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On the division of distributions by polynomials 

By LARS HSRMANDER 

1. Introduction 

The division problem for distributions is, given a distribution T in an open set 
£2 in R ~ and an infinitely differentiable function ~0 in ~ ,  to find a distribution S in 

so tha t  
T = ~ S .  (1.1) 

(Cf. Schwartz [4]: Chap. V, pp. 121-126, Chap. VII ,  p. 154.) One m a y  then also 
call S a "part ie  finie" of T/q~. When v = 1 the division is possible for every T if and  
only if ~0 has only isolated zeros of finite order (Schwartz [4], Chap. V, p. 123). When 
v > 1, however, the situation is not equally simple. I t  is the purpose of this paper to 
prove tha t  the division by a polynomial (not identically zero) is always possible. This 
was conjectured by  Schwartz [4], t. I I ,  p. 154. As indicated there, this also implies 
tha t  if T is a tempered distribution one can find a tempered "part ie finle" S - - o u r  
proof will be arranged so as to give this result directly. By applying the Fourier 
t ransformation it follows tha t  every partial di]/erential equation (for notations cf. 
HSrmander  [1]) 

P(D)u  = /  (1.2) 

with constant coe//icients has a tempered solution u/or every tempered/. In  particular, 
the equation has a tempered/undamental solution. 

By other means, Malgrange [3] and later HSrmander [1] have proved the existence 
of non tempered fundamental  solutions having certain local regularity properties. 
Such fundamental  solutions were called proper by  t tSrmander  [1], and it  was also 
proved in tha t  paper  tha t  there are differential equations with no fundamental  solu- 
tion that  is both proper and tempered. This shows that  the results of this paper are 
of a character rather different from the earlier ones of Malgrange and HSrmander,  
and so are the methods of proof. 

Let  S be the space of infinitely differentiable functions / in R v such tha t  

sup ] ~  D e / (~)1 < o0 (1.3) 

for all ~ and/5. $ is a locally convex topological vector space with the topology de- 
fined by  the semi-norms tha t  are finite according to (1.3) (cf. Schwartz [4]). Our 
main result is the following. 
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Theorem 1. I / P  is a polynomial that does not vanish identically, the multiplication 
mapping 

S9  / - ~ P / ~ S  (1.4) 
has a continuous inverse. 

I t  m a y  be remarked tha t  the proof remains valid if, instead of being a polynomial,  
P is any  function such tha t  (4.2) and (4.10) are valid. 

The essential point in the proof is an application of Whitney 's  extension theorem 
for differentiable functions. Since we need certain uniform estimates of the extended 
functions, which are contained but  not explicitly stated in Whitney [6], we shall 
recall what  is needed here in section 3. Thus the present paper  is self-contained in 
this respect. 

While preparing the manuscript, the author has noticed the fact  tha t  Lojasiewicz 
[2] has recently announced a solution of the division problem even for analytic 
functions instead of polynomials. However, the publication of this paper  may  still 
be justified by  the differences which seem to exist between his methods and ours. In  
particular, it seems as though Lojasiewicz' method requires a much more detailed 
and complicated s tudy of the set of zeros of P than our method does. 

2. Algebraic lemmas 

I f  A is a set in R ~, we denote by  d(~,A) the distance from ~ to A, 

d (~, A ) = i n f  I ~-~11. 
~2eA 

Obviously Id(~,A) - d ( ~ ' , A ) l  <<. i~ -~ '1 ,  hence d(~,A) is a continuous function of ~. 
Let  Q be a polynomial and N the set of real zeros of Q. Assume tha t  N contains 

some point with l~l ~< 1. Then we have 

Lemma 1. There are positive constants c and # such that 

IQ(~)[ ~> cd(~,N)", I~[ 4 1. (2.1) 

Proo/. The lemma follows from a result of Seidenberg and Tarski (cf. Seidenberg 
[5]). The shortest proof would be to use the results indicated after Theorem 3 in tha t  
paper, but  since they are not proved in detail we prefer to use only Theorem 3. 
(Note tha t  the restriction in the quoted thorem tha t  the coefficients in all polynomials 
involved shall be rational was removed on p. 372.) 

We first look for the conditions on ~ in order tha t  

d(~,N) <6,  (2.2) 

where 6 is a positive number.  (2.2) means tha t  there exists a real ~ so tha t  the follow- 
ing equation and inequality hold 

Q(,~) =0 ,  ] ~ - ~ 1 ~ < 6  2 (2.2') 

According to Theorem 3 of Seidenberg [5] one can find a finite number  of sets G 1 (~,6), 
..., G r (~,(~), each composed by  a finite number  of polynomial equations and inequali- 
ties in ~ and 6, so tha t  (2.2') can be fulfilled if and only if (~,(~) satisfies G~(~,6) for 
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a t  least  one i = 1 . . . .  , r. Le t  H 1 ($, 8), .. . ,  H~ (~,8) be the  sets composed  b y  the  negat ion 
of one condit ion in each Gt(~,6). Then  the  negat ion  of (2.2), 

d(~,N) i> 8, (2.3) 

is t rue  if and  only if H~ is fulfilled for a t  least  one ?" = 1, . . . ,  s. 
Nex t  we consider the  range  of values of [Q (~)] when d(~ ,N)  ~> 6, I ~ ] ~  < 1. Clearly 

I Q (~)1 = ~ for some such ~ if and  only if there  is a real ~ so t h a t  

• ~ = L Q(~)  I ~, ~ > 0, I~ I ~ < ] ,  H j ( ~ , 8 )  h o l d s  for  s o m e  j = 1 . . . . .  s. (2 .~)  

Again,  we have  a sys tem of real equatioils and  inequalit ies to which Seidenberg 's  
theorem applies. Thus  we get  a finite n u m b e r  of sets Kz @, 8), l = 1 . . . . .  t, of polynomial  
equat ions and  inequalit ies so t h a t  (2.4) can be satisfied if and  only if K~ (~, 8) is ful- 
filled for a t  least  one 1. 

Le t  T (8) be the  in f imum value of T when 6 is fixed, t h a t  is, T (8) is the  in f imum of 
[Q(~)I in the compac t  set  l~l < 1 ,  d(~,V)~>6, which is not  e m p t y  for  sma l lS .  
Hence  the  inf imum is a t t a ined  and  > 0. W h e n  T = T (8) some sys tem Kz (v,6) mus t  be 
satisfied and  cannot  involve only str ict  inequalit ies since all v near  T((~) would then  
also sat isfy Kz(v,6), and  T(6)  would not  be the  in f imum value.  Hence  T(6) a lways 
satisfies some of a finite n u m b e r  of algebraic equat ions in T and  6, and  since T(~$) 
is decreasing i t  mus t  therefore be piecewise algebraic because two different  algebraic 
curves have  only a finite n u m b e r  of interesections. I n  par t icular ,  T(6) is algebraic 
for small  8. Hence  it has a Puiseux expansion for small  8, and we get 

T(6)>~Cl 6~, 0<6-~<80. 

Hence  (2.1) holds wi th  c = c I when  0 < d (~,/V) ~< (30. I t  is t r iv ia l ly  val id  when d (~, N) = 
0, and  since T(8) />  T(e$0) when 8 > (~0 we have  only to t ake  c somewha t  smaller  t han  
e 1 to m a k e  (2.1) val id wi thout  a n y  addi t ional  restrict ions on ~. The  proof is complete.  

I n  proving  Theorem 1 i t  is conven i en t - - t hough  not  n e c e s s a r y - - t o  have  an exten- 
sion of L e m m a  1 where the  assumpt ion  1~1 ~< 1 has been dropped.  

L e m m a  2. Let Q be a polynomial and N the set o/ i ts  real zeros. Then  either _IV is empty 
and 

]Q(~)I ~>c(1 + 151~) -~', ~rea] ,  (2.5) 

or else [q(~)[/> c(1 + I#l*)- 'd(#,N) ' ' ,  # real, (2.6) 

where c > O, It" and # "  are constants. 
Proo/. I t  only  remains  to  s tudy  the  ease l~l > 1. To  do so we m a k e  an  inversion 

~*=~/1~1 =, ~=~*/1~*1 ~ 

and write,  if m is the  degree of Q, 

Q*(~*) = [~* I ~ Q ( ~ )  = I~* 1 2 ~ Q ( ~ * / I ~ *  I~) • 

I t  is obvious t h a t  Q* is a polynomial .  Le t  N* be the  set  defined b y  

Q* (~*) = O. 
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I t  is clear tha t  a vector ~* # 0 is in N* if and only if the corresponding ~ is in N. 
Applying Lemma 1 to Q* we obtain 

IQ*(~*)[>~c*d(~*,N*y '*, ~*eN*, [~*1~<1 

where c* and #* are positive constants. This means tha t  

I~l-~lQ(~)l>c*d(~*,N*)"*, I~l/>1- (2.7) 

Now note tha t  for the inversion we have 

hence d(~*,N*) = M  1,7"-~* l  = i ~  [w-~[/1,71 I~l 
q*eN* ~N 

where we shall permit  ~ to be infinite when taking the infimum. We have 

1 ' ; - ~ I / I ' 7 1 1 ~ I > d ( ~ , N ) / 2 1 ~ I  ~ if 1'71<21~1 and weN, 

and l , ~ - ~ l / I , ~ l l ~ l > a / 2 1 ~ l  if i , ;1>21~1 . 

Since for > 1 we always have d(~,N) ~< Cl l for some constant C, if 2¢ is not 
empty,  it follows tha t  

d(~,~V).<GI~I~d(~*,~V*), I~t>l, 
and (2.7) therefore implies (2.6). On the other hand, if N is empty  the only point in 
N* is 0, hence d(~* ,N*)=  l~*[ = 1/l~l  and we obtain (2.5). 

Remark. Lojasiewicz [2] states tha t  Lemma  1 still holds if Q is only analytic in the 
closed unit  sphere. I f  one admits this result, the rest  of our arguments still applies 
with obvious modifications to proving tha t  division by  any analytic function is 
possible. 

3. Whitney's extension theorem 

Whitney  [6] has given necessary and sufficient conditions on the array of functions 
]~, [ ~ [ ~< m, defined in a closed set A in R' ,  for the existence of a function g E C m (R ~) 
such tha t  D~g = ]~ in A when I~l ~< m. (Here ~ stands for a sequence of indices (~1, 
.... ~j) between 1 and v, the dimension of the space of ~; ] ~[ = ]; D ~ = 9//9$~,...~/a~j.) 
We shall here use his construction of the extension as an approximation method. 
Thus we shall, given a function /E Cm(R'), find another function g E Cm(R ~) satisfying 

D ~ g = D ~ ] i n A ,  l~l<~m, (3.1) 

so that ,  which is the important  point, it is possible to estimate the derivatives of 
g of order ~< m in the whole of R ~ in terms of quantities involving only those of / 
of order ~<m in A. 

For the convenience of the reader we shall reproduce the par t  of Whitney 's  argument  
which is needed. No new idea is added, but  we modify his argument  slightly so tha t  
it suits our purposes. 

The following fundamental  lemma is contained in Whitney [6], pp. 67-69. 
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Lemma 3. Given a dosed set A in R v, one can/ind a sequence o//unctions Cj E C~(C A) 
with the/ollowin 9 properties: 

(i) ~j(~)>~0; ~ j ( ~ ) = l ,  ~ ¢ A .  
1 

(ii) A compact set in CA intersects only a/inite number o/the supports o/ the /unc- 
tions C j. 

(iii) EID~+j(8)I <<.C~(d(8, A)-I~t+ l), 
t 

where C~ is a constant. 
(iv) There is a constant C-independent o / j  and even o[ A--such that the diameter 

o] the support o /¢ j  is <~ C times its distance to A. 

Proo/. Divide R ~ into a net  of cubes of side 1. Le t  K 0 be the  set of those cubes wi th  
distance to A a t  least I/v, the  length of the diagonal.  Divide the remaining cubes 
into 2 ~ cubes of side 1/2 and  let K x be the set of those with distance to A at  least 
equal to  the diagonal. Wi th  repeated subdivisions we get  in this way  sets of cubes 
K0, K 1 . . . .  ; the union of all cubes is CA. I / a  cube C in K~ and another C' in Kj  have a 
point in common, we have l i - j] ~< 1. For  the distance from C to  A is ~> 2 -~ ~/v, hence 
a cube with side 2 -t-1 having some point  in common  with C has distance a t  least 
i/v2 -~-1 to  A, which proves t h a t  ~ ~< i 3- 1. I n  view of the s y m m e t r y  we also have 
i ~< j 3- 1, which proves the assertion. 

We order all cubes in a sequence C1, C~ . . . .  ; the  centres are denoted ~/1, ~2, . . .  and  
the  sides Sl, s~ .... Le t  0 ~< ~ (8) ~< 1 be a funct ion in C ~ which vanishes outside a 
compact  subset of the cube 

It:,l <1/2+1/8, . . . . .  

and equals 1 in the  smaller cube 

]~1~<1/2, i = l , . . . , v .  

We shall prove t h a t  the functions 

~j (~) = 4, ( ( ~ - ~)/sj)  / ~ q,( (~ - ~?k)/Sk) (3.2) 

have the properties s tated in the lemma. 
First  note  t ha t  ~ ((~ - ~)/sk)  is 0 except  in Ck and the incident cubes, because these 

have a t  least the side length ski2. Hence  

l<~b( (~ - -~ /k ) /Sk)~<4  ~, ~ ¢ A ,  (3.3) 

since a t  each point  a t  most  4 ~ terms are # 0 and  a t  least one equals 1. This proves 
t h a t  CjEC~°(CA) and tha t  (i) and  (ii) are valid is obvious. To prove (iv) we note  
t h a t  ¢~ = 0  outside the cube with side s~(1 + 1/4) with centre a t  ~i; the distance 
f rom t h a t  cube to  A is a t  least 

V; s, - s , /8  = 7 G s , / s  

and  its diameter  is 5 ]/~vs~/4. Hence (iv) holds with C = 10/7. 
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Final ly,  in p rov ing  (iii) we no te  tha t ,  with ~(~) = D ~ ,  

D~ (4 ( ( ~ -  ~) / s j )  ) = s; ~ ~c~) ( (~ _ ~J) /sj). 

The dis tance f rom the  suppor t  of ~(=)((~-Tj) /s~)  to A is a t  most  3s  s ~ if sj < 1. 
For  otherwise the  cube wi th  side 2s~ containing C a in the  preceding decomposi t ion 
would have  dis tance a t  least  2sj  V~v from A, which contradic ts  the  construct ion.  
I-Ience 

d (~, A) < 5 s t ]/~ if sj < 1 and  ~(~) ((~ - ~]~)/sj) ~ O. 

I f  sj = 1 we have  on the  other  hand  

d (~, A) ~ 7 • / 8  > 1 if d? (~) ((~ - 7J ) / s j ) .  O. 

Summing  up, we obta in  if d(~,A) <. 1 

I D~ ~ ((~ - 7')/ss)] < (sup ] ~b (=) I ) (5 ~/~)1 = I d (~, A)-I= I, j = 1, 2 . . . .  

and  if d(~,A) >/1 we ge~, since the  only non vanishing funct ions have  sj > 1/5 V~v, 

I ~ +  ((~-7')/s,) I < (supl¢C~)l)(5 ~)'~', i =  1, 2 . . . .  

Using these two es t imates  and  (3.3) in (3.2), t ak ing  into account  t h a t  no po in t  ~ is 
in the  suppor t  of more  than  4 ~ t e rms  ~b ((~ -~k) /Sk) ,  we obta in  the  inequal i ty  (iii). 

For  every  ] we choose a po in t  ~JEA such t h a t  the  dis tance f rom the suppor t  of 
t j  to A equals the  dis tance to ~J. Given a f u n c t i o n / e C " ( R ' )  we now set  (Whi tney  
[6, p. 69]) 

g ( ~ ) = ~ * O j ( ~ ) / ~ ( ~ ; $ J ) ,  $ ¢ A ;  ~ 7 ( ~ ) = / ( ~ ) , ~ 6 A ,  (3.4) 

where /~ (~; 7 ) = ~  ~ 1  (7) (~-7)J l~ l  ~ (3.5) 

is the  Tay lo r  expans ion  for ] of order m a t  ~. We  are going to p rove  t h a t  (3.1) is 
val id  for  the funct ion g defined b y  (3.4) and  then  es t imate  g and its der ivat ives.  
The  no ta t ion  Z* in (3.4) means  t h a t  we only sum over  those  ~ with  st < 1. This changes 
noth ing  near  A bu t  m a y  improve  the behaviour  of g a t  infinity; we get  g (~) = 0 if 
d(~,A) > ~ ~ / 2 .  

Before s tudying  g we in t roduce some more notat ions.  B y  R~(~; 7) we denote  the  
remainder  in Tay lo r ' s  formula,  

](~) =/m(~;7) + Rm(~;~); (3.6) 

with the  no ta t ion  F (~) = D ~ F  we obta in  by  differentiat ing 

/(~) (~) = / ~ )  (~; 7) + R(~) (~; 7), (3.6') 

where the  different iat ions ac t  on the  first  var iable  in ]~ and  in R~. 
Le t  ~*~ A be a po in t  wi th  min imal  dis tance to  ~, 

]~* - -~ l  = d ( ~ , A ) ,  ~ ¢ A .  
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We shall compare g(~) (~) with 1~ ) (~; ~*). Assuming that  d (~, A) < 1 we have ~g* Cj (~) = 1 
and hence 

g (~)  = fm (~; ~*) + ~* ~s (~) (fro (~; ~) - -  In (~; ~*))- 
J 

Differentiating we get using Leibniz' formula 

g(~) (~)  = 1~  ) (~; ~*) ÷ Z ~* +i~)(~) (17) (~; ~) - 17  ) (~; ~*))- (3.7) 
~ + r - a  J 

If ~ is in the support of C j, the distance from this support to A is at most I~ - ~* I, 
hence the diameter is < C I~ - ~* I in virtue of (iv) and, in view of the definition of ~j, 

]~ -~J l  ~< (C+ 1)1~ -~* !  = (C + 1)d(~,A). (3.8) 

Hence also I ~ - ~* I < (G + 2)]~ - ~* I = (C + 2) d (~, A). (3.9) 

Introducing remainder terms in (3.7) we obtain 

~(~)(~)=I(~)(~)-R~)(~;~*)+ V ~*,~)(~)(R~)(~;~)-R~)(~;~*)). (3.7') 
fl+v=o: i 

When ~ and ~ belong to a fixed compact set, the classical expressions for the remainder 
term give 

where ~(t) decreases to 0 with t. With d = I ~ - ~ * 1 =  d(~,A) and d~ = (C + 1)d, we 
get using condition (iii) of Lemma 3 and (3.8) 

I g(~) (~) - l (~) (~)1 ~< d~-I ~ ' s (d)+  Z 2 CZ d -I~1 (d~-Irls  (d~) + d ~ - I r ' s  (d))-->0 

w h e n  d - ~ 0  s i n c e  m - I~1 - I~1 = m - l s l  > 0 .  ~ e t  h = ! - g. T h e n  h = 0 i n  J a n d  
h~C'~(CA), the derivatives of order ~ m  tending to 0 when $-->A. An elementary 
argument which we do not  elaborate shows that  h is then in C ~ (R ~) and that  its deriv- 
atives vanish in A. This proves that  g~Cm(R ") and satisfies (3.1). 

I t  remains for us to obtain an estimate for g(~) which only involves the values of / 
and its derivatives in A. 

Delinition. I] B is a set in IW a n d / E C " ( R ' ) ,  we denote by I/I,,,B the leazt upper 
bound o/ the quantities 

I1(~)(~)1, [a]~<m, ~eB,  (3.10) 

and I R ~ ) ( $ ; ~ ) [ / [ $ - ~ I  m-j~l, lal ~<m, $ * V ;  ~,~/eB. (3.11) 

I / B  is empty we define 1 / l m,, = 0, and i / B  consists o/the point ~ only we write III m, 
instead o/ Ilt,~.,,, th~ 

I11~,, = sup I1 (~ , ($ )1 .  
I~l<m 

Let A t be the set of points in A with distance at m o s t / t  = (C + 1)5 lff~/2 from ~. 
We shall prove that  there is a constant/(1,  independent of / and ~, so tha t  for the 
function g defined by  (3.4) we have 
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lal,n.~ <K~I/I,,,,,~, ~eR". (3.12) 

This inequality is obvious if d(~,A) ~> 5 V~v/2 for then M1 terms in (3.4) are 0. Next  
note tha t  if d(~,A) ~< 5 1/~v/2 we have ~* EA~ and ~JEA$ if ~ is in the support  of ¢j. This 
follows from (3.8). 

When 1 <~ d(~,A) ~< 5 ~ / 2 ,  the equation (3.7) does not  necessarily hold but  we 
have 

g(=) (~) = Z ~* ~ )  (~) IN ) (~; ~J)- (3.7") 

For all j with ¢~)(~) ¢ 0 we can estimate 

l ~  )(~; ~') = Z 1 (~+~) (~) (~-  ~ ' )~ / l f l l !  
I~l<m-lvl 

by a constant multiple of I11 ~,~ because ~'eA~ aM I~ - ~'1 ~< R. I f  we then apply 
proper ty  (iii) in Lemma 3, noting tha t  d(~,A) ~> 1, inequality (3.12) follows in this 
case. 

When 0 < d ( ~ , A ) <  1, the only remaining case to study, we can use (3.7). The 
term 1~) (~,~*) can obviously be estimated by a multiple of Ill ~. ~" W h a t  we need is 
thus only an estimate of the difference 

l ~  ) (~; ~) - 1~) (~; ~*) 
when ~J and ~ ' 6  A~. We have 

1~'(~;~')= ~: 1 ¢~+~)(e) (~-~')~/I/~l~ I~l<m-h'l 

= ~: ( l~ +p, (~'; ~:*) + R~ +p) (~'; ~*)) (~ - ~')~ / I/~1 ~ 
I~l<m-lrl 

= I=' (~; ~*) + ~: =~+n' (~'; ~*) (~-  e)n/l~l~. 
I~l~m-lvl 

Hence 

I 1~ ) (~; ~:J) - I~ ) (/~;/~*) I = I Z R~ +/~) (~:J; ~*) ( ~ -  ~J)/~/1~ I~1 
<11 I,n.A~ ~: I ~'-~:* I 'n-~'- '~ I ~-/~'1'~' / I /~ I! < K, I  ll,n.~ d (~:, A) 'n-'~ 

in virtue of (3.8) and (3.9); K 1 is a constant. But  using this estimate and condition 
(iii) of Lemma 3 in (3.7) we get the desired result since d(~,A) will occur in the power 

m - l ; , I - I ~ l  = m - I ~ l  ~>o. 
We collect as a theorem the results of Whitney given in this section. 

Theorem 2. The linear operator/-->g de/ined by (3.4) maps Cm(R ~) into itsel/,so that 
(3.1) and (3.12) are valid. 

4. Proof  of  Theorem 1 

Let  P be a polynomial ~ 0. Since Theorem 1 is trivial if P is a constant, we assume 
tha t  it is of positive degree ju. :By _IV k we denote the set of all real $ where P has a 
zero of order k a t  least. Thus zY k is the closed set defined by  the equations 
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P(~)(~) =0,  Ic¢ 1 <k ,  ~ER". (4.1) 

Since/)(~) = constant ~ 0 for some a with I a] = #, we have N ~+~ = ¢, thus 

~" = ~ 0 D A ~ I D N 2 D  "'" ~ N  p+I = ¢ .  (4.2) 

The idea of the proof of Theorem 1 consists in estimating [ in terms of P / f i r s t  in 
/V ", then in ~V ~-~ and so on. Thus we shall prove successively for decreasing k the 
following statement, which is equivalent to Theorem 1 when ]¢ = 0 and is trivial 
when k =/~ + 1. 

To all non negative integers n, m and k <~ # there are non negative integers n', m' 
a~wl a constant K such that 

sup(l+l~l)'~lll~.~,~ <Ksup(]+l~l)n'lP/Im,~, [Ecm'(R"). (4.3) 

In  proving this result we may of course assume that  the corresponding statement 
with k replaced by  /~ + 1 is already established. 

We start  by giving some formulas for the quantities occurring in the definition 
of ]/] ~,N~ (cf. section 3). With 

P(~)[(~) = F(~) (4.4) 

we get in view of (4.1) by applying to (4.4) the differential operator D ~, [ill = k, that  

P(~(~)/(~)=F(~(~), ~e~v ~, lf lI=k. (4.5) 

In  order to obtain a similar formula for /(~)(~) we write 

[(~) = F(~)/P(~)  

when P ( ~ ) ¢  0, apply the differential operator D ~ to both sides and multiply by 
p (~)H+l  afterwards. This gives, for all ~ER ~, 

p (~)l~l+l f~)($)= LI ~l (~, F), (4.6) 

if we use the convention that  Ls denotes a differential operator acting on F of order s 
with coefficients tha t  are polynomials in ~. Applying the differential operator D e, 
I~l =([~l + 1)k, we get 

(D~(P(~)I~I+I))/(~)(~)=LkI~I+k+I~,I(~,F), ~ E N  "~, ] f i i = ( l ~ l + l ) k .  (4.7) 

We also need a formula for the Taylor  remainder terms R~ ) (~; ~) with ~, ~ E N ~. 
By  definition we have 

R(,~> (~; ~) = [(~) (~) - ~ / (~+P)(v)(~-~)~/ l f l l  ! . 
i~l~<m-i~l 

Multiplying by P (~)l ~l+~ p (~?)m+l we get using (4.6) 

p (~)l ~1+1 p (~)m+l R~)(~; ~) 

=P(~?)m+tLI~'I(~'F)-P(~)t~+II~I<'~-I~I~ P ( ~ ) m - I ~ H ~ I L I ~ M ~ ( ~ ' F )  ]fl]~ 

= LI~I, m (~, ~, F). (4.8) 
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Here and in what  follows we understand by  L~,t(2,~?,F) a linear combination of 
the derivatives of F a t  2 and a t  ~ of order ~< s and ~< t respectively, with coefficients 
tha t  are polynomials in 2 and r]. For later purposes we note tha t  all derivatives of 
LI~I.~(2,~,F ) =P(2)Ic~I+IP(~)m+IR~)(~;~) w i t h  respect to 2 and r] of total  order 
< k ( t ~  I + l ) + k ( m + I ) + m - [ ~  l vanish if 2=~76A r~. In  fact, to get a non zero 
te rm in the expression for a derivative given by  Leibniz'  formula one has to differen- 
t ia te  a t  least k ( I a I + 1) times on the factor P (2) I ~ I+1, k (m + 1) times on the next  factor 
p(~])m+l a n d  m -  times on the factor R~)(2;U). 

Applying the differential operator D ~ with respect to 2 and D r with respect to ~/ 
in (4.8), we obtain in view of (4.1) 

{D a (p  (2)1 ~1+1 )} {D r ( p  (~)m+l)} R(m ~) (2; ?]) = Lkl ~l+k+l~l, km+k+m (2, ~, ~1~); 

2,,;eN Irl=(m÷l)k.  (4.9) 

From a remark made above it follows tha t  the function Lk I ~ I+ k +1 ~ I. k ~ + k+ m (2, fi, F), 
which is the right hand side of (4.9), vanishes of order m - I ~1 if ~/is fixed in N k and 
2-->fi (without necessarily belonging to Nk). This will be important  in establishing 
a favourable estimate of R~ ) by  means of Taylor 's  formula. 

We are now going to prove tha t  m' and n' can be/ound so that (4.3) is valid under 
the additional assumption that / vanishes o/ order m' in N kq-1. (If h rk+l = ¢ this is of 
course no restriction.) The proof will follow in this case from the formulas (4.7) and 
(4.9) and application of Lemma 2. Using Whitney 's  theorem and the hypothesis 
tha t  a result of the form (4.3) is valid when k is replaced by  k + 1, we will then be 
able to complete the proof. 

We assume tha t  N k+l is not e m p t y - - t h e  opposite case is simpler and is covered 
by  the following arguments  with obvious modifications. Lemma 2 applied to the 
polynomial 

Q(2 )=  ~ D ~(p(2)j)[2 
# ~<tk 

which vanishes precisely in 1V k+l then shows tha t  there are positive constants c, 
/z', # "  such tha t  

~. ID~(p(~)J)12>~cd(2, Nk+l)2~" (l +1212) -~'', 2 e N  k. (4.10) 
I f l l= /k 

(Note tha t  the derivatives of PJ of order < j k  all vanish in/yk.) The constants depend 
on j. (Actually it  is easy to prove tha t  one can choose/z'  and # "  proportional to 1). 
We shall denote by/Zm and #m two constants so large tha t  (4.10) holds with/~.' =/zm, 
/z" =/z~ and some c > 0 for all j ~< (m + 1). 

Let  m' be an integer so large tha t  

m' +kl l +k+  I 1" (4.11) 

We shall prove tha t  for suitable constants n '  and K,  independent of / and ~, 

1/(=)(2)l<K(l+121r'lFIm, s(e,, (4.12) 

where S(2) is the sphere with centre at  2 and fixed radius = 1, provided tha t  / vanishes 
of order m '  in N k+l. This will follow from (4.7) and (4.10) when we have proved the 
following estimate of the right hand side of (4.7): 
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lL~i~i+~+,~,(~,F)l<K~ (l +l$])"~d(~,N~+*)~'-~'-~-'~'i~Im..s(~). ~ e R  ~, (4.13) 

where K~ and n, are constants. (4.13) is obvious if d(~,N ~+~) >~ 1 because m'~> 
kl~ I + k + [ ~ l .  If d(~,N ~+~) < 1  there is a point ~*6A r~+~ such that  ] ~ * - - ~ l =  
d(~,N~+~), hence ~ '6S(~).  At  ~* the function L~I~I+~+I~I(~,F) vanishes of order 
m ' - k  I a I - k - I ~  I at  least since F = P/vanishes  of order m'. Hence by Taylor 's 
theorem applied to the Taylor expansion of the function L~I~ I+~+1~1 (~, F) at  ~* 

IL~t+~+, ~I (~, F) I ~< (~I ~- ~*I) ~'-~' ~'-~-' ~' IL~.~,+~+,~, (V, F)I ~.-~, ~i-~-,~,. ~(¢) 

which proves (4.13). Squaring and adding the equations (4.7) with absolute values 
taken on both sides, we now get in view of (4.13), if ~6 h  TM, 

~. ~1+1) 

~<K 2 (1 +1 1) ~'d(~,2Vk+l) m'-klal-/c-lall ~[m,:z(~), 

and applying (4.10) we get 

This implies (4.12) in virtue of (4.11). 
We shall now establish an estimate of the form (4.12) for the quantities 

R ~ ) ( ~ ; 7 ) / l ~ - ~ l ~ - ' ~ ' ;  ~ , r /EN  k. 

In doing so we distinguish between two different cases. 

CAs~. I: In this ease we assume that  the points ~ and 7 lie so far apart  tha t  

(4.12)' shows that  if 
21~-71 >~d(#, Nk+l) + d(~,Nk+x) • 

there exist constants n' and K such that  

(4.14) 

(4.11') 

]/(*')(~)]<~K(l+l~l)'~'d(~,Nk+l)mlP/l., .s(e), ~62V k, (4.12") 

if / vanishes of order m' in N k+l. Now R(g ) (~;7) is a linear combination of derivatives 
of / at  ~ and at  r /of order ~< m, multiplied by polynomials in ~ and 7- If (4.14) holds 
we can use the estimates d($,N ~+1) ~< 21~ -~/I and d(~l,N k+~) < 21~ -V [  in (4.12)", 
which holds for all a with I a I ~< m provided that  

m' >~m +lUre + km + k +m.  (4.11") 

Hence we have with new constants K and n' provided tha t  (4.11)" and (4.14) are 
valid: 

IR~)(~;7)I~<K(1 +1~]+ 171)n' l~-~lmlp/lm, s(¢,,7), ~,~]~_.N 1¢, (4.15) 

if S(~,~) = S(~) U S(r]) and / vanishes of order m' in N k+l. 
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CASE II:  In  this case our assumption, opposite to (4.14), is tha t  the points 2 ands/ 
are so close that  

212 - ~ I < d (2, 2V~+1) + d (~, 2V~+1). (4.16) 

Since I d (~,N ~+~) - d (r/, 2V*+~) ] < ]~ - ~/I, 

if follows tha t  d(~,N~+~)/3 < d(~,N ~+1) < 3d(,/,N*+~). (4.17) 

If $ is a point on the line segment joining ~ and ~ we also have 

d(~,N ~+1) < [~ - 2] + d(~,N ~+~) ~< I~ - ~ [  +d(~,N~+~) < 3d(2,N~+l), ~ 
(4.18) 

d($,N~+ ~) < 3d(~/,N~+l). 

We now use (4.9). As pointed out after tha t  formula, the function 

H (~)=L~l~l+~+l~l,~m+~+~ (~,V, F), 

where ~ is fixed in N k, vanishes of order m - I ~1 for ~ = ~/. If we denote by v~ the unit 
vector ( ~ - ~ ) / 1 2 - ~ / I  and by (D,v~} the differentiation in the direction v ~ with 
respect to ~, Taylor's formula applied to the function H gives 

ILkl~l+k+l~l,~m+~+,n (2, ~,Fl<. l~-~?lm-I~l l (D,~}m-I~lH(~)l / (m-I~l)! ,  
~ N  ~, (4.19) 

for some ~ in the line segment from 2 to U. Now (D,v~} ~-I ~ I H (~) is a combination with 
uniformly bounded coefficients (products of coordinates for v ~) of polynomials in 
and ~ multiplied with derivatives of F at  ~ and at  ~ of order not exceeding/c m +/c + m. 

If m' ~> 2tt~ + km + k + m, (4.20) 

and [ vanishes of order m' in N ~+*, we get by arguing as in the proof of (4.13) since 
all derivatives of F occurring in the right hand side of (4.19) vanish of order 
m' --km--/c -- m ~> 2#"  in N ~+1 

[D e (p (~)1:1+1)[ I D y (p (~/)m+l) ][ R~)(~; ~1)]= ]L~ j: I+k+l:l,k ~+k+m (~, r/, F) I 

<~Ka]2-vll~-I~'l(d(~,Nk+l)+d(~,Nk+l)) e~'m (1 + ] ~71 + ] ~ ] )"  l Fl~,,s,(~,,); 

2,yen (4.21) 

where Sl(~,r/) is the set of points at  distance at most 1 from the segment from ~ to ~/. 
In  the right hand side we can estimate (d(~/, N k+l) + d(~,Nk+l)) ~ by a constant times 
d(~l, Nk+l)d(~,.Yk+l), in view of (4.17) and (4.18). Furthermore, 1 +Ir/I + ]~1 can 
be estimated by  a constant multiple of 1 + 2 +1~1" Finally, if we square and add 
the inequalities (4.21) for allfl and r with fl = ( ~1 + 1)k; I?1 = (m + 1)k, and then 
use (4.10) to estimate the left hand side of the resulting inequality from below, we get 

IR(~)(2,~)l<~Khl~-~lm-1"l(l+121+l~l)nh]FIm, s,(~,,7), 2 , ~ e N  k. (4.22) 

Let  m' be an integer such that  (4.11)" and (4.20) are fulfilled. Then all the estimates 
(4.12), (4.15), (4.22) hold when I~1 ~< m (possibly for different n' and K). Hence ine- 
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quality (4.3) is valid with some n '  and K for all / vanishing of order m'  in N k+l, 
for I/Ira, Nk~ ' is the least upper bound of the quantities 

I/(~'(~)l, i~ ) (~; ,7) l / l~ -v l  ~-*~*, I ~1< /  
,~he~ ~. ~ V ~  and ]~-~ ' [  ~R, I~ -~ ' [ -<R.  

I t  remains to show tha t  (4.3) is vagd without the restriction that / 8haU vanish o/ 
order m'  in N k+l. To do so we apply Theorem 2 with A = N TM and m replaced by 
m'.  From (3.4) we then get a function g EC "~" (/F) such that ,  with h = ] -  g, 

hECm'(R~), h = 0 of order m'  in N k+l. 

We have / =  h + g and from (3.12) we get 

Igl ~.,~ ~< Killl.,.,,,~%. (4.23) 

Hence, recalling tha t  P (~) is of degree/~, we get 

sup (1 +l~l)"' IPg l~ , ,~<G sup (1 +l~l)"'+"lgl~, ~ 

< K .  sup (1 + I~1 )"'+" I l l . , ' .  ~k+le  • 

Since we have assumed tha t  (4.3) is true when/c is replaced by  ]c + l, we get with 
some n "  and m"  

sup (1 +1~1 )"  [Pg[~,.~ < K4 sup (1 + [~[ ) '"  [Pllm",~. 

Since h = [ - g and n"  ~> n'; m" ~> m', we get 

s u p ( l + l ~ I ) " ' l P h l , , , ~ < ~ ( K ~ + l )  sup (1 +1~[)""  IP/Im,, ~. (4.24) 

Now h vanishes of order m'  in N k+a so we can apply (4.3) to h. This gives 

sup (1 + I~1)" I h lm .~<  K sup (~ + I~l )"" IPh[,.,.~. (4.25) 

Combining (4.25) with (4.24) and estimating g by  means of (4.23) and the induction 
hypothesis again, we get with some n °, m ° and K ° 

sup(1 + l~l)nl/l~,uk~ ~< K° sup(1 + I~l)"' lP/I,~°~. (4.26) 

This completes the proof of (4.3) and thus of Theorem 1. 

5. Appl icat ions  o f  T h e o r e m  1 

We shall now show tha t  the division problem can easily be studied by  means of 
Theorem 1. 

Theorem 3. Let T be a tempered distribution and P a polynomial ~ O. Then there is 
a tempered distribution S such that T = P S .  
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Theorem 4. I /  T is a distribution in an open set ~ ,  there is a distribution S in 
such that T = P S, where P is a given polynomial ~ O. 

Proo /o /  Theorem 3. Consider the linear form 

PI-> T(/) 

which is defined in a subset PS  of S. I t  is continuous for if P / - + 0  in $ it follows that  
/-->0 in $ (Theorem 1), hence T(])--+O. In view of the Hahn-Banach theorem we 
can extend the linear form to a linear form 9 -+  S (~0) on the whole of $. Then we have 
S(P / )  = T(/), that  is, P S  = T. 

The proof of Theorem 4 is exactly analogous and can be omitted. 

Theorem 5. I / P ( D )  is a partial di//erential operator with constant coe//icients and 
T a tempered distribution, there is a tempered distribution S such that 

P ( D ) S  = T. (5.1) 

Proof. Applying the Fourier transformation in the sense of Schwartz [4], we 
transform (5.1) into the equation 

P(  - i~)~ = ~', 

where ~ and ~ are the Fourier transforms of S and T. Now this equation has a tem- 
pered solution ~, hence inverting the Fourier transformation we obtain a solution of 
(5.1). The proof is complete. 
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