\right)\right)
$$

and the polynomials in the dual space C_{v}

$$
P(\xi)=\sum_{\alpha} a^{\alpha_{1} \ldots \alpha_{k}} \xi_{\alpha_{1}} \ldots \xi_{\alpha_{k}}=\sum_{\alpha} a^{\alpha} \xi_{\alpha}
$$

The algebraic adjoint of $P(D)$ is $\bar{P}(D)=\sum \bar{a}^{\alpha} D_{\alpha}$.
Definition. (Cf. [1] p. 168 and p. 241.) The closure P_{0} of the operator in L^{2} with domain $C_{0}^{\infty}(\Omega)$ defined by $P(D)$ is called the minimal operator defined by $P(D)$.

The adjoint $P_{w}(\Omega)$ of the minimal operator $\bar{P}_{0}(\Omega)$ defined by $\bar{P}(D)$ is called the maximal operator defined by $P(D)$ or the weak extension of $P(D)$.

The closure $P_{s}(\Omega)$ of the operator $P(D)$ defined in the set $\left\{u \mid u \in C^{\infty}(\Omega), u \in L^{2}(\Omega)\right.$, $\left.P(D) u \in L^{2}(\Omega)\right\}$ is called the strong extension of $P(D)$.

It is natural to suppose that the weak and strong extensions should generally be equal. A result confirming this hypothesis was given by Hörmander ($[1]$, Theorem 3.12) who proved that it is true when $P(D)$ is of local type and Ω is any domain. Another result of the same author [3] secures the assertion for any operator with constant coefficients as soon as the boundary of the domain Ω satisfies certain regularity properties.

It seems likely that, unless $P(D)$ is of local type, it is necessary to impose some condition on Ω in order that $P_{s}(\Omega)=P_{w}(\Omega)$. It is the aim of this paper to prove this under the additional assumption that $P(D)$ is homogeneous. This will be done by modifying an unpublished example given by L. Hörmander for $P(D)=\partial^{2} / \partial x \partial y$ (Theorem 1 below).

I want to take the opportunity to thank my teacher, Professor Lars Hörmander, for his constant interest and assistance.

1. Algebraic lemmas

Lemma 1. The integral

$$
\iint \frac{1}{1+\xi_{1}^{2}+\xi_{2}^{2}+\left|P\left(\xi_{1}, \xi_{2}\right)\right|} d \xi_{1} d \xi_{2}
$$

is convergent if and only if the degree n of the polynomial $P\left(\xi_{1}, \xi_{2}\right)$ exceeds two.
Proof: First consider a sector between a characteristic of the polynomial $P\left(\xi_{1}, \xi_{2}\right)$ and a half-ray from the origin, leaving the sector free from other characteristics. We may assume that these lines are $\xi_{2}=0$ and $l\left(\xi_{1}, \xi_{2}\right)=0$. Consider a curve $\xi_{2}=r^{1 / \alpha}\left(\xi_{1}^{2}+\xi_{2}^{2}=r^{2}, \alpha>1\right)$ and a circle (C) with radius r_{0}, where α and r_{0} will be chosen in (III) below. We now get the following estimate for the denominator $N\left(\xi_{1}, \xi_{2}\right)$ of the integrand in the sector:
(I) Inside the circle (C) we have $N \geqslant 1$.
(II) Outside the circle, between the line $\xi_{2}=0$ and the curve $\xi_{2}=r_{1 / \alpha}$ we have $N \geqslant r^{2}$. If (r, φ) are polar coordinates of a point on the curve we get, setting $\left(1-\alpha^{-1}\right)=\varepsilon$, that $\varphi=\arcsin r^{-\varepsilon}=O\left(r^{-\varepsilon}\right)$.
(III) Between the line $l\left(\xi_{1}, \xi_{2}\right)=0$ and the curve $\xi_{2}=r^{1 / \alpha}$ we have $N \geqslant C r^{n-\delta}$ where we can make δ arbitrarily small if we choose ε small enough. In fact, let the principal part of $P\left(\xi_{1}, \xi_{2}\right)$ be $p\left(\xi_{1}, \xi_{2}\right)=\xi_{2}^{m} q\left(\xi_{1}, \xi_{2}\right),(m \geqslant 1)$, where $q\left(\xi_{1}, \xi_{2}\right)$ is a homogeneous polynomial of degree ($n-m$), $q \neq 0$ in and on the boundary of the sector except at the origin. Let min $\left|q\left(\xi_{1}, \xi_{2}\right)\right|=\mu$ when the point $\left(\xi_{1}, \xi_{2}\right)$ moves on the part of the unit circle lying in the sector. Then for a point in the sector with coordinates (r, φ) we have $\left|q\left(\xi_{1}, \xi_{2}\right)\right| \geqslant \mu r^{n-m}$. Within the domain (III) we have $\xi_{2} \geqslant r^{1 / \alpha}$. Thus in (III) we get $\left|p\left(\xi_{1}, \xi_{2}\right)\right| \geqslant C r^{n-m \varepsilon}$. Choosing α so that $\delta=m \varepsilon<1$ we now conclude

$$
N \geqslant\left|P\left(\xi_{1}, \xi_{2}\right)\right| \geqslant C r^{n-\delta}\left(1-O\left(r^{-(1-\delta)}\right)\right) \geqslant C^{\prime} r^{n-\delta}
$$

when $r>r_{0}$. (C and C^{\prime} denote different constants.)
We now estimate the integral in the sector, using that $n>2$.

$$
\iint \frac{1}{N\left(\xi_{1}, \xi_{2}\right)} d \xi_{1} d \xi_{2} \leqslant C\left(\int_{r<r_{0}} d \xi_{1} d \xi_{2}+\int_{r=r_{0}}^{\infty} \int_{\varphi=0}^{o(r-\varepsilon)} \frac{1}{r} d r d \varphi+\iint_{(\mathrm{IIT})} \frac{1}{r^{n-1-\delta}} d r d \varphi\right)<\infty .
$$

In the remaining sectors, i.e. those which are not bounded by characteristics, we get the estimates:

$$
\begin{array}{ll}
N \geqslant C & \text { when } r<r_{0} \\
N \geqslant C r^{n} & \text { when } r \geqslant r_{\mathbf{0}}
\end{array}
$$

Now the convergence follows in the whole plane.
From [1] we adopt the notation $\tilde{P}(\xi)^{2}=\sum_{\alpha}\left|P^{(\alpha)}(\xi)\right|^{2}$.
Lemma 2. If $P(\xi)$ is a complete polynomial of two variables ξ_{1} and ξ_{2}, the integral

$$
\int \frac{1}{\tilde{P}(\xi)^{2}} d \xi
$$

is convergent unless with suitable coordinates

$$
P(\xi)=C\left[\left(\xi_{1}+i \alpha_{1}\right)+\left(\xi_{2}+i \alpha_{2}\right)^{2}\right], \quad\left(\alpha_{1} \text { and } \alpha_{2} \text { denote real constants }\right) .
$$

Proof. If the principal part of $P(\xi)$ is complete we know from Lemma 2.13 in [1] that the set

$$
\left\{\operatorname{Re} P^{(\alpha)}(\xi) ; \operatorname{Im} P^{(\alpha)}(\xi)\right\} \quad(|\alpha|=n-1)
$$

contains two real linearly independent linear forms l_{1} and l_{2}. We may assume the coordinates so chosen that $l_{1}=\xi_{1}, l_{2}=\xi_{2}$. This gives the estimate

$$
\tilde{P}^{2} \geqslant C\left(1+\xi_{1}^{2}+\xi_{2}^{2}+\left|P\left(\xi_{1}, \xi_{2}\right)\right|^{2}\right)
$$

Thus in this case the integral converges according to Lemma 1.
If the principal part of $P(\xi)$ is not complete we can set, with coordinates conveniently chosen,

$$
P(\xi)=c \xi_{2}^{n}+Q\left(\xi_{1}, \xi_{2}\right)
$$

where Q is a polynomial of degree $<n$ not independent of ξ_{1} and c is a constant. Now

$$
\frac{\partial^{n-1} P}{\partial \xi_{2}^{n-1}}=a_{1}\left(\xi_{2}+a_{2}\right) \quad\left(a_{1} \neq 0 \text { and } a_{2} \text { are constants }\right)
$$

and for some α we get $P^{(\alpha)}(\xi)=a_{3}\left(\xi_{1}+R\left(\xi_{2}\right)\right),\left(a_{3} \neq 0\right)$. With $S\left(\xi_{2}\right)=\operatorname{Re} R\left(\xi_{2}\right)$ we get the estimate

$$
\tilde{P}^{2} \geqslant C\left(1+\xi_{2}^{2}+\left|\xi_{1}+S\left(\xi_{2}\right)\right|^{2}+|P(\xi)|^{2}\right)
$$

We now set

$$
\left.\begin{array}{l}
\eta_{1}=\xi_{1}+S\left(\xi_{2}\right) \\
\eta_{2}=\xi_{2}
\end{array}\right\} \quad \frac{D\left(\xi_{1}, \xi_{2}\right)}{D\left(\eta_{1}, \eta_{2}\right)}=1
$$

We get from the above inequality

$$
\tilde{P}^{2} \geqslant C\left(1+\eta_{1}^{2}+\eta_{2}^{2}+\left|P\left(\eta_{1}-S\left(\eta_{2}\right), \eta_{2}\right)\right|^{2}\right)
$$

Now if the degree of the polynomial $P\left(\eta_{1}-S\left(\eta_{2}\right), \eta_{2}\right)$ is \geqslant two, the integral will converge according to Lemma 1.

If this is not the case we have

$$
\begin{gathered}
P\left(\eta_{1}-S\left(\eta_{2}\right), \eta_{2}\right)=A \eta_{1}+B \eta_{2}+E(A, B, E \text { are constants }) \\
P\left(\xi_{1}, \xi_{2}\right)=A\left(\xi_{1}+S\left(\xi_{2}\right)\right)+B \xi_{2}+E
\end{gathered}
$$

This gives
Since $P(\xi)$ is complete we conclude that $A \neq 0$. Now if $S\left(\xi_{2}\right)$ is of degree exceeding two we have

$$
\tilde{P}^{2} \geqslant C\left(1+\xi_{2}^{2}+\left|\xi_{1}+S\left(\xi_{2}\right)+\operatorname{Re}\left(\frac{B \xi_{2}+E}{A}\right)\right|^{2}+\left|\frac{\partial}{\partial \xi_{2}} S\left(\xi_{2}\right)+\operatorname{Re} \frac{B}{A}\right|^{2}\right)
$$

s. schwarz, Extensions of partial differential operators

The non-singular transformation
now gives

$$
\begin{gathered}
\zeta_{1}=\xi_{1}+S\left(\xi_{2}\right)+\operatorname{Re}\left(\frac{B \xi_{2}+E}{A}\right) \\
\zeta_{2}=\xi_{2} \\
\tilde{P}^{2} \geqslant C\left(1+\zeta_{1}^{2}+\zeta_{2}^{2}+T\left(\zeta_{2}\right)\right),
\end{gathered}
$$

where T denotes a positive polynomial of degree $\geqslant 4$. So the integral converges. Finally if the degree of $S\left(\xi_{2}\right)$ is two we have the exceptional case.

It is easily verified that the integral diverges in this case. We get

$$
\tilde{P}^{2} \leqslant C\left(1+\left\langle\xi_{1}+\xi_{2}^{2}\right)^{2}+\xi_{2}^{2}\right)
$$

The transformation $\eta_{1}=\xi_{1}+\xi_{2}^{2}, \eta_{2}=\xi_{2}$ gives

$$
\tilde{P^{2}} \leqslant C\left(1+\eta_{1}^{2}+\eta_{2}^{2}\right)
$$

Thus we have logarithmical divergence.
Lemma 3. If $P(\xi)$ is a homogeneous polynomial in C_{p} where ξ_{1} and ξ_{2} occur with total degree $m \geqslant 2$, and if the lineality space $\Lambda(P)$ is defined by $\xi_{1}=\xi_{2}=\cdots=$ $\xi_{x}=0$, the function $1 / \tilde{P}$ is uniformly square integrable in the varieties Σ parallel to the $\xi_{1} \xi_{2}$-plane, i.e. $\int 1 / \tilde{P}^{2} d \xi_{1} d \xi_{2}<C_{P}$, where the constant C_{P} depends on P but is independent of $\left(\xi_{3} \ldots \xi_{\nu}\right)$.

Proof: Suppose the degree of $P(\xi)$ is $=n$. In view of the fact that $P(\xi)=$ $P\left(\xi_{1} \ldots \xi_{x}\right)$ is complete and homogeneous in the variables $\left(\xi_{1} \ldots \xi_{x}\right)$ we infer from Lemma 2.13 in [1] that the set

$$
\left\{\operatorname{Re} P^{(\alpha)}(\xi), \operatorname{Im} P^{(\alpha)}(\xi)\right\} \quad(|\alpha|=n-1)
$$

contains x linearly independent linear homogeneous forms ($l_{1} \ldots l_{\mu}$) of the variables $\left(\xi_{1} \ldots \xi_{x}\right)$. Hence there are constants $C_{1}>0$ and $C_{2}>0$ so that

$$
C_{1}<\frac{\sum_{i=1}^{\kappa} l_{i}^{2}}{\sum_{i=1}^{\kappa} \xi_{i}^{2}}<C_{2} .
$$

Now select in $P(\xi)$ one term, where ξ_{1} and ξ_{2} occur with maximal total degree $m \geqslant 2$, say

$$
a \cdot \xi_{1}^{l} \cdot \xi_{2}^{m-l} \cdot \prod_{i=3}^{x} \xi_{i}^{L_{i}}
$$

We study instead of $P(\xi)$ the weaker polynomial

$$
Q(\xi)=\prod_{3}^{\kappa}\left(\frac{\partial}{\partial \xi_{i}}\right)^{l_{i}} P(\xi)
$$

We set $Q(\xi)=Q_{0}(\xi)+Q_{1}(\xi)+\cdots+Q_{m}(\xi)$, where $Q_{i}(\xi)$ is homogeneous of degree i in (ξ_{1}, ξ_{2}) and of degree ($m-i$) in ($\xi_{3} \cdots \xi_{\chi}$).

After these remarks we get the estimate:

$$
\tilde{P}^{2}(\xi) \geqslant C\left(|Q(\xi)|^{2}+\sum_{i=1}^{\kappa} \xi_{i}^{2}+1\right)
$$

We use the notation $\xi_{3}^{2}+\xi_{4}^{2}+\cdots+\xi_{x}^{2}=t^{2}$. Let $\tilde{P}_{\Sigma}^{2}(\xi)$ denote the restriction of $\tilde{P^{2}}(\xi)$ to Σ.

If $t \geqslant 1$ we transform by the formulas $\xi_{i}=t \cdot \eta_{i}(i=1 \ldots x)$. Setting $\eta_{1}^{2}+\eta_{2}^{2}=r^{2}$ we get

$$
\tilde{P}_{\Sigma}^{2}(\xi) \geqslant C\left(\left|R_{2 m-1}\left(\eta_{1}, \eta_{2}\right)+\left|Q_{m}\left(\eta_{1} \eta_{2}\right)\right|^{2}\right| t^{2 m}+\left(r^{2}+1\right) t^{2}+1\right) .
$$

Here $R_{2 m-1}\left(\eta_{1}, \eta_{2}\right)$ denotes a real polynomial of degree $2 m-1$ at most, the coefficients depending on $\eta_{3} \ldots \eta_{k}$. We now get the estimates:

$$
\begin{aligned}
\int_{\Sigma} \frac{1}{\tilde{P}_{\Sigma}^{2}\left(\xi_{1}, \xi_{2}\right)} d \xi_{1} d \xi_{2} & \leqslant C \int \frac{1}{t^{2(m-1)}\left|R_{2(m-1)}+\left|Q_{m}\right|^{2}\right|+r^{2}+1+t^{-2}} d \eta_{1} d \eta_{2} \\
& \leqslant C \int \frac{1}{\left|R_{2 m-1}+\left|Q_{m}\right|^{2}\right|+r^{2}+1} d \eta_{1} d \eta_{2}
\end{aligned}
$$

We now use the method of proof of Lemma 1 . We can determine constants C and r_{0} and an arbitrarily small fixed number δ such that, if $r>r_{0}$, the term

$$
\left|R_{2 m-1}+\left|Q_{m}\right|^{2}\right| \text { will be } \geqslant C r^{2 m-\delta}
$$

except in narrow domains enclosing the characteristics of the polynomial $Q_{m}\left(\eta_{1}, \eta_{2}\right)$. The constants in these inequalities can be determined independently of ($\xi_{3} \ldots \xi_{n}$) because the coefficients of $R_{2 m-1}$ are bounded when $\sum_{i=3}^{\kappa} \eta_{i}^{2}=1$, while the coefficients of Q_{m} are independent of ($\eta_{3} \ldots \eta_{\kappa}$). In the narrow domains just referred to we replace the denominator by the smaller quantity r^{2} and inside the circle $r \leqslant r_{0}$ by +1 . In this way we get the estimate

$$
\int_{\Sigma} \frac{1}{\tilde{P}_{\Sigma}^{2}(\xi)} d \xi_{1} d \xi_{2} \leqslant C_{P}^{\prime} \quad(t \geqslant 1)
$$

Now suppose $t<1$. We get

$$
\tilde{P}_{\Sigma}^{2}(\xi) \geqslant C\left(\left|R_{2 m-1}\left(\xi_{1}, \xi_{2}\right)+\left|Q_{m}\left(\xi_{1}, \xi_{2}\right)\right|^{2}\right|+\xi_{1}^{2}+\xi_{2}^{2}+1\right) .
$$

Here we can apply the same method as before without any preliminary transformation getting the estimate

$$
\int_{\Sigma} \frac{1}{\tilde{\tilde{P}_{\Sigma}^{2}(\xi)}} d \xi_{1} d \xi_{2} \leqslant C_{P}^{\prime \prime} \quad(t<1)
$$

Combining these results, the proof is complete.

2. Homogeneous operators of two variables

Let $\hat{\Omega}$ denote a bounded domain containing the origin and Ω the same domain with the origin left out.

Theorem 1. $P_{s}(\Omega) \neq P_{w}(\Omega)$ if $P(D)=\partial^{2} / \partial x^{1} \partial x^{2}$.
Proof: We are going to prove the equivalent assertion

$$
P_{s}^{*}(\Omega) \neq P_{w}^{*}(\Omega)=\bar{P}_{0}(\Omega)
$$

by indicating an example of a function $u \in \mathcal{D}_{P_{s}^{*}}, u \notin \bar{D}_{\bar{P}_{0}}$.
From direct computation or Lemma 2 or 3 we get

$$
\int \frac{1}{\tilde{\bar{P}}(\xi)^{2}} d \xi<\infty
$$

Applying [1] Theorem 2.6 with $Q(\xi) \equiv 1$ we realize that, after correction on a null set, every function $v \in \mathcal{D}_{\bar{P}_{0}}$ is continuous and vanishes on the boundary of Ω, thus in particular at the origin. Accordingly the theorem follows from the following

Lemma 4. If $\hat{u} \in C_{0}^{\infty}(\hat{\Omega})$ and $\hat{u}=$ constant $=c \neq 0$ in a neighbourhood ω of the origin, and if u is the restriction of \hat{u} to Ω, we have $u \in \mathcal{D}_{P_{s}^{*}}$.

Proof: We have to prove the relation

$$
(\bar{P}(D) u, v)_{\Omega}-(u, P(D) v)_{\Omega}=0 \quad \text { for every } \quad v \in \mathcal{D}_{P_{s}}
$$

In view of the definition of $P_{s}(\Omega)$ it is sufficient to show this for any $v \in C^{\infty}(\Omega)$, satisfying the conditions $v \in L^{2}(\Omega)$ and $P(D) v \in L^{2}(\Omega)$. In the present case the relation can be written

$$
\iint_{\Omega}\left(\frac{\partial^{2} u}{\partial x^{1} \partial x^{2}} \cdot \bar{v}-u \cdot \frac{\partial^{2} \bar{v}}{\partial x^{1} \partial x^{2}}\right) d x^{1} d x^{2}=0
$$

Let $\Omega_{\varepsilon}^{\delta}$ denote the domain obtained from Ω by excluding the rectangle $\left|x^{1}\right|<\frac{1}{2} \varepsilon$, $\left|x^{2}\right|<\frac{1}{2} \delta$ and let R_{ε}^{δ} be the boundary of this rectangle. Suppose that the quantities ε and δ are small enough to make R_{ε}^{δ} lie entirely inside ω. Set

$$
I_{\varepsilon}^{\delta}=\iint_{\Omega_{\varepsilon}^{\delta}}\left(\frac{\partial^{2} u}{\partial x^{1} \partial x^{2}} \cdot \bar{v}-u \cdot \frac{\partial^{2} \tilde{v}}{\partial x^{1} \partial x^{2}}\right) d x^{1} d x^{2}
$$

Rewriting and integrating by parts we get

$$
I_{\varepsilon}^{\delta}=\int_{\Omega_{\varepsilon}^{\delta}} \int\left[\frac{\partial}{\partial x^{2}}\left(\frac{\partial u}{\partial x^{1}} \cdot \bar{v}\right)-\frac{\partial}{\partial x^{1}}\left(u \cdot \frac{\partial \bar{v}}{\partial x^{2}}\right)\right] d x^{1} d x^{2}=-\int_{R_{\varepsilon}^{\delta}}\left(\frac{\partial u}{\partial x^{1}} \cdot \bar{v} d x^{1}+u \cdot \frac{\partial \bar{v}}{\partial x^{2}} d x^{2}\right)
$$

since $\hat{u} \in C_{0}^{\infty}(\hat{\Omega})$ and hence vanishes in a neighbourhood of the boundary of $\hat{\Omega}$. If we now introduce the condition $u(x)=c \neq 0$ in ω we get:

$$
I_{\varepsilon}^{\delta}=-c[\bar{v}(\varepsilon, \delta)-\bar{v}(\varepsilon,-\delta)+\bar{v}(-\varepsilon,-\delta)-\bar{v}(-\varepsilon, \delta)] .
$$

We finally use that $v \in C^{\infty}(\Omega)$, which gives, with ε fixed,

$$
\lim _{\delta \rightarrow 0} I_{\varepsilon}^{\delta}=0
$$

Since $\Omega-\Omega_{\varepsilon}^{0}$ is a null set and I_{0}^{0} is absolutely convergent we get

$$
\lim _{\delta \rightarrow 0} I_{\varepsilon}^{\delta}=0=(\bar{P}(D) u, v)-(u, P(D) v)
$$

which completes the proof.
Theorem 2. $P_{s}(\Omega) \neq P_{w}(\Omega)$ if the corresponding polynomial $P\left(\xi_{1}, \xi_{2}\right)$ is complete, homogeneous and non-elliptic.

Proof: We again prove $P_{s}^{*}(\Omega) \neq P_{w}^{*}(\Omega)=\bar{P}_{0}(\Omega)$.
Since the polynomial has at least one real characteristic we can, with suitable coordinates write

$$
P(\xi)=\xi_{1} \cdot Q(\xi) \quad \text { and } \quad P(D)=\frac{1}{i} \cdot \frac{\partial}{\partial x^{1}} Q(D)
$$

Application of Lemma 2 or 3 combined with [1] Theorem 2.6 shows as in the proof of Theorem 1 that we need only prove Lemma 4 for the present operator $P(D)$.

Let \hat{u} and u satisfy the conditions of Lemma 4. Let v be any function in $C^{\infty}(\Omega)$ satisfying $v \in L^{2}(\Omega)$ and $P(D) v \in L^{2}(\Omega)$. We are going to show the equation

$$
\begin{gathered}
(\bar{P}(D) u, v)-(u, P(D) v)=0 \\
\text { i.e. } \quad \iint_{\Omega}\left[\left(\bar{Q}(D) \frac{1}{i} \frac{\partial}{\partial x^{1}} u\right) \cdot \bar{v}-u \cdot \frac{1}{i} \frac{\partial}{\partial x^{1}} Q(D) v\right] d x^{1} d x^{2}=0 .
\end{gathered}
$$

We use the same notations $\Omega_{\varepsilon}^{\delta}$ and R_{ε}^{δ} as in the proof of Theorem 1. We have

$$
\iint_{\Omega_{\varepsilon}^{\delta}}\left(\bar{Q}(D) \frac{1}{i} \frac{\partial}{\partial x^{1}} u\right) \cdot \bar{v} d x^{1} d x^{2}=\iint_{\Omega_{\varepsilon}^{\delta}} \frac{1}{i} \frac{\partial}{\partial x^{1}} u \cdot \overline{Q(D) v} d x^{1} d x^{2}
$$

for $(1 / i)\left(\partial u / \partial x^{1}\right) \in C_{0}^{\infty}\left(\Omega_{\varepsilon}^{\delta}\right)$ in view of the fact that $\hat{u} \in C_{0}^{\infty}(\hat{\Omega})$ and is constant in a neighbourhood ω of the origin enclosing R_{ε}^{δ} and this means that the boundary integrals which arise all vanish.

If we make another partial integration we get

$$
\iint_{\Omega_{\varepsilon}^{\delta}}\left(\bar{Q}(D) \frac{1}{i} \frac{\partial}{\partial x^{1}} u\right) \cdot \bar{v} d x^{1} d x^{2}=\int_{R_{\varepsilon}^{\delta}} \frac{1}{i} u \cdot \overline{Q(D) v} d x^{2}+\iint_{\Omega_{\varepsilon}^{\delta}} u \cdot \overline{\frac{1}{i} \frac{\partial}{\partial x^{1}} Q(D) v} \cdot d x^{1} d x^{2} .
$$

Since $v \in C^{\infty}(\Omega)$ the function $|Q(D) v|$ is bounded on R_{ε}^{δ}. Let M_{Q} denote the maximal value on the sides parallel to the x^{2}-direction. Then the curve integral in the last equation is bounded by the quantity $2|c| \cdot \delta \cdot M_{Q} \rightarrow 0$ if $\delta \rightarrow 0$ with ε fixed. We now set

$$
I_{\varepsilon}^{\delta}=\iint_{\Omega_{\varepsilon}^{\delta}}(\bar{P}(D) u \cdot \bar{v}-u \cdot \overline{P(D)} \bar{v}) d x^{1} d x^{2}
$$

Since $\Omega-\Omega_{\varepsilon}^{0}$ is a null set and the integral I_{0}^{0} is absolutely convergent according to the assumptions, we get when $\delta \rightarrow 0$ with ε fixed

$$
\lim _{\delta \rightarrow 0} I_{\varepsilon}^{\delta}=0=(\widetilde{P}(D) u, v)-(u, P(D) v)
$$

and the proof is complete.
Let Ω be defined as before. As a supplement to the results of Theorems 1-2 we prove

Theorem 3. Let the polynomial $P\left(\xi_{1}, \xi_{2}\right)$ be complete, homogeneous and non-elliptic. If E is any proper fundamental solution (cf. [2]) of the operator $P(D)$ and if e is the restriction of E to Ω, then $e \in \mathcal{D}_{P_{w}}(\Omega), e \notin \bar{D}_{P_{s}}(\Omega)$.

Proof: According to [2] Theorem 2.2 we have $E \in L_{\mathrm{loc}}^{2}$ if and only if

$$
\int \frac{1}{\tilde{p}^{2}(\xi)} d \xi<\infty
$$

In view of Lemma 2 this condition is satisfied. Now since $P(D) E=\delta_{0}$ by definition, we have $P(D) E=0$ in Ω, and consequently $P(D) e$ belongs to $L^{2}(\Omega)$. Therefore $e \in \mathcal{D}_{P_{v o}}(\Omega)$.

Since $\hat{u} \in C_{0}^{\infty}(\hat{\Omega})$ we get in the sense of distribution theory

$$
\int_{\Omega} e \cdot \overline{\bar{P}}(D) u \cdot d x=\int_{R^{2}} E \cdot \overline{\bar{P}}(D) \overline{\hat{u}} \cdot d x=\langle P(D) E, \overline{\hat{u}}\rangle=\left\langle\delta_{0}, \overline{\hat{u}}\right\rangle=\overline{\bar{u}}(0)=\bar{c} \neq 0 .
$$

On the other hand we know from Lemma 4 that $u \in \mathcal{D}_{P_{s}^{*}}$ so that

$$
\int_{\Omega} e \cdot \overline{\bar{P}(\bar{D}) u} d x=\int_{\Omega} e \cdot \overline{P_{s}^{*} u} \cdot d x .
$$

Now if it were true that $e \in D_{P_{s}}(\Omega)$ we would get

$$
\int_{\Omega} e \cdot \overline{P_{s}^{*} u} d x=\int_{\Omega} P_{s} e \cdot \bar{u} d x=\int_{\Omega} P_{w} e \cdot \bar{u} d x=0
$$

because the integrand equals zero. This gives a contradiction, i.e.

$$
e \in \mathcal{D}_{P_{w}}(\Omega) \text { but } e \notin \mathcal{D}_{P_{s}}(\Omega) .
$$

3. Homogeneous operators of \boldsymbol{v} variables

We shall now extend Theorem 2 .
Theorem 4. If the polynomial $P(\xi)$ is homogeneous and non-elliptic modulo the lineality space $\Lambda(P)$ there is an open set Ω such thnt $P_{s}(\Omega) \neq P_{w}(\Omega)$.

Proof: Let the polynomial be defined in C_{v}. According to the assumptions we can find a real vector $e_{2} \neq 0$ not in $\Lambda(P)$, such that

$$
\begin{equation*}
P\left(t e_{2}\right)=0 \quad \text { for every real } t . \tag{1}
\end{equation*}
$$

In view of the definition of $\Lambda(P)$ ([1], Definition 2.2) there exists a second real vector e_{1} so that

$$
\begin{equation*}
P\left(e_{1}+t e_{2}\right) \neq P\left(e_{1}\right) \quad \text { for some real } t . \tag{2}
\end{equation*}
$$

This shows that e_{1} and e_{2} are not proportional. We further conclude that $P\left(\xi_{1} e_{1}+\xi_{2} e_{2}\right)$ has ξ_{1} as a factor and is not independent of ξ_{2}, hence is a complete polynomial of the two variables ξ_{1} and ξ_{2}.

We now introduce a coordinate system such that the lineality space is defined by the equations $\xi_{1}=\xi_{2}=\cdots=\xi_{\pi}=0$ and with the ξ_{1} - and ξ_{2}-axes along e_{1} and e_{2} respectively. In this system we write

$$
\begin{equation*}
P(\xi)=P_{0}(\xi)+P_{1}(\xi)+\cdots+P_{m}(\xi) . \tag{3}
\end{equation*}
$$

Here $P_{i}(\xi)$ denotes a polynomial that is homogeneous of degree i in $\left(\xi_{1}, \xi_{2}\right)$ and of degree $(m-i)$ in $\left(\xi_{3} \ldots \xi_{\kappa}\right)$. In particular we notice that $P_{m}(\xi)=P\left(\xi_{1} e_{1}+\xi_{2} e_{2}\right)$.

Let $\hat{\Omega}$ denote a bounded domain in R^{v} containing the origin, and let Ω be the domain obtained by excluding from $\widehat{\Omega}$ a cut Γ defined by $x^{1}=x^{2}=0,\left|x^{i}\right| \leqslant \frac{1}{2} \varrho$ $(i=3, \ldots, v)$, where ϱ is so small that the cut is enclosed in Ω.

Applying [1] Theorem 2.8 and Lemma 3 above we conclude that if $u \in \mathcal{D}_{\bar{P}_{0}}(\Omega)$ is distinguished ($[1]$ p. 195) the restriction of u to any variety Γ^{\prime} parallel to Γ is in $L^{2}\left(\Gamma^{\prime}\right)$ and converges strongly to zero when $\Gamma^{\prime} \rightarrow \Gamma$. (We observe at this stage that the cut need not always be taken of dimension $(v-2)$. In fact it is sufficient for our purpose that the function $1 / \tilde{P}$ is uniformly square integrable in the varieties Σ orthogonal to Γ.)

As before we are going to prove that $P_{s}^{*}(\Omega) \neq P_{w}^{*}(\Omega)=\bar{P}_{0}(\Omega)$. To this end we adapt Lemma 4 to the new situation:

Lemma 5. If $\hat{u} \in C_{0}^{\infty}(\hat{\Omega})$ and $\hat{u}=c \neq 0$ in a neighbourhood ω of the cut Γ, and if u is the restriction of \hat{u} to Ω we have $u \in \mathcal{D}_{P_{s}^{*}}^{*}$.

Proof: As before we have to prove the equation

$$
\int_{\Omega}(\bar{P}(D) u \cdot v-u \cdot \overline{P(D) v)} \cdot d x=0
$$

for every $v \in C^{\infty}(\Omega)$ satisfying the conditions $v \in L^{2}(\Omega)$ and $P(D) v \in L^{2}(\Omega)$.
Let $\Omega_{\varepsilon Q^{\prime}}^{\delta}$ denote the domain obtained from $\hat{\Omega}$ by excluding the "parallelepiped" $R_{\varepsilon \varrho^{\prime}}^{\delta}$ defined by $\left|x^{1}\right| \leqslant \frac{1}{2} \varepsilon,\left|x^{2}\right| \leqslant \frac{1}{2} \delta,\left|x^{i}\right| \leqslant \frac{1}{2} \varrho^{\prime}(i=3 \ldots v)$. We suppose the parameters ε, δ and $\varrho^{\prime}>\varrho$ are so determined as to let $R_{\varepsilon Q^{\prime}}^{\delta}$ lie entirely in ω.
s. SChWARZ, Extensions of partial differential operators

Consider the operator $P(D)-P_{m}(D)=P_{0}(D)+P_{1}(D)+\cdots+P_{m-1}(D)$ corresponding to the decomposition of $P(\xi)$ given by (3). An arbitrary term may be written:

We have

$$
C \frac{1}{i} \frac{\partial}{\partial x^{l}} \prod_{j=1}^{m-1} \frac{1}{i} \frac{\partial}{\partial x^{l}}=C \frac{1}{i} \frac{\partial}{\partial x^{l}} D_{\alpha} \quad\left(\begin{array}{c}
|\alpha| \\
=m-1 \\
C \\
=\text { constant } \\
l \neq 1,2
\end{array}\right)
$$

$$
\int_{\Omega_{\varepsilon e^{\prime}}^{\delta}}\left(\bar{C} \cdot D_{\alpha} \frac{1}{i} \frac{\partial}{\partial x^{l}} u\right) \cdot \bar{v} \cdot d x=\int_{\Omega_{\varepsilon Q^{\prime}}^{\delta}}\left(\bar{C} \frac{1}{i} \frac{\partial}{\partial x^{l}} u\right) \cdot \overline{D_{\alpha} v} d x
$$

for $(1 / i)\left(\partial u / \partial x^{l}\right) \in C_{0}^{\infty}\left(\Omega_{\varepsilon e^{\prime}}^{\delta}\right)$ in view of the fact that $\hat{u} \in C_{0}^{\infty}(\hat{\Omega})$ and is constant in a neighbourhood of the cut Γ containing $R_{e e^{\prime}}^{\delta}$. If we make another partial integration we get

$$
\int_{\mathbf{\Omega}_{\varepsilon e^{\prime}}^{\delta}}\left(\bar{C} \cdot \frac{1}{i} \frac{\partial}{\partial x^{l}} D_{\alpha} u\right) \cdot \bar{v} \cdot d x=\int_{\Delta_{l}} \bar{C} \frac{1}{i} u \cdot \overline{D_{\alpha} \bar{v}} d \sigma+\int_{\Omega_{\varepsilon e^{\prime}}^{\delta}} u \cdot \overline{C \frac{1}{i} \frac{\partial}{\partial x^{l}} D_{\alpha} v} \cdot d x
$$

The surface integral is here extended over the two faces Δ_{l} of $R_{\varepsilon q^{\prime}}^{\delta}$, orthogonal to the x^{l}-direction. The absolute value of this integral is thus bounded by the quantity $2|c| \cdot|C| \cdot \varepsilon \cdot \delta \cdot \varrho^{\prime \nu-3} \cdot M_{\alpha}$, where M_{α} denotes the maximum of the function $\left|D_{\alpha} v(x)\right|$ on Δ_{l}, and hence $\rightarrow 0$ when $\delta \rightarrow 0$ with ε and ϱ^{\prime} fixed.

When the method used in the proof of Theorem 2 is applied to the operator $P_{m}(D)=(1 / i)\left(\partial / \partial x^{1}\right) Q(D)$ corresponding to $P_{m}(\xi)=\xi_{1} Q(\xi)$, we get the result that the absolute value of

$$
\int_{\Omega_{\varepsilon e^{\prime}}^{\delta}}\left(\bar{P}_{m}(D) u\right) \bar{v} d x-\int_{\Omega_{\varepsilon e^{\prime}}^{\delta}} u \cdot \overline{P_{m}(D) v} d x
$$

is smaller than $2|c| \delta \cdot \varrho^{\prime \nu-2} \cdot M_{Q}$, where M_{Q} denotes the greatest value of the function $|Q(D) v(x)|$ on the faces of $R_{\varepsilon e^{\prime}}^{\delta}$ orthogonal to the x^{1}-direction.

If we now set

$$
I_{\varepsilon e^{\prime}}^{\delta}=\int_{\Omega_{\varepsilon e^{\prime}}^{\delta}}(\bar{P}(D) u \cdot \bar{v}-u \cdot \overline{P(D) v}) d x
$$

we get, since $\Omega-\Omega_{\varepsilon e^{\prime}}^{0}$ is a null set and the integral $I_{0_{Q}}^{0}$ is absolutely convergent according to the assumptions,

$$
\lim _{\delta \rightarrow 0} I_{\varepsilon \varrho^{\prime}}^{\delta}=0=(\bar{P}(D) u, v)-(u, P(D) v)
$$

which completes the proof.
We finally generalize Theorem 3. Let the coordinate system be defined in relation to $P(\xi)$ as in Theorem 4 and let $\hat{\Omega}, \Omega$ and Γ denote the same sets as before. We set $\breve{\Omega}=-\widehat{\Omega}=\{x \mid-x \in \hat{\Omega}\}$ and similarly, for the sake of symmetry of notations, $\check{\Gamma}=-\Gamma(=\Gamma)$. We further denote by Σ^{\prime} the subspace of R^{v} defined by the equations $x^{1}=x^{2}=0$. Let ψ be a function in Σ^{\prime} satisfying $\psi \in C_{0}^{\infty}(\Gamma)$ and
$\int \psi d \sigma \neq 0$, where $d \sigma$ is the element of surface of Σ^{\prime}. Denote by μ the measure $\psi d \sigma$ in R^{ν} with support in Γ.

Theorem 5. Let $P(\xi)$ be homogeneous and non-elliptic modulo the lineality space $\Lambda(P)$. If E is any proper fundamental solution of $P(D)$ and if e is the restriction to Ω of $E * \mu$, we have $e \in \mathcal{D}_{P_{w}}(\Omega)$ and $e \notin \mathcal{D}_{P_{s}}(\Omega)$.

Proof: We first prove that the restriction of $E * \mu$ to $\widehat{\Omega}$ is in $L^{2}(\hat{\Omega})$. This will follow from a theorem of F . Riesz if we prove that $\langle E * \mu, u\rangle$ is a linear functional of $u \in L^{2}(\hat{\Omega})$ or, equivalently, an inequality of the form

$$
|\langle E * \mu, u\rangle| \leqslant C\|u\|_{L^{2}(\hat{\Omega})} \quad \text { if } \quad u \in C_{0}^{\infty}(\hat{\Omega})
$$

Let $\check{\varphi}$ denote a function in $C_{0}^{\infty}(\breve{\Omega})$ for which the restriction to Σ^{\prime} is $\equiv+1$ in $\check{\Gamma}$ and let u be any function in $C_{0}^{\infty}(\hat{\Omega})$. We set $\check{u}(x)=u(-x)$. Applying Leibniz' formula we get

$$
P(D)(\check{\varphi}(E * \check{u}))=\sum_{\alpha}\left(P^{(\alpha)}(D)(E * \check{u})\right) D_{\alpha} \check{\varphi} /|\alpha|!.
$$

Since E is proper we have (cf. [2] formula (1.11))

$$
\left\|P^{(\alpha)}(D)(E * \breve{u})\right\|_{L^{2}(\hat{\Omega})} \leqslant C\|\breve{u}\|_{L^{2}(\check{\Omega})}=C\|u\|_{L^{2}(\hat{\Omega})} .
$$

Hence with $v=\check{\varphi}(E * \check{u})$

$$
\|P(D) v\|_{L^{2}\left(\check{\Omega}^{2}\right)} \leqslant C\|u\|_{L^{2}(\hat{\Omega})}
$$

From Lemma 3 we know that the function $1 / \tilde{P}_{\mathcal{\Sigma}}$ is uniformly square integrable in the varieties Σ parallel to the $\xi_{1} \xi_{2}$-plane. Since $v=\check{\varphi}(E * \check{u}) \in C_{0}^{\infty}(\check{\Omega})$ ([4] VI, Théorème XI) we can apply [1] Theorem 2.8 getting

$$
\|E * \check{u}\|_{L^{2}(\check{\Gamma})}=\|v\|_{L^{2}(\check{\Gamma})} \leqslant\|v\|_{L^{2}\left(\Sigma^{\prime}\right)} \leqslant C\|P(D) v\|_{L^{2}(\check{\Omega})} \leqslant C^{\prime}\|u\|_{L^{2}(\hat{\Omega})} .
$$

Now we get by Schwarz' inequality

$$
|\langle E * \check{u}, \check{\mu}\rangle| \leqslant C\|E * \check{u}\|_{L^{a}(\check{\Gamma})}
$$

and making use of the associativity and commutativity of the convolution when all but one of the components have compact support ([4] VI, Théorème VII)

$$
\langle E * \mu, u\rangle=E * \mu * \check{u}(0)=\langle E * \check{u}, \check{\mu}\rangle .
$$

Combining these results we get

$$
|\langle E * \mu, u\rangle| \leqslant C\|u\|_{L^{P}(\hat{\Omega})} .
$$

Now we can reproduce the method of Theorem 3 almost word for word. We infer from what was just proved that $e \in L^{2}(\Omega)$. Since $P(D) E * \mu=\delta * \mu=\mu$ we have $P(D) E * \mu=0$ in Ω and consequently $P(D) e$ belongs to $L^{2}(\Omega)$. Therefore we have $e \in \mathcal{D}_{P_{v}}(\Omega)$.

S. SCHWARz, Extensions of partial differential operators

If $\hat{u} \in C_{0}^{\infty}(\hat{\Omega}), \hat{u}=c \neq 0$ in a neighbourhood of Γ we get in the sense of distribution theory

$$
\begin{array}{rl}
\int_{\Omega} e \cdot \overline{\bar{P}}(D) u & d x=\int_{R^{n}}(E * \mu) \overline{\bar{P}}(D) \hat{u} \\
d x= & \langle P(D) E * \mu, \overline{\hat{u}}\rangle= \\
& =\langle\delta * \mu, \overline{\hat{u}}\rangle=\int_{\Gamma} \psi \cdot \overline{\hat{u}} \cdot d \sigma=\bar{c} \int_{\Gamma} \psi d \sigma \neq 0 .
\end{array}
$$

On the other hand we know from Lemma 5 that $u \in \mathcal{D}_{P_{s}^{*}}(\Omega)$ so that

$$
\int_{\Omega} e \cdot \overline{\bar{P}(D) u} d x=\int_{\Omega} e \cdot \overline{P_{s}^{*} u} \cdot d x .
$$

Now if it were true that $e \in \mathcal{D}_{P_{s}}(\Omega)$ we would get

$$
\int_{\Omega} e \cdot \overline{P_{s}^{*} u} d x=\int_{\Omega} P_{s} e \cdot \bar{u} \cdot d x=\int_{\Omega} P_{w} e \cdot \bar{u} d x=0
$$

because the integrand equals zero. This gives a contradiction, i.e.

$$
e \in \mathcal{D}_{P_{w}}(\Omega) \quad \text { but } \quad e \notin \mathcal{D}_{P_{s}}(\Omega) .
$$

REFERENCES

1. Hörmander, L., On the theory of general partial differential operators. Acta Math. 94 (1955), 161-248.
2. - Local and global properties of fundamental solutions. Math. Scand. 5 (1957), 27-39.
3. - Definitions of maximal differential operators. (To appear in this journal.)
4. Schwarz, L., Thèorie des distributions T. I-II. Paris, 1950-51.
