ARKIV FOR MATEMATIK Band 4 nr 3

Communicated 13 May 1959 by T. NaceLL and LENNART CARLESON

On the uniqueness of minimal extrapolations

By YnevE Domar

1. Imireduction

Let E be a non-empty closed proper subset of — oo <i{< oo and let f, be a
complex-valued function on ¥ such that the class D of all functions F of
bounded variation which satisfy

fo)= [ € dF (),

—oo

when t € E, is non-empty. In case there exists a function F, €D, such that

Var F,= inf Var F,

FeD

we call the corresponding function
fo @)= f e dF,(x), —oo<ti<oo,

s minimal extrapolation of f,.

The concept of minimal extrapolation was introduced by Beurling [1]. Esseen
[2], p. 13, pointed out that Lenime 1 in Beurling [1] implies that a minimal
extrapolation always exists if E is the closure of its interior. Actually, Beurling’s
methods can be used to prove more general results in this direction. We shall,
however, in this paper instead turn to the following problem, which does not
seem to have been treated before in the literature: If a minimal extrapolation
exists, is it then unique?

In §2 and §3 we collect some preliminary results, and in §4 we prove the
uniqueness if E is a half line. The remaining cases are studied in §5. It turns
out that we necessarily have to lay extra conditions on f, in order to secure
uniqueness. The particular case when X is the complement of a finite interval
is discussed further in §6, and it is shown that we have uniqueness if f, has
the property that one (and hence every) corresponding function F has an ab-
solutely continuous part with a continuous derivative.
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2. Minimal extrapolations with ahsolutely continuous F,

We denote by L} the class of functions G € L' for which

fe”"G(x)dx=0

for every t€E, and by LF the class of functions ¢ € L* for which

jjoqo ()G (x)dx=0

-0

for every G € LY. Thus L% is the weak closure of the linear set which is spanned
by the functions €, t€ K.

The following lemma is not entirely new, since parts of it can be traced
back to Sz. Nagy [4] and seminars by Beurling.

Lemma. Suppose that
Lty= [e=dF, (),

— o0

where F, €D is absolutely continuous.
Necessary and sufficient for f, to be a minimal extrapolation is that there
exists a function ¢ € LY with

lg (@) <1

almost everywhere and such that

Fi(2) ¢ (2)=| F1 ()]

almost everywhere.
Proof of the mecessity. If F, is absolutely continuous and corresponds to a
minimal extrapolation we must have
m=Var F,= 'HF{(x)|dz< JFIF;(x)—G(z)|dx,

oy -0

for every G€eL). Hence m is the distance in L' between the element F; and
the closed linear set L}, and by the Hahn-Banach theorem there exists a
bounded linear functional F* with norm <1 such that

F*(G)y=0, if GelL'(E),
while F* (F;) =m.

The space of bounded linear functionals on L' can be identified with L*.
Hence there exists a function ¢ € L* such that

lp|<1 (1
20
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almost everywhere, such that

f(p(x)G(x)dx=0,
if G €Lk, ie. which belongs to L%, and finally such that

f(p(x)F{(x)d:v=m= “F{(x)ldw,

which by (1) implies that

¢ (z) Fi () =| Fi ()|
almost everywhere.

Proof of the sufficiency. We skall use the auxiliary function

x

K(x)=—1— fe"”dy.

—00

Let F, and ¢ satisfy the conditions of the lemma. If F is an arbitrary func-
tion in the class D, and if % denotes the ordinary convolution operation in the
class of functions of bounded variation, then it is easy to see that the functions

Fa) %K (g) and F,(z) % K (f)

are’ absolutely continuous for every 0>0 and that the derivative of their dif-
ference belongs to the class Lk. Hence

fq; (@)d [F (@) % K (g) —F, (x) % K (g)]

which may be written

fqp x)d[ x)*K(g)]= f(p(x)d[Fl(x)*K(g)]. @)

0,

The function K is monotonically increasing with variation 1, and hence, by a
wellknown convergence theorem for Lebesgue integrals,

lim H fH(x—y)dK(g)—H(x)
o—++0 b g

dx=0
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for any function H € L'. Using this we see that the right hand side of (2)
converges to

f¢(x)F{(x)dm= f|F{(x)|dx=VarF,

as ¢ —> +0. On the other hand the left hand side has absolute value

< Var {F(z) x K (f)} < Var F(x):-Var K=Var F.
g
For that reason
Var F>=Var F;

for every F €D, which shows that F, corresponds to a minimal extrapolation.

3. On the uniqueness problem when E contains a half line

The difference between any two functions in D has a Fourier-Stieltjes trans-
form which vanishes on E. If E contains a half line, i.e. an interval (— oo, a)
or an interval (b, oo), this implies by a theorem by F. and M. Riesz [3] that
the difference is absolutely continuous. Hence the functions in D differ only by
their absolutely continuous parts, and as for questions of existence and unique-
ness of minimal extrapolations there is no restriction in assuming that f, has
the property that every function in D is absolutely continuous. We shall as-
sume this in the rest of this paragraph, and we exchange for simplicity’s sake
the derivatives F!, Fi, F;, ... of functions in D to H, H,, H,, ... which then are
functions in a certain subclass D’ of L.

Suppose that f, and [, are two different minimal extrapolations of f,, cor-
responding to H, and H,, respectively. The function

o

f®)=%(h O +1,(0)= [€¥} (H,(x)+Hy(2))dx

o0

is another extrapolation of f,, and since

-]

[4|H, (@) + Hy(2)|d2z<} [|H (@) |dz+} [|H,(@)|dx, (3)

— 0

it is a minimal extrapolation. We must furthermore have equality in (3), and
this is the case only if
|H, ()| _|H, ()|
Hy(x) Hy(x)’

(4)

for almost every z, for which the two members are defined. Using the function
¢ which in the sense of the lemma corresponds to the minimal extrapolation
fs» (3) and (4) imply that
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@ () (Hy (x) + Hy (x)) = | Hy (%) + Hy (%),
¢ () Hy (x) = | H, (z)],
and @ (x) Hy () = | Hy ()],

almost everywhere. But

[ e (H; (x) - H,(z)) dz=0,

-

if t€FE, and since we assume that E contains a half line, well-known properties
of Fourier transforms in L' show that H,— H, coincides almost everywhere
with the boundary values of a function, analytic in a half plane. Since the
function is not identically zero we may conclude that it is +0 almost every-
where (cf. [3]). This implies that for almost every x at least one of the func-
tions H, and H, is +0. We may conclude that

H,+ H,+0
and [p@)=1
almost everywhere.
Apparently we have moreover
@ (z) (H, (z) — Hy (2) =y (2) | H, (v) — Hy (2)], (5)
where p is real-valued and
ly(@)]|=1

almost. everywhere.

4. The uniqueness when E is a half line
Theorem 1. The minimal extrapolation is unique when E is a half line.

Proof. It is apparently enough to give the proof if E is the half line 0<{< oo
and, by §3, if the functions in the class D are absolutely continuous.

We give an indirect proof, and we thus assume that there exist two different
minimal extrapolations

W)= [e“H, (x)dz, »=1,2.

-0

For any A>0 the function
e (H, (&) — Hy (@)

has a Fourier transform which vanishes if t>0, ie. if { € E. The function ¢
which in the sense of the lemma corresponds to the minimal extrapolation

1 (h+1)
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(cf. §3) belongs to the class L¥ and hence

[ @ (@) e (H, (2) — H, (x)) dz=0, (6)

if A>0. But (5) shows that
¢(H,—H,)

is real-valued almost everywhere. By conjugation of (6) we therefore obtain

[ (@) e ™ (H, (z)— Hy(x)) dz=0,

-0

if 2>0, which shows that (6) holds for every real-valued A. Hence by the
nniqueness theorem for Fourier transforms in L'

@ (x) (H, (v) — Hy (x)) =0
almost everywhere, and since |p|=1 almost everywhere (§3) we can conclude that
H, (x)=H,(x)

almost everywhere. But the minimal extrapolations were assumed to be different,
and hence this contradiction proves the unigueness.

5. The case when E is not a half line

Theorem 2, If E is not a half line, then there exist functions f, which have
non-unique minimal extrapolations.

Proof. We have to consider two separate oases.

Case 1: The complement of E is connected. Since the complement is open
and is not a half line, it has to be a finite interval. It is apparently no
restriction to assume that the complement of E is the interval —1<i<1.

Case 2. The complement of E is disconnected. It is no restriction to as-
sume that 0 € E while the two intervals (—a—b, —a+b) and (a—b, a+b) are
in the complement. (¢ and b are some positive numbers, b<a.)

The proof will be quite similar in the two cases. We start from a real-valued
function H, which € L, is 0 almost everywhere and finally has the property that

[ H@)| ;e
H(2) €L3.
By the lemma in §2 the function

fy= [e=H@)ds

-0
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is a minimal extrapolatlon of the restriction of f, to E. Then let G be a real-
valued function € L}, which is +£0 and satisfies

|G (2)|<|H (z)]. (7)
. |H (z)| _|H () +6 @)
Obviously HE)  H@)+ 0@
and [ (H(x)+G@)=f(@), if t€E.

—-—®

By the lemma also this function is a minimal extrapolation, and by the unique-
ness theorem for Fourier transforms in L', the two minimal extrapolations are
different. Hence the only problem is to show that we can find functions H and
G with the mentioned properties.

Case 1. We form the function
¢(x)={

1 if cos x>0,

—1 if ecos 2< 0.

It is easy to show that if G,€L'n L% then

o

gf‘"’@(x)dx

— o

'y -1 )
[r@G@iz=3+3 2 an

Hence, if G, € Lk n L?

0

[ @ @) Gy (z)dz=0, (8)

—o0
and since obviously L; n L? is dense in L}, (8) holds for any G, € L. For that
reason @ € LF, and we can choose

It can be proved by a simple contour integration that any entire function of
exponential type 1, which belongs to L' on the real axis, has the property that
the Fourier transform of its restriction to the real axis vanishes outside (—1, 1),
i.e. in our terminology belongs to L%. Hence we can choose

—CO8 &

G (z)= Z.

if the positive constant A is assumed to be so small that (7) holds.
Case 2. Since 0€ K,
f Gy(x)dx=0
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for every G, €L}, ie. every constant function belongs to LZ. For that reason
we can choose

1
Hz)= 1+22
The Fourier transform of
1—cos bz
———co8 ax
z

vanishes outside (—a—b, —a-+b) and (¢ —b, a+0). Hence we can choose

G(x)=}.1:%:02i§—x4cos ax

if the positive constant A is assumed to be so small that (7) holds.

6. A sufficient condition for uniqueness in a special case

It follows from Theorem 2 that in the cases which are covered by that
theorem the class of functions f, with unique minimal extrapolations is a proper
subclass of the class of all possible f, under consideration. The extent and prop-
erties of this subclass seem to depend very heavily on the algebraic properties
of the set E. If, for instance, E is a subset of the set {an+5}%,, for some
a=+0 and b, and if f, is a minimal extrapolation, then

fo(®) cos 22200
a
is also a minimal extrapolation. Hence f,=0 is the only function with a unique
minimal extrapolation. On the other hand, if E is not of that kind it is easy
to see that also the functions
fo () = constant

have unique minimal extrapolations.

We shall turn to the special case when E is the complement of a finite
interval, and we shall prove the following theorem which gives a sufficient con-
dition for f, to have a unique minimal extrapolation.

Theorem 3. Suppose that E is the complement of a finite interval, and that
fo has the representation

fo = [edF,(x),

-0

where F,(xr) has an absolutely continuous part with a continuous derivative.
Then it has a unique minimal extrapolation.

Proof. By §3 it is enough to give the proof, when F,(x) is purely absolutely
eontinuous. We can furthermore assume that the complement is the interval
~-l<t<l.
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The difference between any two functions in the class D’ (§3) has a Fourier
transform which vanishes outside —1<t<1. By the inversion theorem this has
the consequence, that this difference coincides almost everywhere with the values
on the real axis of an entire function of exponential type 1. Since by assump-
tion one of the functions in D’ is continuous, we may assume that every func-
tion in the class is continuous.

Let us therefore assume that we have two different minimal extrapolations

f)= [e=H, (x)dz, v=1,2,

-0

where H, and H, belong to L! and are continuous. By the above arguments
the function
G ()= H, (x) — H, (x)

is the restriction to the real axis of an entire function of exponential type 1.
The function @, which in the sense of the lemma corresponds to the wminimal
extrapolation

t(hth)

(cf. §3) can be assumed to be continuous except at certain points, where both
H, and H, vanish. Hence it is continuous and satisfies

lp (@) =1

except at certain of the zeros of G. It then follows from (5) that the real-valued
function y can be assumed to satisfy

[p@)|=1

everywhere, and it changes its sign, ie. p(z+0)Fy(x—0), only at certain of
the zeros of the entire function G.

Let us first discuss the case when there are only a finite number of changes
in the sign of y. Let the changes occur when

=41, cous Ane

1

We form K(x)=G(x)(x—~A) )
D - n

K is the restriction to the real axis of an entire function of exponential type 1,
and it belongs to L'. As mentioned before (§5) this implies that it belongs to
L%, and since ¢ € LE, we have

e 1
_{O‘P(”)G(x) =) o w—a ="

(]

hence by (5) {16 = Al)’ffff)(x_ 73920

—a0
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But the integrand has a constant sign, and it is not identically vanishing. This
contradiction shows the uniqueness if the number of changes in the sign is finite.
If there is an infinite number -of changes in the sign of v, there exists a
point %, where there is no change, and such that the number of changes for
x <, and for x>z, is either even or infinite. We denote these points by 4, in
such a way that
<)’_"< <}__1<x0<11< <ln<

We can then choose the finite open interval (a, b) so large that there is an
even number of changes for a<z<x, and for zy<x<b, say 2m and 2p, re-
spectively, and such that

11 a -]
[16@|dz> [ + [|G@)|d=. 9)
Ay —0 b
We form the functions
K, (@) (=4 ... (T Agp)

(x—ﬂ.l) (23—3.2,,_1)
and
(x—A_2) ... (®— A-zm)
(.’E—}»_l) (x— }._2””,1).

K_(x)=

The functions are positive if € (A_;, 4;) and if z ¢ (a, b), and it is easy to see that

inf K(z)> sup K (), (10)
Te(A_1, A z¢(a,b)

is fulfilled with K exchanged for either of the functions K, and K_. Hence
the function
.K = K+ M .K..
also satisfies (10).
The function G- K belongs to L' and is the restriction to the real axis of an
entire function of exponential type 1. Hence it must satisfy

| 9 (@) G @) K (x)dz=0,

b a £
ie. |9 (@)@ (@)K (@)dz= —( |+ f(p(x)G(x)K(x)dx). (11)
a -a b

But (5) shows that the left hand member of (11) has the value
b
[16@)]y @) K (2)dz,
a

and since y-K has a constant sign in the whole interval (a, d), we obtain
from (11)
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b a o0

[16@]- 1K @]dz< | +b]lG(x)HK(x)ldx-

a

Hence we have, using (10)

A a 0
[le@]dz< [ + [|G()]|da,
Ay -0 b

which is a contradiction to (9). This proves the uniqueness in the general case.
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