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The modulus of convexity in normed linear spaces

By GOTeE NORDLANDER

With 1 figure in the text

The modulus of convexity d(¢) of a normed linear space is defined as

. lz+y|

d(e)= inf (1— Ty )

e )=t yil=1 ! 2 |
flz—yll=e

(Clarkson, Day (1), Lemma 5.1). For example, the modulus of convexity dz(¢)
of an abstract Euclidean space is easily determined from the parallelogram
identity and is found to be

2
' €
Theorem. The inequality
0 (e) <dg(e)
holds for every modulus of converity d(e) in a space with real scalars.

Proof. It is sufficient to prove the theorem in the two-dimensional case. In the
usual way such a space may be thought of as a plane in which the norm is
determined by a central-symmetric convex curve I" with midpoint in O. The norm
of a vector is determined by the ratio of the length of the vector to the length
of the parallel vector starting at O and ending at I". Thus I' is the locus of
the endpoints of the vectors from O of norm one.

If the two unit Xectors r=04 and y=0§ are rotated around I', while their
difference z—y=BA has constantly the norm ¢, the endpoint M of the vector
OM =1} (x+y) describes a curve T, (Fig. 1).

I; is a simple closed curve, as can be inferred from Lemma 2.4 of Day (1).
Let Y be the area of the region inside I' and Y, the area of the region inside I',.

82
re (1)

The lemma is a simple extension of a theorem of Holditch (de La Vallée
Poussin, p. 318), and is proved by the same method.

Lemma.
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A 4

Fig. 1.
(The polar angle @ is measured from an arbitrarily chosen direction.)

Let (z,, y,) and (z,, y,) be the coordinates of 4 and B in an arbitrary rec-
tangular coordinate system. Then

B 8
Y=J‘y1dx1=jy2dx2

where the variables z,, y,, z, and y, are thought of as dependent of a para-
meter {, varying from a« to § as the curve is described once in the negative

z +x, ?Lﬁ’ﬁz) and

direction. The coordinates of M are then ( 5 g

B
Y.= if (Y1 + y2) d (2, + ).

B
Hence Y—Y. =} (5 —9) d(z,— ).
The integral in the right member expresses the area of the region inside the
curve described by the endpoint of the vector AB, if this vector is laid off

from a fixed point. This curve is similar to I' in the ratio e&. Hence
Y-Y. =167
which proves the lemma.

The norm of the part MC of the unit vector OC through M is denoted A (e, ¢).
We have

d{e)=inf A (e, ).
P
If the areas Y and Y, are expressed in polar coordinates the lemma takes the form
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J (1—Ale, (p))2 72 (p) dop= (l —%) frz(¢) do,
0 0

where 7(p) is the length of the vector '0C. Hence

2n
2
.fpl—A@,WF—(l—%)}F@ﬂd@=a
J
which implies

3
S(e)=inf A(e, p)<1—|/1-% =6,(c),
() in (e; ) V 1 =0 ()

because 7*(¢) > 0.

Theorem 4.1 of Day (2) shows that if there is equality in our theorem for
all g, 0<g<2, the space is abstract Euclidean. I have not been able to decide
whether the same conclusion holds under the sole assumption of equality for a

certain g, 0<g< 2.
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