The modulus of convexity in normed linear spaces

By Göte Nordlander

With 1 figure in the text

The modulus of convexity $\delta(\varepsilon)$ of a normed linear space is defined as

$$
\delta(\varepsilon)=\inf _{\substack{\|x\|=\| \|\|1\\\| x-y \|-\varepsilon}}\left(1-\left\|\frac{x+y}{2}\right\|\right)
$$

(Clarkson, Day (1), Lemma 5.1). For example, the modulus of convexity $\delta_{E}(\varepsilon)$ of an abstract Euclidean space is easily determined from the parallelogram identity and is found to be

$$
\delta_{E}(\varepsilon)=1-\sqrt{1-\frac{\varepsilon^{2}}{4}}
$$

Theorem. The inequality

$$
\delta(\varepsilon) \leqslant \delta_{E}(\varepsilon)
$$

holds for every modulus of convexity $\delta(\varepsilon)$ in a space with real scalars.
Proof. It is sufficient to prove the theorem in the two-dimensional case. In the usual way such a space may be thought of as a plane in which the norm is determined by a central-symmetric convex curve Γ with midpoint in O. The norm of a vector is determined by the ratio of the length of the vector to the length of the parallel vector starting at O and ending at Γ. Thus Γ is the locus of the endpoints of the vectors from O of norm one.

If the two unit vectors $x=\overrightarrow{O A}$ and $y=\vec{O} \vec{B}$ are rotated around Γ, while their difference $x-y=\overrightarrow{B A}$ has constantly the norm ε, the endpoint M of the vector $\vec{O} \vec{M}=\frac{1}{2}(x+y)$ describes a curve Γ_{ε} (Fig. 1).
Γ_{ε} is a simple closed curve, as can be inferred from Lemma 2.4 of Day (1). Let Y be the area of the region inside Γ and Y_{ε} the area of the region inside Γ_{ε}.

$$
Y_{\varepsilon}=\left(1-\frac{\varepsilon^{2}}{4}\right) Y
$$

Lemma.
The lemma is a simple extension of a theorem of Holditch (de La Vallée Poussin, p. 318), and is proved by the same method.

Fig. 1.
(The polar angle φ is measured from an arbitrarily chosen direction.)
Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be the coordinates of A and B in an arbitrary rectangular coordinate system. Then

$$
Y=\int_{\alpha}^{\beta} y_{1} d x_{1}=\int_{\alpha}^{\beta} y_{2} d x_{2}
$$

where the variables x_{1}, y_{1}, x_{2} and y_{2} are thought of as dependent of a parameter t, varying from α to β as the curve is described once in the negative direction. The coordinates of M are then $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ and

$$
Y_{\varepsilon}=\frac{1}{4} \int_{\alpha}^{\beta}\left(y_{1}+y_{2}\right) d\left(x_{1}+x_{2}\right)
$$

Hence

$$
Y-Y_{\varepsilon}=\frac{1}{4} \int_{\alpha}^{\beta}\left(y_{1}-y_{2}\right) d\left(x_{1}-x_{2}\right)
$$

The integral in the right member expresses the area of the region inside the curve described by the endpoint of the vector $\vec{A} \vec{B}$, if this vector is laid off from a fixed point. This curve is similar to Γ in the ratio ε. Hence

$$
Y-Y_{\varepsilon}=\frac{1}{4} \cdot \varepsilon^{2} \cdot Y
$$

which proves the lemma.
The norm of the part $\overrightarrow{M C}$ of the unit vector $\overrightarrow{O C}$ through M is denoted $\Delta(\varepsilon, \varphi)$. We have

$$
\delta(\varepsilon)=\inf _{\varphi} \Delta(\varepsilon, \varphi)
$$

If the areas Y and Y_{ε} are expressed in polar coordinates the lemma takes the form

$$
\int_{0}^{2 \pi}(1-\Delta(\varepsilon, \varphi))^{2} r^{2}(\varphi) d \varphi=\left(1-\frac{\varepsilon^{2}}{4}\right) \int_{0}^{2 \pi} r^{2}(\varphi) d \varphi
$$

where $r(\varphi)$ is the length of the vector $\overrightarrow{O C}$. Hence

$$
\int_{0}^{2 \pi}\left[(1-\Delta(\varepsilon, \varphi))^{2}-\left(1-\frac{\varepsilon^{2}}{4}\right)\right] r^{2}(\varphi) d \varphi=0
$$

which implies

$$
\delta(\varepsilon)=\inf _{\varphi} \Delta(\varepsilon, \varphi) \leqslant 1-\sqrt{1-\frac{\overline{\varepsilon^{2}}}{4}}=\delta_{E}(\varepsilon),
$$

because $r^{2}(\varphi)>0$.
Theorem 4.1 of Day (2) shows that if there is equality in our theorem for all $\varepsilon, 0<\varepsilon \leqslant 2$, the space is abstract Euclidean. I have not been able to decide whether the same conclusion holds under the sole assumption of equality for a certain $\varepsilon_{0}, 0<\varepsilon_{0}<2$.

REFERENCES

Clarkson, J. A.: Uniformly convex spaces. Trans. Amer. Math. Soc. 40, 396-414 (1936).
Day, M. M.: (1) Uniform convexity in factor and conjugate spaces. Annals of Math. (2), 45, 375-385 (1944).
(2) Some characterizations of inner-product spaces. Trans. Amer. Math. Soc. 62, 320-337 (1947).
de La Vallée Poussin, Ch.-J.: Cours d'Analyse Infinitésimale, I.

