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C o m m u n i c a t e d  12 N o v e m b e r  1958 b y  LENNART CARLESON 

The modulus o f  c o n v e x i t y  in  n o r m e d  l i n e a r  spaces  

B y  Gi3TE NORDLANDER 

W i t h  1 f igure  in the  t e x t  

The modulus of convexi ty  5 (e) of a normed linear space is defined as 

inf ( 1 -  x + Y l ~  ~(e)= 

(Clarkson, Day  (1), Lemma 5.1). For  example, the modulus of convexity OE(~) 
of an abstract  Euclidean space is easily determined from the parallelogram 
identi ty and is found to be 

die (e,) = 1 - r  

d 

E 2 

4" 
Theorem. The inequality 

(e) < ~E (~) 

holds /or every modulus o/ convexity r (e) in a spac~ with real scalars. 

Proof. I t  is sufficient to prove the theorem in the two-dimensional case. In  the 
usual way  such a space m a y  be thought  of as a plane in which the norm is 
determined by  a central-symmetric convex curve F with midpoint in O. The norm 
of a vector is determined by  the ratio of the length of the vector to the length 
of the parallel vector start ing at  O and ending at  F. Thus F is the locus of 
the endpoints of the vectors from O of norm one. 

If  the two unit  vectors x = OA and y = OB are ro ta ted  around F, while their 
difference x - y =  B A  has constant ly  the norm e, the endpoint  M of the vector 
O M = � 8 9  describes a curve F~ (Fig. 1). 

l~ is a simple closed curve, as can be inferred from Lemma 2.4 of Day  (1). 
Let  Y be the area of the region inside 1 ~ and Y~ the area of the region inside F~. 

L e m m a .  

The lemma is a simple extension of a theorem of Holditch (de La Vall~e 
Poussin, p. 318), and is proved by  the same method. 
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Fig. 1. 
(The polar angle ~ is measured from an arbitrarily chosen direction.) 

Le t  (xl, Yl) and  (x~, y~) be the  coordinates  of A and  B in an  a rb i t r a ry  rec- 
t angular  coordinate  system. Then 

Y = f yl d Xl ~ f y2 d x2 

where the  var iables  xl, Yl, x2 and  Y2 a r e  thought  of as dependent  of a para-  
meter  t, vary ing  from ~ to /~ as  the  curve is descr ibed once in the  negat ive  

direction.  The coordinates  of M are t h e n '  xl§ Yl~-Y~ and 
[ 

\ 2 ' 2 ]  

Y~ = �88 f (y, § y~) d (x, § x~). 

Hence Y - Y~ = ~ f (YI - Y~) d (X 1 - -  X2). 

The integral  in the  r ight  member  expresses the  area  of the  region inside the  
curve described by  the  endpoin t  of the  vector  AB, if th is  vec tor  is la id off 
from a fixed point .  This curve is similar to F in the  ra t io  e. Hence 

Y -  Y~=�88 Y, 

which proves the  lemma.  

The norm of the  pa r t  MC of the  uni t  vector  OC th rough  M is denoted  A (e, ~). 
We have 

(~ (e) = inf A (s, ~). 
r 

If  the  areas Y and  :Y, are expressed in polar  coordinates  the  lemma takes  the  fo rm 
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2~ 2~ 

o 0 

where r(~) is the length of the vector OC. Hence 

which implies 

because r 2 (~) > 0. 

2~ 

0 

V ~2 
b(e)=infA(e,~)~<l- 1-~=~E(e), 

Theorem 4.1 of Day  (2) shows tha t  if there is equali ty in our theorem for 
all e, 0 < ~ ~< 2, the space is abstract  Euclidean.  I have no t  been able to decide 
whether the same conclusion holds under  the sole assumption of equali ty for a 
certain ~0, 0 < e o < 2. 
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