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Likelihood ratios of Gaussian processes'

By T. S. PircHER?

1. Introduction

Let z(t), A <t < B be a real Gaussian stochastic process with autocorrelation
function R (s,t). Each choice of a mean value function f(f) for the process es-
tablishes a measure m; on the set of sample functions made into a measure
space in the usual way [1]. In statistical applications one often wishes to know
when m; and m, are totally singular and when they are absolutely continuous
with respect to each other, i.e., when the likelihood ratio exists. In the latter
case it is desirable to be able to compute (dm,/dm,)(z) in terms of the sample
function x(t).

The transformation on the space of sample functions which carries x(f) into
2 (1) +f(t) preserves measurability and carries m, into my.,, ie., if a(x) is a
measurable function so is ¢{z-+f) and we have

fa(x)dmf+,,=fa(x+/)dmg.
The following lemma shows that it is sufficient to consider the case g=0.

Lemma 1.1. m, and m, are totally singular if and only if m,_, and m, are.
my is absolutely continuous with respect to m, if and only if m,_, is absolutely
continuous with respect to mg and in this case (dm;/dm,) (x) = (dm/_;/d mo) (x —g).

Proof. 1f m;{A)=1 and m, (A)=0 then m,_, (4 +g)=1 and me (4 +g) =0 which
proves the first assertion. If dms/dm, exists then

d d
[a@) g @rg)dm=[a(o—g) L (@)dm, = [a(a=g)dmy= [ a (@) dmy-,

which proves the second assertion.

From now on we shall assume that R is continuous and bounded, and that
the process is separable. We will write m for mq, my| m if m; and m are totally
singular, and m; = m if m; and m are mutually absolutely continuous.

Lemma 1.2, If 4 and B are finite z () is in L, with m probability one. If f
is not in L,, my || m.
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B B
Proof. [dt[azt)ydm=[ R(t,t)dt < oo,
A A
B
so by Fubini’s theorem jx2 (t)dt
A

is m measurable and finite almost everywhere. The set L, of sample functions
having

B

[a2(t)dt < oo

A

is measurable and m(L,)=1. If f is not in L,, my(Ly,) =m (L,— f) =0 since L, f
is contained in the compliment of L,.

It A and B are finite let (¢,) and (1) be the eigenfunctions and eigenvalues
of the integral operator with kernel R, so that

Andn () =] R(t,8)$n(s)ds.

The following theorem due to Grenander [2] settles most of the questions in this
case.

Theorem 1.1. Suppose A and B are finite and f is in L, on (4, B) and let

B
fn:ff(t)¢n (t)dt'
A
Then m, = m if S5 An < o0
and my||m if S i An= o0,
so that these are the only cases which occur. Moreover we can write

dm

@= [0 om0

for some & in L, if and only if

S fa/AE < oo,

2. Some general results

In this section 4 and B may be finite or infinite.

Theorem 2.1. If my=m then m;=m for all 0 <A< oo, and log (dmy/dm)(z) =
A (x)—122C where C>0, for any real number a, ¢ (ax)=a¢ (x) almost every-
where and for almost all pairs (z,y), ¢ (x+y)=¢(x)+ b (¥).

Proof. Let S, be the subfield generated by the coordinate functions z(k/n)
for max (4, —»)<k/n< min (B, n). The 8§, are increasing and the original
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measure field is the smallest field containing them all. Let x(k;), ... x(ky) be a
non-degenerate set which spans the set x(k/n), R" its correlation matrix, o, the
determinant of R® and A4"=(R")"'. If G is an S, measurable function then
G(x)=g (x(k), ... z(ky)) for some Baire function g and

jht).

i

fG(x)dm @ )le fdt _fdtng(tl,...,tN) exp(—

If for some f we set

2 2
?Sn(x)‘—‘;EA%x(k;)f(k;) and C’n=(—}_—2‘43‘f(k;)f(k,~),
then C,>0 and
(*) fG'(x) exp (Adn(x)— L1 22C.)dm
1 1
=(27)NI§;;fdtl...fdtng(tl,...tzv) exp( EA,, —AF kD)) (8 — A f (ks ,
1 1
- B o [dt, ... [dtagt,+af(Ry), ... tn+ Af(ky)) exp (_Egﬂjtit{)
=fG(x+M)dm=J'G(w)de,

Setting A=1 in (*) shows that exp (¢, (x)—1C,) is the conditional expectation
with respect to m of dms/dm on S,. By the martingale convergence theorem
(Theorem 4.1, page 319 of [3]) exp (dn(x)—3Ch) converges to (dms/dm)(x) for
almost all z. Smce X—> — X preserves m- measure there is at least one x for which
both exp (¢ (x) ~$C,) and exp (pn(—x)—} Ca)=exp (— o (x)—} Cn) converge
to a finite limit and hence— (¢, (x) -1 C, )~( ¢n () — % Cy)=C, converges to
some finite non-negative limit C. Thus ¢, (z) converges almost everywhere to
some finite limit ¢ (x) and (dms;/dm)(x)=exp (¢ (x)— 1 C) almost everywhere.
If H(x) is an S, measurable function for some p<n then by (¥)

[ H (@) exp (Adpyp () ~ 4 22C,)dm= [ H (x+ Af)dm

= f H (z) exp (Adn (z)— 5 22C,)dm,
so the sequence

exp (A, (x)— 1 A2(C,) is a martingale with limit exp (A¢ (x)—3A20).
Applying (*) with G(z)=1 and 1 replaced by 21 we get
[exp® (Agn (2)— 3 420,)dm=exp (22 Cy) [ exp (2A¢a (@) —242C,)dm
=exp (A20,) > exp (22C),
80 by Theorem 4.1, page 319 of [3] the conditional expectation of
exp (Ad(x)—1420) on 8, is exp (A (2)—512C,).
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If H is the characteristic function of a set in S,
[H (z) exp (A (z) —2 22C)dm=[ H(z) exp (An (x) — 4 22Ca)dm=[ H (z+Af)dm.
Since this relation holds for sets in any S, and by the dominated convergence
theorem for monotone limits it holds for all measurable sets by Theorem 1.2,
page 599, of [3]. Hence my=m and log (d my/dm)(x)=21¢ (x)— 3 12C.
Theorem 2.2. ¢ is in L, for all p.
[zp@dm=1@®), [$@x)dm=0, and]42(x)dm=C.
For any n and 0<i<1
dmy & A@-}RO"

am ¥0 k!

where [0, <A™+ e (:llm,( )+dm_, (x))

Proof.
|$|” <exp (p|$|)<exp (pp)+exp (—pe)
=(exp (pp— 3 p*C)+exp (—pd—3p20)) exp (§ P2 C)

dmy, dm-»f) "
(dm +— exp (} p20),

sof|¢|"dm<2 exp (3 p20) which proves the first assertion. For 0<i<1

|0n|< E Il¢—§l’0lk

<ln+1 z |¢ *A’Olk

n+l

glrwlexp|¢__%;.0|<1n+l(exp(¢—%}.C)+6Xp(—'¢+ilo))
=,1n+1("d"' exp 3 (1- z>o+d ‘”exp%(lﬂ)(/‘)

dmy dm_
< A"+1eC G My ___AV.
e gm t dm
Now
1= j (x)dm

=f<1+z¢<x>—wo+a¢L);mz>f

+0,)dm
] a » 1
=1+1[$@dm+7 [ 2)dm—C~5 O [ §(@)dm+ g0+ [0ydm.
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The previous inequality shows that the last term is of order A% so the coeffi-
cients of 1 and A® are zero giving f $(x}dm=0 and J' #*(x)dm=C. Also
AO=[@®+1ft)dm

=fx(t)dm,v

=f:c(t) tf;::f(x)(im

=[2@®)1+i¢—31C+0)dm.
The last term is of order A® since

J2 00, @am<ie o052+ 20 ) am

dm dm
=2 [ (|2 +1 O]+ ]|z —f®)])dm
<222 ([ )|+ [z (®)|dm),

so the coefficients of 1 on the two sides of the preceding equality are equal
giving f(t)= [z (t)¢ (t)dm.
B

Theorem 2.3. If F has bounded variation on (4, B) and f(s)=[ R(s,t)d F (1),

A

B B
then m=my and log t;—j:: ()= f z()dF(#)—1 f f&)AF ).
A A

B
Conversely if log ((li—::: (x)= f x(t)dF(t)~%d
A

B

B
then d=[f(t)dF(t) and f(s)=[ R(s,t)d F (t).
A A

B 2 B B B
Proof. Sincef [Jx(t)dF(t)] dm=de(s)de(t)R(3, 1)< w,fx(t)dF(t)exists
a a A

A

almost everywhere and is in L,, We now define the subfield S,, the function
$2, and the constant C, as in Theorem 2.1. We have

[ $n @)z (t) dm=3 A5 1 (t) B (b, t) = ] (t)
B B
and / fo(t)dp(t)] z(te)dm=[ R (t, ) d F (&) = (),
A
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B
80 ¢, (x) is the projection ofJ' t)d F (t) on the linear manifold spanned by the

x (&) Smcef (t)d F (t) and the z (¢ ) are Gaussian, this implies that ¢, (z) is the

B
conditional expection of f t)dF(t) on S,, and by the martingale theorem (The-

B
orem 4.1, page 319 of [3]) that ¢, (z) > f x(t)d F (¢) almost everywhere and in

2 B
mean. In particular O, fgbz dm—>f [fx YA F (¢t )] dmsz(t)dF(t). 1t only
A
remains to show that exp (¢.—3% C.) converges to dmy/dm.
J'expz (Pnix)— 2 0n)dm=en fexp (2¢n () —2C,)dm=e"n
since exp (2¢, —2C,) differs from exp (¢, — 4 Cr) only in having f replaced by 2.
The e°n are uniformly bounded so by the martingale theorem exp ¢,, 1C,)
converges almost everywhere and in mean to a limiting function which is easily

shown as in the proof of Theorem 2.1 to be dms/dm.

Conversely, suppose
B
-ox ([roar0-ia)

A

dmy )
dm P ¢

wr»-l

B
Then ¢ (z)— f z(t)dF(t) is a constant and integrating shows this constant to
A4

be zero.
B

=[xz ¢ @)dm=[xz(s) [ )=[R(s,t)d F(t
A A

and

d=0=j¢2(x)dm=f[fx dFt)] dm= de(af F(s)R(s,t)=[f@®)dF (1)

3. The infinite case

Tn this section the results of section 1 are extended to the infinite case.
Let S, be the subfield generated by the s(t)’s with

Ap,=max (4,—n)<t< min (B,n)=5B

Let mj ;, S, be the measure and the field of measurable sets associated with the
Gaussian stochastic process z(t), 4, <t< B, with autocorrelation function R{(s,1)
and mean f(s) defined for 4,<s,t<B,. If we write o, for the map which takes
every sample function of the onglnal process into the restriction of that funection
0 (4., B,) then a, sets up a 1:1 correspondence between S, and S, for which
me\A) =my ¢ (o (4)).
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Lemma 3.1. m; and m are mutually absolutely continuous over the subfield
S, if and only if m,=m, ; and in this case

dmg . dmy
dm

— (on (%))

dm;_,

(®)

Proof. 1.et C, be the characteristic function of a set in S,, then

dm, dmn
—7!,"— (cn (m))dm;—f—”:’-—(an (@) Ca ) (atn (2))d 'm0
d'm,,', dmn,f
dm, ’
=f ,,f:'l‘_ (®) O, () d My
dm,,_/

=M (o (A) = f) = M (2a(d — ) =m (4 = f).

The above lemma shows that for cach S, either m, and m are totally singular
over §, and hence are totally singular or else m, and m are mutually absolutely
continuous over S, with derivative equal to exp (¢, (x)— 4 Ch).

Theorem 3.1. The C, are non-decreasing. If ¢ =lim C, < cothen my=:m and
(dmg/dm) (x) =exp (¢ (x) —} C), where ¢, (x) — ¢ (x) almost overywhere. If lim
Cr = oo then my || m.

Proof.
[exp* (@ (@)= 1 Cn)dm=1[[ exp (2¢n (@) — 2C)dm]e " =,

which proves that the C, are non-decreasing since exp?® (¢, (¥)—} Cy) is a scmi-
martingale. If lim O, < co the martingale theorem implies that ¢, (x) > ¢ (x)
almost everywhere and it can be shown as in Theorem 2.1 that (dm,/dm)(z)
=exp (¢ (x)— 3 C).

Conversely, suppose C' — oo, By the martingale theorem Ad,—32*C, con-
verges almost everywhere. We first prove that A¢,—3A*C, — — oo with pro-
bability one for any A=+0. If not there is a set 4, m(4)>0 on which lim
Apr—3ACr2a>—oo and for large enough n there are sets A, on which
Apn—322Cr=2a—1> —co, We have

1=[exp (A~ an) $n—} (A~ xa)* Ca) dm

=[exp [(Z — o) (Ml-_—ztﬁq" + o Cn)] dm

=m(d,) exp [(l—an) (g-}—l than C,.)]

and choosing «, so that a, — 0 and Aa,C, — oc makes the right hand side go
to+ co which is a contradiction. If B is the set where ¢,—3C3 — — oo then
m (B)=1. m; (B)=m (B~ f) and elements of B—} are y's such that $,(y+f)—3Ca
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=¢a(y) +3Cn— —oo. If my(B)+=0 then the set where ¢, —3Cy, —¢,—3Cy

and ¢,+1C, all go to —oco has positive measure hence is not empty so for

some &, 0= —¢,(x)—LCpn+da(x)+3Cr— —co. The set B separates m and my.
If C is the set of functions on (4, B) which are solutions of

fs)=[R(s, t)d F(t)

for some F of bounded variation, D is the set of functions f for which m;=m
and E is the set of all sample functions on (4, B) then by Theorem 2.3 Cc Dc E.
D is, in a probability sense, very rare in E. In fact, if A and B are finite,
Theorem 1.1 says that D consists of those z for which the series

3 [s0d0a]

converges to a finite limit and since the summands are independent identically
distributed random variables, thus has probability 0. In the infinite case, using
the notation established at the beginning of this section € is contained in the
set of functions f for which m;=m over S, and this has probability O.

For f in D write dﬂ:exp (P — 3 Cy).
dm,
If f and g are in D,
dmysg _dmf+a dmy
dm (x)= dmy (x)dm(m)
_dm, dmy
=T @+ f) 2 (2)

=exp (fs(x+f)+ () —3C;— 1 Cy)
=exp (¢s () + ¢y (x) + (do () — 3 Cr— $ C,)
=exp (¢r(x) + ¢y (@) + (do () —3Cr—3Cy)

so D is a linear space and ¢ =+ ¢,.

Theorem 3.2. D is a Hilbert space with the inner product (f, g) =f & (@) Pg (x)dm.
C is dense in this Hilbert space.

Proof. To prove that D is a Hilbert space we must show that it is complete
in the norm established by the inner product. If f; is a Cauchy sequence then
¢5, is a Cauchy sequence in the ordinary L, so it converges in mean to a ran-

dom variable y. If f(t)=fx(t)1p(x)dm, then f(t)=1im f, () since

FO-h@OF=|[2@)(p (@)~ ¢, @) dmP<R ) [| (@) — s (@) Fdm — 0.
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Let 8, be the subfield generated by x(k/n), max (4, —n)<k/n<min (B, n).
The conditional expectation of dmy,/dm on S, has the form

exp X Af (% (i/n) fi (/n) — } fie (3/n) fic (5/n))
and converges, pointwise and in mean, to
dn =exp X Afj((i/n) f(§/n) = } {(i/n) } (§/n)).
d, is a martingale,
fdidm=lim exp 3 T Afifix (i/n) fr (j/n) <lim sup exp C, =fga2dm,

so d, converges, pointwise and in mean, to dm;/dm. It remains to show that
Ilfi=fll >0, ie., that ¢; converges to ¢ in mean, which is equivalent to ¢ =1.

Nowfx(t)(¢(x)—1p(x))dm=f(t)—-f(t)=0 s0o ¢—y is orthogonal to the mani-
fold M spanned by the z{t)’s. However ¢ and all the ¢;’s arein M, from their

method of construction and so is y which is a limit of the ¢/’s so y=¢ and the
space D is complete.

C is clearly a linear subspace of D. We need to show that if (f,¢)=0 for
every g in C then f=0. We will prove below that if

9(s) =AfR (5, 8)dG (1),
then (f,9) =jf(s>da(s>.
Choosing G (s)=0 for s<s, and G(s)=1 for s>s, will then give
0=;Ff(s)dG(s)=f(so) for all s,
which will complete the proof.
Lemma 3.2, If g(s) =jR(s, t)dG(t) is in C, then for any f in D
2
(. 9) if f(s)d G (s).
Proof. (f,9) = [ ¢r(2) $5 (x) dm
=f¢,(x)fx(t)dG(t)dm

=Af(f¢f<x)x(t)dm>dG(t)
|

faa).
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The following example shows that € is not all of D. Let R(s, t)=r(s—1)
where r has two continuous derivatives and

0if t< =1/,
F,t)={ —2nif|t|<1/n,
0ift>1/n,

then fr (8) =J‘R(s, DdF,(t)=2n(r(s+1/n)—r(s—1/n)).
4

fo is a Cauchy sequence from C and its limit is dr/ds. I1f dv/ds is in D we have
B

dr

Zi_s(s) = !r(s —t)d F (t)

which is not true in general. In fact if r(s)=exp (—s*) we have
B
—s exp (—s¥)=exp (—sz)fexp (2st—t3)d F(t)
A
and multiplying by exp s* and differentiating twice gives

B
0=t exp (2st—*)dF (2).
A

Since the integrand is positive this means F is constant except for a jump at
0 and this gives —s exp (—s*)=0C exp (—s?) which is impossible.
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