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Introduction 

Let  us begin by listing some notations. We shall denote by  K the field of complex 
numbers, by  K[x]  = K [ x  1 . . . . .  x ~] a polynemial ring over ~K in n variables, and by  
K n the n-dimensional vector space over /~ .  The complex, ,qonjugation in K, and its 
natural  extensions to K[x] and K ~, wilt~be indicated by the ,superscript ~ over the 
respective elements. Le t  7 = (71 . . . .  , 7~)be  an element of K~., I t  is called real if ~ = 7, 
tha t  is, if 71 . . . . .  7 = are all real. The,norm,l] ? H of 7 is defined as the:non-negative num- 
ber satisfying 

n 

II 

If, in K[x], / = / ( x )  is an element and a a n  ideal, we denote by  d(7;/) and d(7; a) the 
distances i n  the sense of the norm between 7 and the sets of complex zeros of / and 
of a respectively. More precisely, 

d(7;/)  = i n f  {tl7 -Y ' l l  ] r ' e K %  1 @ 3 - - 0 } ,  

d(7;a) = in f{ l l~  - ~ ' l l  [ 7 ' ~ K ' ~  f@3 = 0  for eve ry / f i a} ,  

where the infimum of an empty  set is counted as + c¢. 
Now let a = (/1 . . . .  , ],) be an ideal of K[x]LT1/ere exists in a a polynomial  which has 

no more real zeros than  the ideal a itself, for 

r 

is clearly such a polynomial. The object of the p resen tno te  is to prove a refinement 
of this result in the form of the following 

Theorem. Let a be an ideal o / K  Ix]. There exist a ~ l y n o m i a l  /f i  a and a positive 
constant c such that /or  every real ~ E K n we have 

d(~;/) >i ed(~;a). 

I f  a has no complex zeros, d(~;a) = + c~ for every ~, and the theorem gives the 
existence of an ]f ia  without complex zeros, i.e. a non-zero constant  polynomial. 
Thus in this case we have a form of Hilbert 's  "Nullstellensa~z". 
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The theorem has interesting applications in the theory of partial  differential equa- 
tions (see [2]), and this fact is the principal motivation for presenting it. The origin 
of this note was a question to the author by  Prof. L. H5rmander,  and the method, 
which will be used, is par t ly  inspired by results of his (of. esp. [1], § 3.3). 

In  our proof we shall consider polynomials / of the form 

N 

/= 

We shall give certain conditions on the K-module generated by/1,  [a . . . .  , /N which will 
assure tha t  / (for some constant e) has the property required by  the theorem (see 
Section 1). Since, moreover, the proof can be reduced to the case where a is a prime 
ideal not generat~l  by  a single element, we are led to construct, for every such 
prime ideal p in K[x], a certain finitely generated K-module M contained in p. 
Let  us outline this construction, with a slight deviation of a purely formal nature. 
Pu t  d = the dimension of p. Denote by  [ a (n - d - 1)-dimensional linear var iety in 
affine n-space, whose direction is determined by  a set {3} of indeterminates over K.  
There is an irreducible polynomial in K (3)Ix] whose set Of zeros can be obtained as 
the locus of I when moved with fixed direction through the zeros of p. This polynomial 
is determined only up to a factor of K (3), which we choose so as to obtain an irredu- 
cible polynomial F(x,3) of K[x,3]. Now we can describe the module M. I t  is the 
K-module generated by  all polynomials F(x,~) tha t  can be derived from F(x,v)  by 
substituting systems {~} of values in K for the indeterminates {3}. Each of the special 
polynomials F(x ,  ~ ) #  0 in M inherits from F(x,3) the proper ty  tha t  its set of zeros 
can be obtained by  moving a (n - d - 1)-dimensional linear var iety through the zeros 
of p. This fact will be fundamental  in proving tha t  M satisfies the necessary condi- 
tions (see Lemma 2 and the "intui t ive" outline below the formula (5.6), p. 552). 

We shall employ the following algebraic tools: (i) Noether decomposition of ideals 
in a polynomial ring over a field (see e.g. [3], Chap. I,  or [4], Chap. XII ) ;  (ii) elements 
of field extensions (see [5], Chap. I, §§ 1, 2, 3); (iii) the notion of a specialization and 
the theorem on extension of specializations ([5], Chap. I I ,  §§ 1, 2, 3). 

1. Modules 

The aim of this section is to prove Lemma 2 below. The proof will be based on 
the following 

Lemma 1. Let M be a finitely generated K-module in K [x], and suppose that {fv}~ v and 
{9,}~" are two systems o/ generators o[ M.  Then there is a positive constant c 1 such that 
/or every real ~ e K"  we have 

d (a; ~ [,l,)>/cx min d (a; 9,). 
It V 

Proo/. We shall use a certain approximate expression d* (a;/) for d(a; /)  where / 
is an arbi t rary  element of K Ix]. I f  r is a natural  number, and if h 1 . . . . .  h r are arbi trary 
elements of K Ix], let [ h 1 . . . .  , h, ] ~ denote max  I h, (a)]. Similarly, if Sx, ... ,  ~, are sets 

v 

of elements of K [x], let 1S1 . . . .  , Sr ]~ denote sup lh(a)[ where h ranges over Sx U. . .  
U S,. In  particular these definitions apply to the ease r = 1. Let  t be a new variable 
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and consider, for every 0 = (01 . . . . .  0 n) in K n o~ unit norm, the expansion in powers 
o f t  of 

/ ( x  + t O )  = / ( z  1 + tO 1 . . . . .  ~ + tO~). 

Denote by  D k / (k  = 0, 1, 2, ...) the set of coefficients of t k in these expansions. Then 
Dkl c k Ix]. We define d* (~;/) as the supremum of those positive real numbers A for 
which 

Ill. >A ID /I, k=1,2,3 . . . .  

or 0 if there are no such numbers. To elucidate this definition, consider for every 0 
of unit norm the expansion o f / ( ~  + tO) in powers of g, where iEK.  I f  Irl 
then, in every such expansion, the first t e r m / ( ~ )  will exceed in absolute value each 
of the subsequent terms. Moreover, d*(~;/) is precisely the largest number  with 
this property,  or possibly + oo. 

Let  us show tha t  there are positive constants 01 and C 2 depending on the total  
degree of / but  independent o / a  such that,  if d (~;/) and d* (~;/) are not both 0 or both 
+ oo, then 

C.<  d (~ ; / )  1 "~ ~ 4 C~. [(1.1) 

I t  is easily checked that,  if d*(o:;/) is equal to 0 or + oo, then d(a;/)  has the same 
value. I n  the remaining cases we can and shall assume tha t  d* (a ; ] )=  1. For, if 
necessary, we can make a homothetic transformation with centre a, which changes 
d(~;/) and d*(a;]) by  the same suitably chosen factor, and of course such a trans- 
formation does not  alter the degree o f / .  Thus, under the assumption tha t  

0#111,-- max IDYl l=,  (1.2) 
k ~ 1 , 2 , 3  . . . .  

we have to find C 1 and C3 such tha t  

C1 < d(~;l) < C2. 

I f  Ill ~< ½, it  follows from {1.2) that,  for every 0 of unit  norm, the first term in 
the expansion of 1(~ + ~0) in powers of i will have a larger absolute value than  the 
sum of the others, so that  1(~ + ~ 0 ) #  O. Hence we can take Cx =½. 

Let  m be the total  degree o f / .  Choose k > 0  so tha t  ]/] ~ = IDYll ~, a n d 0  so tha t  the 
supremum involved in [Dk/I ~ is attained for this 0. The kth e lementary symmetric  
function of the m roots of the equation in z, 

0 

has then the absolute value one. I t  follows tha t  the roots cannot M1 have absolute 
values less than  l /m ,  for 

The equation in t, / (~ + tO)=  0, has therefore a t  least one root with an absolute 
value not exceeding m. Hence we can take C 3 = m. The formula (1.1) is thereby 
established. (The fact  tha t  e is real was not used here.) 
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In  view of (1.1) and the definit ion of d* (a; [), the s ta tement  of L e m m a  1 can 
be formula ted  as follows: There is a positive constant  Ca independent  of e such 
that ,  if 

]~ = 1, 2, 3 . . . .  
Ig . [ .>Ak  [Dka.[~ (1.3) 

v : 1, 2, . . . ,  N ' ,  
A > 0 ,  

then,  with 1 = ~  [, 1,, we have 
y 

I t [ .  > ( c 3 / f l D ~ / [ ,  k = ] , 2 , 3  . . . .  

We shall prove  the lemma on this new form. F rom (1.3) we get 

[gl . . . .  , g~ ' l ,  >A~I  D~g, . . . . .  D~gN.I, I¢ = l ,  2, 3 . . . .  

Since each g, is a linear combinat ion of the L and conversely, i t  follows t h a t  

(1.4) 

o,1/ /  . . . . .  t , [=  > Akl D k h  . . . . .  D~/,,]= k = 1, 2, 3 , . . .  (1.5) 

with  C 4 >/1 independent  of ~. Now we use the  fact  t ha t  ~ is real. Evident ly ,  

lfl. Itl,. . . ,t .12. 
:Further, ] Dk[, l ,  = [D%[., and hence, expanding [, (oe + tO)j, (e + tO) (v = 1, 2, . . . ,  N)  
in powers of t, 

{D~II,<-.N(I¢+ 1 ) m a x  ID'h . . . . .  D'IN[. [D'h .. . . .  DJIuI, k-= 1, 2, 3 . . . .  
~+j=k 

Combining the  last two inequalities with (1.5) and observing tha t /¢  + 1 -<< 2 ~ (b = 
1, 2, 3 . . .) ,  we obta in  (1.4) with C 3 = (2NC~) -1. This completes the  proof of L e m m a  1. 

Lemma 2. Let a be an ideal o] K [x]. Suppose that a finitely generated K-module M 
contained in a satisfies the [ollowing condition: 

For every sequence {~,}~ o] real elements o[ K n none o/which is a zero o] a, there 
is a generating system {g,}~" o / M  such that 

d (e~; g,) > 0 (~= 1, 2 . . . . .  N ' ) ,  (1.6) lira sup  
,,,-,. o= d . ( = . ;  a )  

where the ]raction on the lel~ is counted as 1 when it has the ]orm oo/oo, and as 0 when it 
has the ]orm A/Noo with A 4= eo. 

Then, i/{/,}1 is an arbitrary/inlte generating system o / M ,  there is a ~ositive constant 
c such that, ]or every real o~EK", we have 
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Proo/. Assume t h a t  the  condi t ion of the  l e m m a  is fulfilled. I f  a has  no complex  
zeros, i t  follows f rom {1.6) t h a t  the  g, have  no complex zeros either,  and  hence t h a t  
M = K.  I n  this case, as also when a = (0), the  result  is obvious.  Le t  us assume t h a t  we 
are  in nei ther  of these cases. Denote  by  ~, al, ~2 . . . .  real e lements  of K "  which are no t  
zeros of a. (Such e lements  exist  since a #  (0).) P u t  

inf " c. 
d (~; a) 

We then  have  to p rove  t h a t  c is positive. Take  a sequence { ~ } ~  such t h a t  

l im " = c. 

Fo r  this sequence {~p}r,  choose  {9~}~" in accordance with  the  condit ion of the  l e m m a  
so t h a t  (1.6) is valid.  There  i s / h e n  an  infinite subset  I of the  na tu ra l  numbers  such 
t h a t  

m i n d  (~p; 9,) 
inf ~ > 0 .  
p~z d ( ~ p ; a )  

B y  L e m m a  1 we have  inf _ " > 0 .  pEzmind (~,; g~) 
y 

Now 
g (~.; Y/,1,) 

C= l im v 
~,~z dCa. ;  a) 

( d (~/~; ~ ~" f")l (infmind(~;g'!t 
>/ ~ f m ~ n d ~ - ~ ) /  \ ~ z  d ( ~ , ; a )  ] "  

Hence  c is posit ive,  which was to  be proved.  

2. Reduct ion o f  the proof  o f  the theorem to the case where  tt is a non-principal  
prime ideal 

Let  Px . . . .  ,pm be the  min imal  p r ime  ideals of a (associated wi th  an  a rb i t r a ry  No-  
e ther ian decomposi t ion of this ideal). There  is an  integer N such t h a t  

(Pl" ' "  Pm) N c a "  (2.1) 

F r o m  this inclusion (and the  fact  t ha t  a c  p , ( #  = 1, 2 . . . . .  m)) i t  is seen t h a t  the set  
of zeros of a is the  union of the  sets of zeros of the  p, .  Therefore ,  if ~ E K  n, 

d@; a) = min d(y; p.). (2.2) 
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Suppose t h a t  we have  p roved  the  theorem for  the  ideals Pl, . . . ,  Pro" T h e n  there  a re  
polynomials  ] ,f i  p,(/x = 1, 2 . . . . .  m) and  posi t ive cons tants  c,  such tha t ,  for eve ry  
real ~ q K  n, 

d(~;]~) >1 c~,d(~; p~). (2.3) 

P u t  [ = ([x -.. /~)~. Then  ) tea according to (2.1). Applying  (2.2) and  (2.3) we ge t  

d (a ; / )  = mind(~x;L) >/(mince,)(mind(a;  p~,)) = (minc~,)d(a; a). 
p /.t .u /* 

This means  t h a t  ] meets  the  requirements  of the  theorem for c = mine~. Hence  it  suf- 

rices to  p rove  the  theorem when a is prime.  I f  a is principal,  i.e. genera ted  b y  a single 
element ,  the  t heo rem is clearly val id wi th  ] equal  to  t h a t  single e lement  and  c equa l  
to  one. Thus  i t  suffices to  prove  the theorem for non-pr incipal  p r ime  ideals. I n  
par t icular ,  this excludes the  ideals (0) and  (1). 

3. Construction of the module M 

l~rom the  two preceding sections it  is clear t h a t  the  theorem will be p roved  if, for  
every  non-pr incipal  p r ime  ideal p of K[x] ,  we can find a module  M c p  sat isfying the  
condit ion of L e m m a  2. Fo r  an  a rb i t r a ry  non-pr incipal  p r ime ideal p we shall now 
cons t ruc t  a module  M which subsequent ly  will be shown to have  the  desired proper-  
ties. 

We a d o p t  f rom algebraic geomet ry  the  convenient  idea of a "universa l  d o m a i n "  and  
int roduce ~ as an  extension field of K of infinite t ranscendence  degree over  t h a t  
field and  algebraical ly closed. Then  every  f ini tely genera ted  extension of the  field K 
can be isomorphieal ly  embedded  as an  extension within  ~2. The  e lements  of ~ will 
be  called quant/ties. B y  a generalized quantity we shall mean  an  e lement  of the  set  
{~,oo} where  co is a new element  occurring as image  under  specializations ([5], 
Chap. I I .  § 2, p. 26). 

Le t  p be  a non-principal  p r ime ideal of K[x], and  let  d be its dimension. We h a v e  
0 ~< d < n - 2 since otherwise p would be pr incipal  (as to  the  case d = n -- l ,  see [5], 
Prop.  10 of Chap.  I ,  p. 7). Le t  ~ = (~1 . . . .  , ~n) be a set  of n quant i t ies  such t h a t  
de te rmines  the ideal p over  K ,  in other  words, such t h a t  there  is a na tura l  i somorphism 
between K[x]/p and  K[~]  ([5], Chap. I ,  § 3, p. 6, and  Chap. I I I , §  2, p. 48). Fo r  
j = 1, 2, . . . ,  n - d - 1, let 2j be a quan t i t y  and  vj = (z~ . . . .  , ~7) a set  of n quant i t ies  
such t h a t  the  set  of all the  2 s and  all the  ~ is a set  of independent  inde te rmina tes  
over  K(~) .  Finally,  define ~ = (~1 . . . . .  ~n) b y  

= ¢  +)txT t +- -"  + 2 n - a - 1 ~ - d - 1  (i = 1, 2, . . . ,  n) (3.1) 

or, in vec to r  nota t ion,  
: ~ - } - A 1 T  1 -~- - .  • -}- 2 n _ d _ l T n _ d _ l  . 

We shall p rove  t h a t  the  ideal de termined b y  {~,7} over  K is genera ted  b y  a single 
non-cons tan t  polynomial ,  which will be denoted  b y  F(z , t ) .  This  po lynomia l  will 
fo rm a basis  for our  definit ion of M (of. the  introduction).  

I n  order  to avoid  repeat ing  the  same a rgumen t  a t  different  places, we f irst  p rove  
a l e m m a  which collects some results abou t  the  specializations of {$,2,~,T} over  K .  
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t By {~, 2, ~,~} we mean the set of all the quantities ~t, 2~, ~, vs. The sets {$, ~}, {~,~} 
etc. are defined similarly. A set of generalized quantities is called finite if none of its 
elements is ¢o, otherwise it is called infinite. 

Lemma 3. Let {~,~,~,~} be a specialization o / {~ ,2 ,  ~,'~} over K with {~,ff} ]inite. 
The fol lowing/ire  implications are true: 

(A) {$, ]} 

(B) . . . .  

[{~} is not a set of independent 
finite --> [indeterminates over K (~). 

finite,_ ] --> [{~} is not a set of independent 
,2n_ d-~ not all zero [indeterminates over K (~). 

(C) (~, ~} infinite 

{$, ~} finite, ] 
(D) ~1 . . . . .  ~-a-l=0 

(E) {~, ~} infinite 

-+ [{~} is not a set of independent 
[intermediates over K. 

[{~, ~, $, ~ is a specialization of 
--> [{~, 2, $, ~} over g for every finite {~}. 

[{~, ~, ~, ¥} is a specialization of 
-> [{~, )t, ~, ~} over g for every finite {~}. 

Proo I. We begin with (A). Substituting (~, ~, ~,~} for {}, ;t, ~, ~} in (3.1), we see that  
K(~,~) c K (~,~,~). I t  follows tha t  the transcendence degree of K (~,~) over K (~) 
cannot exceed tha t  of K (},2) over K, which in its turn cannot exceed that  of K (}, 2) 
over K, i.e. n - I. Hence the result. The proof of (B) is similar: if, say, ~1 # 0, the 
transcendence degree of K($,~) over K ( ~ , ~  . . . . .  £n-a-1) cannot be larger than n - 1. 
Also (C) is proved in essentially the same way. In this case we first extend the spe- 
cialization so that  it applies to all the quotients between any two non-zero elements 
of the set {},2}, and choose xe{},2} such that  the quotients with this element as 
denominator are specialized into finite values ([5], Prop. 10 of Chap. II,  p. 34). 
Dividing by ~ in (3.1) and specializing, we obtain n (non-homogeneous) linear equa- 
tions satisfied by the ~I with coefficients that  are images of elements in K(}, ~t). 
None of these linear equations can vanish identically since this would mean tha t  they 
all did, which is clearly impossible. The argument can therefore be continued as in 
the preceding cases. 

The proofs of (D) and (E) depend on the obvious fact that ,  for each i, any n - d -  1 
of the n -  d elements ~, T~ . . . .  ~t • ~ -  a- 1 are independent indeterminates over K (~, 2), 
and that  therefore any such n - d - 1 elements can be specialized into arbitrary values 
in compatibility With any specialization of {~,~} over K([5], part (a) of the proof of 
Theorem 6 of Chap• II, p. 30). Thus in (D) the given (~, ~} together with an arbitrary 
finite {7} forms a specialization (~,],~} of {~,~,T} over K. In view of (3.1) there is 
only one possibility of extending that  specialization of {~,~t,T) to ~, namely to spe- 
cialize $ into the same value ( = ~) as in the given specialization (~, ~, ~,~}. This gives 
the result. The proof of (E) is similar to that  of (D), and the actual differences are 
quite analogous to those between the proof of (C) and that  of (A). This finishes the 
proof of Lemma 3. 

Let K [z,t] be a polynomial ring over K where {z} and {t} are independent sets 
of variables indexed in the same way as {~} and {~} respectively. We assert that  the 
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ideal in K[z, t]  determined by {~,v} is a principal ideal different from (0) and (1). 
This is equivalent to saying t ha t  the transcendence degree of K (~,T) over K is precisely 
one less than the number of elements in the set {~,v}, i.e. n ( n  - d) - 1 ([5], Prop. 10 
of Chap. I, p. 7). I t  follows directly from our successive introduction of ~, {)t}, {~}, 
tha t  the transcendence degree of K(~,2,~,~) over K is just n ( n  - d) - 1. We therefore 
have to prove tha t  the set {~,2} is algebraic over K($,T). Suppose the. contrary! 
Then there is an infinite specialization of {~,2} over K(~,T) ([5], part  (a) of the proof 
of Theorem 6 of Chap. II,  p. 30). But  since {~} is a set of independent indeterminates 
over K, this contradicts (C) of Lemma 3, and our assertion follows. Let  F(z,t)  be a 
generator of the ideal in g[z , t ]  determined by  {$,~}. A set of quantities {~',~'} is 
then a specialization of {~,v} over K if and only if F(~' ,T ')  = 0. 

The polynomial JF(z,t) can be written 

N 

F (z, t) = ~ [~ (z) q~, (t), (3.2) 

where / , ( z )EK[z] ,  ~0,(t)EK[t] (v = 1, 2 . . . .  , N), and where each of the two sets of 
polynomials, {], (z)}~ and (~0, (t)}~ v, are linearly independent over K. Let  us fix such 
a decomposition of ~'(z,t). We then define M as the module generated by  the set 
(], (x)}~. I t  is easy to see that  M is uniquely determined by p, but  we shall not use 
this fact. 

4. Auxiliary results about F (z,  t) and M 

Lemma 4. The common zeros o / / v  (x) (~, = 1, 2 . . . .  , N )  are precisely the finite spe- 
cializations of ~ over K .  The common zeros o/q~ (t) (~, = 1, 2 . . . .  , N )  are precisely those 
sets (~r} which occur in some specialization (~,~,~,~} o/ (~,)t,~,v} over g with ($,~} 
i /inUe, 

Proo[. Let  $ = ($1 . . . .  , $") be a set of quantities. We shall prove the first par t  of the 
lemma by showing successively that  the following four statements are equivalent: 

(i) ]~($) = 0 (v = 1, 2 . . . . .  N); 
(ii) ~ occurs in a specialization {~,ff} of {~,T} over K where {4} is a set of inde- 

pendent indeterminates over K($); 
(iii) ~ occurs in a finite specialization {g,~, $,~} of {~, a, $,~} over K with ~1 . . . . .  

2.-d-I = 0; 
(iv) there is a specialization ~ of ~ over K such that  $ = ~. 

The condition for (t,~} to be a specialization of {$,~} over K is F ( $ , ~ ) =  0. I t  
therefore follows directly from (3.2) that  (i) implies (ii). To obtain the reverse impli- 
cation we have just  to observe that,  as formal polynomials, the ~0~(t) are linearly 
independent over any extension field of K, in particular over K(~); this can be seen 
for instance from the fact tha t  their independence over K means the non-vanishing 
of some determinant. The equivalence of (ii) and (iii) follows from (B), (C), and (D) 
of Lemma 3 and the extension theorem for specializations. The equivalence of (iii) 
and (iv) is a consequence of (3.1) and the fact tha t  ()t,v} is a set of independent in- 
determinates over K (~). 

The second part  of the lemma is proved quite similarly. We assume tha t  {~} is a 
set of quantities indexed in the same way as (~}, and prove the equivalence, this 
t ime using (A) and (E) of Lemma 3, of the following three statements: 
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(i) = 0 = 1, 2 . . . . .  N ) ;  
(if) {~} occurs in a specialization {$,f} of {$,~} over K where {~} is a set of in- 

dependent  indeterminates  over K( f ) ;  
(iii) {~} occurs in a specialization {~,,~, ¢, ~} of {~=,~, ~,~} over K with {~, ~} infinite, 

f te. 

The proof is complete.  
I f  (~} is a set of elements in K, it is clear t ha t  the polynomial  F(x ,~)  eK[x]  belongs 

to  M.  To see t h a t  N such polynomials,  corresponding to  different sets (~}, will in 
general generate M,  we need the following 

Lemma 5. I /  (kt~l k = 1, 2 . . . . .  N; i = 1, 2 . . . .  , n - d - 1; i = 1, 2 . . . . .  n} is a system 
o/ independent variables over K,  consisting of N copies (kt} (Ic = 1, 2 , . . . ,  _h r) of the 
set (t}, the~ the determinant 

does not vanish. 

Proo/. Let  us show by  induct ion on N that ,  if ( ~  (t)}~ is any  sys tem of polynomials  
of K It], linearly independent  over K,  then the above de te rminant  is no t  zero. This is 
clear for N = 1. To pass f rom N - 1 to  N,  we expand the  de te rminan t  according to 
the elements of the  first column, thus obtaining a sum 

9) 1 (1~) C1 -t- • . .  -~- ~0N(lt) C N 

where the  cofactors C~ . . . . .  CN belong to K[2t, ..., Nt]. The sum cannot  vanish, for 
the  ~,(lt) are l inearly independent  over K,  hence also over K(2t . . . .  , Nt), and  the 
C~ are different f rom zero b y  the induct ion hypothesis.  

5. Proof  that M satisfies the condit ion o f  L e m m a  2 with  respect to 

First  we note t h a t  M c p since, by  L e m m a  4, ~ is a zero o f /1  . . . . .  /N. As p =~ (0), 
there  are real elements of K n which are no t  zeros of p. I f  (~ , )F  denotes-an arb i t rary  
sequence of such elements, we shall determine an  infinite subset J of the  na tura l  
numbers  and a generat ing system {g,}~v of M such t h a t  

d (a , ;  g,) 
lim inf > 0 (v = 1, 2, N). (5.1) 

~ J  d (a , ;  p) .... 

( I t  is unders tood tha t  #--> oo.) Obviously this will show t h a t  the condit ion of L e m m a  2 
is satisfied. 

We begin by  determining J .  B y  L e m m a  4 we know that ,  for each/z ,  a t  least one 
of the numbers /~  (c~,) (v = 1, 2 . . . .  , N) is not  zero. Thus there are numbers  c~E K (/z = 1, 
2, 3 . . . .  ) such t h a t  

N 

I c . t .  L = 1. 
v=l  

We now choose J such tha t  each of the N limits 

dv = lim c~/, (~,) (v = 1, 2 . . . . .  N) 
/Je2 
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exists. Evidently,  the d~(v = 1, 2 , . . . ,  N) cannot all be zero. Putt ing 

N 
¢ (t)= Y ~ ,  (t), 

~=1 
(5.2) 

we have lim c~ F (~,; t) = ¢ (t) (5.3) 
/xeJ 

in the sense tha t  the coefficients of the several power products in t converge separately. 
The polynomial ¢ (t) is not identicMly zero. This follows from (5.2) since the ~0~(t) are 
linearly independent over K and the d~ are not all zero. 

Having determined J ,  we turn to the generators g~(~ = 1, 2 . . . . .  N). For  each of the 
systems {kt} (k = 1, 2 . . . . .  N) of Lemma 5, choose values {kf} in K such tha t  

det I q~, (kf)[,,, k=1,2 ..... N :=~ O, (5.4) 

¢(*e) .o  (k=1,2 . . . . .  N). (5.5) 

Such a choice is possible since K is an infinite field. Pu t  

g~(x) = F ( z , ~ )  (k = 1, 2 . . . . .  N). 

The polynomials gg (x) are contained in M, and it follows readily from (5.4) tha t  they 
generate M. I t  remains to prove tha t  the inequalities (5.1) hold true, or, since the 
ordering of the sets {kff} is quite arbitrary,  tha t  

lim inf d (a~; .F(x, 1if)) > 0. (5.6) 

Let  us first present our argument  in a more intuitive form. We assume all points, 
vectors etc. to be complex. Denote by D the set of those directions in n-space t h a t  
can be represented by  vectors tha t  are linear combinations of 1ffl, ..., 1fin_a_ 1. Call 
D-line every line whose direction belongs to D. I t  can be shown tha t  the set of zeros 
of F(x,  lff) consists of all D-lines which contain some zero of p. Combining (5.3) and  
(5.5) we see that ,  if {if} is an arbi trary set sufficiently close to {1if}, and if # E J  is 
large enough, then F(~,,ff)=~ 0. This means tha t  there is a neighbourhood N of D 
such tha t  ~.  does not belong to any  N-line which contains a zero o f  p, provided tha t  
# > #0, # EJ.  Thus the distance from ~ to a D-line through a zero ~ of p is never less 
than  some fixed fraction of the distance from ~ to ~, provided tha t  # > #0,~tEJ. 
Hence the result. 

Now we proceed to the formal proof of (5.6). Since F(x,  lff) E p and since p4= (1)~ 
it follows tha t  F(x,  lff) is not a non-zero constant and that ,  hence, it has complex 
zeros. Let  ~ be a complex zero of F(x,l~).  Then {~,1~} is a specialization of {~,T} 
over K. Extend this specialization to a specialization {~, 2,~,~}-+ {~,2, $, ~f} wi th  
{~ ,~)c  {g ,c~)  (see [5], the proof of Theorem 6 of Chap. I I ,  pp. 30, 31). By  (5.4), 
{if} is not a common zero of ~,(t) (v = 1, 2, ..., N). On account of Lemma 4, {~, 2} 
must  therefore be finite, and by  (3.1) we have the vector equation 

= ~  ~-]11~1 "~ . . .  - } - ~ n _ d _ l l T n _ d _ l  . 

Denote by E the linear subspace of K n spanned by  the vectors i f  1 . . . .  , lf~_a_ 1. F rom 
the above expression for ~ it follows that  
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~,~ 

where ~ E K n is a specialization of ~ over K, and ~ E ~. I t  is then obvious tha t  the frac- 
t ion in the left hand side of (5.6) is not  less than  

or, since ~ is linear, 

inf a ,  - ~ 1 II .-$H 4 ,  (5.7) 

where, as before, ~ E K  ~ is a specialization of ~ over K, and ~ e ~ .  
I t  now suffices to prove tha t  the expression (5.7) is larger than  some positive con- 

s tant  if tt e J  is large enough. To do this we shall show tha t  there are an integer #0 
and a closed set ~ of K ~ such that  

~ ' - $  e ~  if e J ,  (5.8) 
H .-$11 z > . 0 , ,  

N ~ is empty,  (5.9) 

where, in (5.8), $ ranges over all specializations of ~ over K which lie in K ~. Then, 
for /z  >#0 ,#  E J ,  the expression (5.7) will not be less than  the distance between the 
closed and disjoint sets ~ and ~. 

Denote by  (~} a variable system of values in K indexed in the same way as {r}. 
By (5.3) and (5.5) we can find ~ > 0 and an integer #o such that ,  

i/  # >#o, # e  J, 

If~.-- 1"~1 < a ( i = 1 , 2  . . . .  , n - d - 1 ; i = l , 2  . . . . .  n), (5.10) 

then F ( a ~ , ~ ) # 0 .  (5.11) 

We define ~ as the set of all vectors of unit norm in K n which cannot be written as 
linear combinations of any system of n -  d -  1 vectors T1 . . . . .  T=-a-1 satisfying (5.10). 

is closed. For  let 7 be a vector of K ~ not in ~. Then either ]])J]]=# 1 or 

7 =21~1 + "'" +~-d - lT~-a -1  

with (~} satisfying (5.10) and ~j~= 0 for at  least one value of ]. Suppose tha t  ~14= 0. 
Then by  varying T1 within the limits determined by  (5.10) we obtain a neighbourhood 
of 7 which does not belong to ~. This shows that  the complement of ~ in K n is open. 

I f  (5.8) were false, then for some # > # 0 , / ~ e J ,  and some ~, we could write ~, - f  
as a linear combination of vectors T1 . . . . .  T,-d-1 satisfying (5.10): 

Then, evidently, {~,i,a', ,~} would be a specialization of {~,2,C,T} over K so tha t  
in particular F ( a ~ , ~ ) = 0 .  But  this contradicts (5.11), and so (5.8) must  be true. 

The validity of (5.9) is an immediate consequence of the definition of ~. 
The proof tha t  M satisfies the condition of Lemma 2 with respect to p is thus 

complete, hence also the proof of the theorem. 
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