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On the uniqueness of minimal extrapolations 

B y  Yr~CVE DOMAR 

1. In t roduc t ion  

Let  E be a non-empty  closed proper subset of - ~o < t <  ~ and let ]0 be a 
complex-valued function on E such tha t  the class D of all functions F of 
bounded variation which satisfy 

oo 

to(t)= f r 

when t E E, is non-empty.  I n  case there exists a function F~ E D, such tha t  

Vat  F~ = inf Var F, 
FeD 

we call the corresponding function 

/ e ( t ) =  ~eftZdFe(x), - ~ < t < ~ ,  

a minimal extrapolation of /o- 
The concept of minimal extrapolation was introduced by  Beurling [1]. Esseen 

[2], p. 13, pointed ou t  tha t  Lemme 1 in Beurling [1] implies tha t  a minimal 
extrapolation always exists if E is the closure of its interior. Actually, Beurling's 
methods can be used to prove more general results in this direction. We shall, 
however, in this paper instead turn  to the following problem, which does not  
seem to have been treated before in the l i terature:  If  a minimal extrapolation 
exists, is it then unique? 

In  -9 2 and w 3 we collect some preliminary results, and in w 4 we prove the 
uniqueness if E is a half line. The remaining cases are studied in w 5. I t  turns 
out  tha t  we necessarily have to lay extra conditions on /o in order to secure 
uniqueness. The particular case when E is the complement of a finite interval 
is discussed further in w 6, and i~ is shown tha t  we have uniqueness if f0 has 
the proper ty  tha t  one (and hence every) corresponding function F has an ab- 
solutely continuous par t  with a continuous derivative. 
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2. Minimal extrapolations with absolutely continuous F.  

We denote by  L~ the class of functions G E L 1 for which 

oO 

f e ux G (x) d x  = 0 

for every t E E,  and b y  L ~  the  class of functions ~ E L ~ for which 

r 1 6 2  

f ~ (x)G (x) d x = 0 

for every  G E L 1. Thus L~ is the  weak closure of the  l inear  set which is spanned 
b y  the  functions e ~t~, t E E. 

The following lemma is no t  ent i re ly  new, since par t s  of i t  can be t raced  
back to  Sz. Nagy  [4] and  seminars  by  Beurling. 

Lemma.  Suppose t h a t  
o o  

/x (t) = f e ux d F  1 (x), 

where F 1 E D is absolute ly  continuous.  
Necessary and sufficient for ]1 to be a minimal  ex t rapo la t ion  is t h a t  there  

exists a funct ion ~ E L ~E with  
[ ~ ( x ) l < l  

a lmost  everywhere and  such t ha t  

Fi (x) ~ (x) = IF; (x) l 
almost  everywhere.  

Proo/ o/ the necessity. If  F 1 is absolute ly  continuous and  corresponds to  a 
minimal  ex t rapola t ion  we mus t  have 

m=Var F~= f tF~(x)idx< f ]F~(x)--G(x)idx, 
~ 0 r  - - o r  

for every G E L~. Hence m is the  dis tance in L 1 between the e lement  F ;  and  
the  closed l inear  set L~, and  by  the  H a h n - B a n a c h  theorem there  exists a 
bounded linear funct ional  F* with  norm ~< 1 such t h a t  

while 

F * ( G ) = 0 ,  if G E L  I(E) ,  

F *  (_~;) = m .  

The space of bounded  l inear  functionals  on L 1 can be ident if ied with L ~ .  
Hence there exists a funct ion ~ E L ~ such t h a t  

I~1<1 (1) 
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almost everywhere, such that  
~o  

f qJ(x) G(x)dx=O, 
- - o o  

if G E L~, i.e. which belongs to L~, and finally such that  

o~ oO 

f f lF;(x)ldx, 
- - r  - -  o c  

which by (1) implies that  

almost everywhere. 
(x) Fi (x) = I F~ (x)] 

Proo[ o/ the su//iciency. We skall use the auxiliary function 

1/ 
K ( x ) = ~  e-~'dy. 

- - o 0  

Let F 1 and ~ satisfy the conditions of the lemma. If F is an arbitrary func- 
tion in the class D, and if ~ denotes the ordinary convolution operation in the 
class of functions of bounded variation, then it  is easy to see that  the functions 

a r e  absolutely continuous for every a > 0  and that  the derivative of their dif- 
ference belongs to the class L 1. Hence 

oo  

- - o 0  

which may be written 

Oo o 0  

- - 0 o  ~ o 0  

The function K is monotonically increasing with variation 1, and hence, by a 
wellknown convergence theorem for Lebesgue integrals, 

f dx~ 
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for any  function H E L  1. Using this we see tha t  the r ight hand  side of (2) 
converges to 

as a--> + 0. On the other hand the left hand side has absolute value 

 :Wr 

For  tha t  reason 
Var F 1> Var F 1 

for every F E D, which shows tha t  F 1 corresponds to a minimal extrapolation. 

3. On the uniqueness problem when  E contains a ha l f  line 

The difference between any  two functions in D has a Fourier-Stieltjes trans- 
form which vanishes on E. If  E contains a half line, i.e. an interval ( -  ~o, a) 
or an interval (b, oo), this implies by a theorem by  F. and M. Riesz [3] tha t  
the difference is absolutely continuous. Hence the functions in D differ only by  
their absolutely continuous parts, and as for questions of existence and unique- 
ness of minimal extrapolations there is no restriction in assuming tha t  /0 has 
the proper ty  tha t  every function in D is absolutely continuous. We shall as- 
sume this in the rest of this paragraph, and we exchange for simpUcity's sake 
the derivatives F 1, F~, F~ . . . .  of functions in D to H,  H 1, H~ . . . .  which then are 
functions in a certain subclass D' of L 1. 

Suppose tha t  11 and 12 are two different minimal extrapolations of /0, cor- 
responding to H 1 and H~, respectively. The function 

/:~ (t) = �89 (/1 (t) + /~  (t)) = f e '~x �89 (H1 (x) + H~ (~)) dx 
- o o  

is another extrapolation of /0, and since 

f �89247 flHx(x)ldx+�89 flH~(~)ldx, (3) 

it is a minimal extrapolation. We must  furthermore have equali ty in (3), and 
this is the case only if 

[H,(x)[_]H2(z)[ (4) 
H: (x) H 2 (x) ' 

for almost every x, for which the two members are defined. Using the function 
which in the sense of the lemma corresponds to the minimal extrapolat ion 

/3, (3) and (4) imply tha t  
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and 

almost everywhere. But 

q0 (x) (H,  (x) + H 2 (x)) = It/1 (x) + [/3 (x)l, 

(~) H,  (x) = I H,  (x) l, 

(x) H, (x) = I//2 (x)], 

f e " ( / / I  (*) - H ,  ( .))  d .  = 0, 

if t E E, and since we assume that E contains a half line, well-known properties 
of Fourier transforms in L 1 show that H , - H  2 coincides almost everywhere 
with the boundary values of a function, analytic in a half plane. Since the 
function is not identically zero we may conclude that  it is ~= 0 almost every- 
where (el. [3]). This implies that for almost every x at least one of the func- 
tions H i and H~ is ~: 0. We may conclude that 

and 

almost everywhere. 
Apparently we have moreover 

H, + H2 ~- O 

(x) (H, (x ) -  H~ (x)) = ~ (x) l H ,  (x) - H~ (x) ], 

where ~ is real-valued and 

almost everywhere. 

(5) 

4. The uniqueness when E is a half  line 

Theorem 1. The minimal extrapolation is unique when E is a half line. 

Proof. I t  is apparently enough to give the proof if E is the half line 0 ~< t < co 
and, by w 3, if the functions in the class D arc absolutely continuous. 

We give an indirect proof, and we thus assume that there exist two different 
minimal extrapolations 

/. (t) = f e "z I-1. (x) d . ,  ~ = ], 2.  

For any ~t/> 0 the function 

d ~ (H, (z) - H g  (~)) 

has a Fourier transform which vanishes if t~> 0, i.e. if t E E. The function 
which in the sense of the lemma corresponds to the minimal extrapolation 

�89 
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(cf. w 3) belongs to the  class L ~E and hence 

f q9 (X) e tzz (H I (x) - H~ (x)) d x  = 0, (6) 

if 2 i>0. Bu t  (5) shows t h a t  
(H1 -- H2) 

is rea l -valued a lmost  everywhere.  By  conjugat ion of (6) we therefore obta in  

f qJ (x) e -t~* (H 1 (x) - H z  (x)) d x  = O, 

if 2~> 0, which shows t h a t  (6) holds for every rea l -va lued  2. Hence b y  the  
uniqueness theorem for Four ie r  t ransforms in L 1 

(x) (H 1 (x) - H 2 (x)) = 0 

almost  everywhere,  and  since I~l  = 1 a lmost  everywhere (w 3) we can conclude t h a t  

H I (X) = H 2 (X) 

a lmost  everywhere.  Bu t  the  minimal  exfrapola t ions  were assumed to be different ,  
and  hence this  contradic t ion  proves  the  uniqueness.  

5.  T h e  e a s e  w h e n  E is  n o t  a h a l f  l ine  

T h e o r e m  2. I f  E is not  a half line, then  there exist  functions /0 which have  
non-unique minimal  ext rapola t ions .  

Proo/.  We have to consider two separa te  oases. 

Case 1: The complement  of E is connected. Since the  complement  is open 
and  is not  a half  line, i t  has to be a f inite interval .  I t  is appa ren t ly  no 
res t r ic t ion to  assume t h a t  the  complement  of E is the  in te rva l  - 1  < t <  1. 

Case 2. The complement  of E is disconnected.  I t  is no res t r ic t ion to as- 
sume t h a t  0 E E while the  two intervals  ( - a -  b, - a + b) and  ( a -  b, a + b) a re  
in the  complement .  (a and  b are some posi t ive numbers ,  b < a.) 

The proof will be quite similar  in the  two cases. W e  s t a r t  f rom a rea l -valued 
funct ion H,  which E L 1, is # 0 a lmost  everywhere and f inal ly has the  p rope r ty  t h a t  

I H (x) l e L ~ .  
H (x) 

B y  the  lemma in w 2 the  funct ion 

l ( t )  = 

oO 

f e ttx H (x) d :" 
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is a minimal  ex t rapo la t ion  of the  restr ic t ion of /o to E.  Then let  G b e  a real-  
valued function E L~, which is ~ 0  and  satisfies 

Obviously  

and  

[G(x)[<iH(x) l .  

IH(x)  l _ I H(x)  + G(x) I 
H (x) H (x) + G (x) 

oo 

f eaX(H(x)+G(x))=f( t ) ,  if t e E .  
- -  O a  

(7) 

By  the  lemma also th is  funct ion is a minimal  ext rapola t ion ,  and  by  the unique- 
ness theorem for Four ie r  t ransforms in L 1, the  two minimal  ex t rapola t ions  are 
different.  Hence the  only problem is to show t h a t  we can find functions H and  
G with the  ment ioned  propert ies .  

Case 1. W e  form the  funct ion 

(x) = / _ 
1 if cos x >/O, 

1 if cos x < O .  

I t  is easy to  show t h a t  if G o EL1N L ~, then  

-1 2 ~r 
q)(x)Go(x)dx= ~.. + -- -  s i n n ~  e~n~Go(x)dx. 

- o o  - o o  

Hence, if G o E L~ N L ~ 
c~ 

f ~ (x) a o (x) d z = O, (s) 

and  since obviously  L~ N L ~ is dense in L~, (8) holds for any  G O E L~. F o r  t h a t  
L ~ reason ~ E s ,  and  we can choose 

H(x)  1 + x  2" 

I t  can be p roved  by  a simple contour  in tegrat ion t h a t  any  entire funct ion of 
exponent ia l  t ype  1, which belongs to  L 1 on the real  axis,  has  the  p rope r ty  t h a t  
the  Four ie r  t ransform of i ts res t r ic t ion to  the  real  axis vanishes outside ( - 1, 1), 
i.e. in our te rminology belongs to  L~. Hence we can choose 

1 - -  C O S  X 

G (x) = 4" x2 

if the  posi t ive  cons tant  2 is assumed to be so small  t ha t  (7) holds. 

Case 2. Since 0 E E,  
oo 

f G o (x) d x = 0 
- o o  
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for every  G O E L~, i.e. every  cons tant  funct ion belongs to  L ~~ F o r  t h a t  reason 
we can choose 

1 
H(x) = 1 + x  2 

The Four ie r  t ransform of 
l - c o s  b 

�9 c o s  a x 
x 2 

vanishes outside ( - a -  b, - a + b) and  ( a -  b, a + b). Hence we can choose 

l - c o s  bx 
(7 (X) = ~ X2 COS a z 

if the  posi t ive cons tant  2 is assumed to be so small  t h a t  (7) holds. 

6. A suffieient condit ion for uniqueness  in a special  case  

I t  follows from Theorem 2 t h a t  in the  cases which are covered b y  t h a t  
theorem the  class of funct ions [0 wi th  unique minimal  ex t rapola t ions  is a proper  
subclass of the  class of all  possible f0 under  consideration.  The ex ten t  and  prop-  
erties of this  subclass seem to depend  very  heavi ly  on the  algebraic  proper t ies  
of the  set E.  If,  for instance,  E is a subset  of the  set {an+b)~o~, for some 
a # 0  and  b, and  if /e is a min imal  ext rapola t ion,  then  

2 z  ( t - b )  l ,(t) cos 
a 

is also a minimal  ex t rapola t ion .  Hence ] 0 ~ 0  is the  only funct ion with  a unique 
min imal  ext rapola t ion .  On the  other  hand,  if E is no t  of t h a t  k ind  i t  is easy 
to  see t h a t  also the  funct ions 

[0 (t) = cons tant  

have unique min imal  ext rapola t ions .  
We shall t u rn  to  the  special case when E is the  complement  of a f inite 

interval ,  and  we shall  prove the  following theorem which gives a sufficient con- 
d i t ion for fo to  have  a unique min imal  ex t rapola t ion .  

Theorem 3. Suppose t h a t  E is the  complement  of a f inite in terval ,  and  t h a t  
[o has the  represen ta t ion  

/o (t) = f e," d Fo (~), 

where F 0 (x) has an absolu te ly  continuous pa r t  wi th  a cont inuous der ivat ive .  
Then i t  has a unique min imal  ext rapola t ion .  

Proo[. B y  w i t  is enough to  give the  proof,  when F o ( x ) i s  pure ly  absolu te ly  
continuous.  W e  can fur thermore  assume t h a t  the  complement  is the  in te rva l  
- l < t < l .  

26 



ARKIV FOli MATEMATIK, Bd 4 nr 3 

The difference between any  two functions in the class D '  (w 3) has a Fourier  
transform which vanishes outside - 1  < t <  1. B y  the inversion theorem this has 
the consequence, tha t  this difference coincides almost everywhere with the values 
on the real axis of an entire function of exponential type  1. Since by  assump- 
t ion one of the functions in D' is continuous, we may  assume tha t  every func- 
t ion in the class is continuous. 

Let  us therefore assume tha t  we have two different minimal extrapolations 

/ , ( t ) =  f e f t~ t t , ( x )d~ ,  ~ = 1 , 2 ,  

where H 1 and H~ belong to L 1 and are continuous. By  the above arguments  
the function 

(7 (x) = H~ (x) - H~ (x) 

is the restriction to the real axis of an entire function of exponential type 1. 
The function q0, which in the sense of the lemma corresponds to the minimal 
extrapolat ion 

�89 (/~ +/~) 

(el. w 3) can be assumed to be continuous except a t  certain points, where both  
H 1 and H 2 vanish. Hence it is continuous and satisfies 

except at  certain of the zeros of (7. I t  then follows from (5) t ha t  the real-valued 
function ~ can be assumed to satisfy 

everywhere, and it changes its sign, i.e. 1 0 ( x + O ) 4 : ~ ( x - O ) ,  only at certain of 
the zeros of the entire function (7. 

Let  us first discuss the case when there are only a finite number  of changes 
in the sign Of ~. Let  the changes occur when 

x = 2 1  . . . . .  i~. 

1 
We form K (x) = G (x) 

( x -  ~1) .-- ( x -  ;t.)" 

K is the restriction to the real axis of an entire function of exponential type 1, 
and it belongs to L 1. As mentioned before (w 5) this implies tha t  i t  belongs to  
L 1, and since ~0 E L~,  we have 

co 1 d x = O ,  
f ~ (x) (7 (x) (x- ,~)  (~-  ;~.) 

h e n c e  by  (5) v 2 (x) d x  = 0. 
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But  the  in tegrand  has a cons tan t  sign, and  i t  is no t  ident ica l ly  vanishing.  This 
contradic t ion shows the uniqueness if the  number  of changes in the  sign is finite. 

I f  there  is an infinite number  o f  changes in the  sign of ~0, there  exists a 
po in t  x0, where there  is no change, and  such t h a t  the  number  of changes for 
x < x o and for x > x o is ei ther  even or infinite. We  denote  these poin ts  by  2~ in 
such a way  t ha t  

�9 . .  < ~ _ n  < . - - <  ~ _ 1 <  X O <  ~ 1 <  - . .  < ~ n <  . . . .  

We can then  choose the  f inite open in te rva l  (a, b) so large t h a t  there  is an 
even number  of changes for a < x < x  o and for x o < x < b ,  say 2 m  and  2p ,  re- 
spect ively,  and  such t ha t  

f l a ( x ) l d ~ >  + fla(x)ld~. (9) 
~-~ - ~ b 

W e  form the Junctions 

and  

K+ (x) = 

K_  (x) = 

( x -  22) ... ( x -  22,) 

(x-;t_~) ... ( x -  ~-2,,) 
( x -  2-1) ..- ( x -  2-~m+1)" 

The functions are posi t ive if x E (2-1, 21) and  if x ~ (a, b), and  i t  is easy  to  see t ha t  

inf K ( x ) >  sup K(x) ,  (10) 
xF.(,~_I. 21) xr b) 

is fulfilled wi th  K exchanged for ei ther  of the  funct ions K+ and K_.  Hence 
the  funct ion 

K = K +  .K_  
also satisfies (10). 

The funct ion G - K  belongs to  L 1 and  is the  res t r ic t ion to  the  real  axis of an 
ent ire  funct ion of exponent ia l  t y p e  1. Hence i t  mus t  sa t isfy  

f ~ (~) a (~) K (,) d x = 0, 

i.e. f ~ ( x ) G ( x ) K ( x ) d x =  - + f c p ( x ) G ( x ) K ( x ) d x  . (11) 
a b 

But  (5) shows t h a t  the  left  hand  member  of (11) has the  value 

b 

f la(x) l~p(x)K(x)dx, 

and  since ~ . K  has a cons tant  sign in the  whole in terva l  (a, b), we obta in  
from (11) 
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b 

flG(x)l'lK(x)ld < 
a 

§ fJG(x)llK(x)ldz. 
- ~  b 

Hence we have, using (10) 

~ _ ~  - ar  b 

which is a cont radic t ion  to (9). This proves the  uniqueness in the  general  case. 
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