
A R K I V  F O R  M A T E M A T I K  B a n d  4 n r  5 

Communicated 9 April 1958 by ]:[ARALD CRAM]~R and LENNART CARLESON 

L i k e l i h o o d  rat ios  o f  Gauss ian  processes  1 

B y  T.  S. PITCItER 2 

l .  In troduct ion  

Let x (t), A < t ~< B be a real Gaussian stochastic process with autocorrelation 
function R(s,t). Each choice of a mean  value function [(t) for the process es- 
tablishes a measure mf on the set of sample functions made into a measure 
space in the usual way [1]. I n  statistical applications one often wishes to know 
when mf and m~ are total ly singular and  when they are absolutely continuous 
with respect to each other, i.e., when the likelihood ratio exists. I n  the lat ter  
case i t  is desirable to be able to compute (dmr/dmg)(x) in  terms of the sample 
function x (t). 

The t ransformation on the space of sample functions which carries x(t) into 
x(t)+/(t) preserves measurabi l i ty  and carries ma into m~+a, i.e., if a ( x ) i s  a 
measurable funct ion so is a (x + [) and we have 

f a (x) d mI+g = f a (x + [) d rag. 

The following lemma shows tha t  i t  is sufficient to consider the case g = 0 .  

Lemma 1.1. mf and  mg are total ly singular if and only if m1_ o and mo are. 
mr is absolutely continuous with respect to mg if and only if ml-g is absolutely 
continuous with respect to m0 and in this case (dml/dmu)(x)= (dmr-g/dmo) (x-g). 

Proo/. If m~ (A) = 1 and  mg (A) = 0 then mr-g (A + g) = 1 and m0 (A + g) = 0 which 
proves the first assertion. If  d ml/d mg exists then 

dmr dml (x) dmg = f a (x - g) d m  I = f a (x) dml-g fa(X)~mmg (x+g)dm=fa(x-g)~mg 

which proves the second assertion. 
From now on we shall assume tha t  R is continuous and bounded, and tha t  

the process is separable. We will write m for m0, mr I[ m if m I and m are total ly 
singular, and  ms -~ m if m I and  m are mutua l ly  absolutely continuous. 

Lemma 1.2. If  A and  B are finite x (t) is in L~ with m probabil i ty one. If  [ 
is no t  in  L,, mr ]lm. 

z The research in this paper was supported jointly by the U.S. Army,  U.S. Navy,  and U.S. 
Air Force under  contract with the Massachuset ts  Ins t i tu te  of Technology. 

s Staff Member, Lincoln Laboratory, Ma~achnse t t s  Ins t i tu te  of Technology. 
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B B 

Proo/. f dt f x2(t)dm= [ R(t,t)dt < ~ ,  
A 

B 

so by  Fub in i ' s  theorem f x 2 (t) d t 
A 

is m measurable  and finite a lmost  everywhere.  The set L 2 of sample functions 
having 

B 

f xe(t)dt < 
A 

is measurable  and m (Le) = 1. I f  ] is not  in L2, mr (L2) = m (L 2 - / )  = 0 since L~ - 
is contained in the  compl iment  of L 2. 

I f  A and B are finite let  (q~) and (~t,) be the  eigenfunctions and e igenvahes  
of the  integral  opera tor  wi th  kernel  R, so t ha t  

B 

~ r (t) = I R (t, s) r (s) d s. 

The following theorem due to Grenander  [2] settles most  of the  questions in this 
c a s e .  

Theorem 1.1. Suppose A and  B are finite and / is in L 2 on (A, B) and let  

B 

/n=f  /(t)r 
A 

Then m r ~ m if E < 

and m, II m if E j~/2. = ~ ,  

so t h a t  these are the  only cases which occur. Moreover we can wri te  

B 

d mr f 1 log ~/~- (x) = (x (t) - ~ ] (t)) h (t) d t 

A 

for some h in L~ if and  only if 

2 2 z / ~ / ~ n  < ~ .  

2. Some general results 

I n  this  section A and B m a y  be finite or infinite. 

Theorem 2.1. I f  mI=--m then  m;1:m for all  0 ~<), < ~ ,  and  log (dm~r/dm)(x)= 
~ r  ( x ) - 1 2 2  C where C~> 0, for any  real number  a, r (ax)=ar (x) almost  every-  
where and for a lmost  all pairs  (x, y), r (x + y) = r (x) § r (y). 

Proo/. Let  Sn be the  subfield generated b y  the coordinate functions x(k/n) 
for max  (A, - n ) ~ <  k / n  ~< rain (B, n). The S~ are increasing and  the original 
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measure field is the smallest field containing them all. Let  x(kl) .... z(k~) be a 
non-degenerate set which spans the set x (k/n), R ~ its correlation matrix, an the 
determinant  of R ~ and A n = ( R ' )  -1. I f  G is an Sn measurable function then 
G(x)=g(x(kl), . . .  X ( k N ) )  for some Baire function g and 

1 1 
f dt~ g(tl, t i v ) e x p / - - [ - 2 ~  EASters). 

( 2 ~ )  ~t2 an f gh . . . . . .  

I f  for some / we set 

Cn (x) = 2_ Z A~x (k,) l (k~) 
fin 

then C~ >t 0 and 

(*) 

2 
and C~=--EA~./(k~}/(kj), 

~ n  

1 2 f a(x) exp (]Lea(x)- 2]r C~)dm 

_ 1 1 fdt~ ]dt~g(tl, tN) exp -~anEA~(t~-2/(k,))(tj-1/(k, ' i)  ( 2 z ~ )  NI~" ~ �9 . . . . . .  

( , 1 1 fdtl  fdtng(tl+2/(kl) ' tN+$/(k~))exp -- l~xA~tit ,  l 
(2~) Nj2 a~ ' . . . . .  2a~ 

= f G(x+ M)dm= f G(x)dm~.r. 

Sett ing 2 =  1 in (*) shows tha t  exp ( ~  (x)-�89 C,~) is the conditional expectation 
with respect to m of dmf/dm on S~. By  the martingale convergence theorem 
(Theorem 4.1, page 319 of [3]) exp (Ca(x ) - �89  converges to (dml/dm)(x) for 
almost  all x. Since x - + - x  preserves m-measure, there is at  least one x for which 
both exp (Ca (x) - �89 C~) and exp (r ( - x) - �89 C~) = exp ( - r (x) - �89 C~) conver~e 
to  a finite limit alad hence - (r (x) - �89 Ca) - ( - Cn (x) - { C~) = Cn converges to 
some finite non-negative limit C. Thus r (x) converges almost everywhere to 
some finite limit r (x) and (dmf/dm)(x)= exp (r ( x ) -  �89 C) almost everywhere. 

I f  H(x) is an Sp measurable function for some p<n then by (*) 

f H (x) exp (2r189 ~C~)dm=f H (x+~/)dm 

= f H (x) exp (Z 4~ (x ) -  �89 Z~r a m, 
so the sequence 

exp (2 ~b~ (x) - �89 22 C~) is a martingale with limit exp (2 r (x) - �89 22 C). 

Applying (*) with G ( x ) = l  and ~ replaced by 2~ we get 

= exp ()2 C,)  --> exp (A ~ C), 

so by  Theorem 4.1, page 319 of [3] the conditional expectation of 

exp ().r189162 on Sn is exp ()~r189 
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If H is the characteristic function of a set in S~ 

fH(x )  exp (2r (x) - � 8 9  exp (~r  ( x ) - � 8 9  

Since this relation holds for sets in any S~ and by the dominated convergence 
theorem for monotone limits it holds for all measurable sets by Theorem 1.2, 
page 599, of [3]. Hence ma:~m and log (d maffdm)(x)=,?tr189 

Theorem 2.2. r is in .Lr for all p. 

[~(Or j ,/,(~)d.,=O, 
For any n and 0 < , ~ < I  

where 

Proo/. 

and f r (x) dm= C. 

dmx: (gr  �89 k 
d m (x) = ~ + 0., k~o k! 

1r <exp (plr  (pr ( - p ~ )  
= (exp (p r - �89 p2 C) + exp ( - p r - �89 f C)) exp (�89 pX a) 

/dm~! dm_p:~ 
= (-d-~m + - ~ - ~  1 exp (�89 

soflr exp (�89 which proves the first assertion. For 0 < ) l < 1  

Io,,1< ~ I~,~-- J r  el" 
,,+1 k! 

<r+, ~ I,/,- j~tol" 
,*+1 k! 

<;t  .+,  e ~ l , / , - � 8 9  <;t"+'(e,~p ( , / , - � 8 9  ( - , / , +  �89 
=).§ _ dra_~ ) 

\ dm exp � 8 9  m exp �89 

<~n+leedm~f q dm_~ -a-g" 
Now 

_-f (1 +).4,(x)_ �89 ~ (~'4' (=)- �89 C)z + O~)dm 
2 

i,(~)a,,,+i f §  c f i,(~) +J'o,a.,. 
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The previous inequality shows tha t  the last term is of order 23 so the coeffi- 
cients of 2 and 23 are zero givingfr andfr Also 

2 / ( t ) = f  (x(t)+ 2/(t))dm 

= f x (t)dmar 

= f x (t) ~ -~  (x)dm 

= f x(t)(l + 2r189  22C +OOdm. 

The last term is of order 22 since 

Conversely if 

then 

Sx(t )  01 ( x ) d ? ' l ' l ,  -~ 22e6' S I x (t) I ( ~  . d-~T/,_~,f~ dff$ 
dm ] 

=2~eC f (Ix(t)+ /(t)l + Ix (t)-/(t)l )din 

<2ZeC (I/(t) l+ f l~(Oldm), 

so the coefficients of 2 on the two sides of the preceding equality are equal 
giving / (t) = f x (0 ~ (0 d m. 

B 
Theorem 2.3. If  F has bounded variation on (A, B) and [ (s)= f R (s, t)dF (t), 

A 
B B 

then m=--mf, and log~m'(X)= f x(t)dF(t)-�89 f /(t)dF(t ). 
A A 

B 
d mr 

l o g j a m ( x ) =  x(OdF(t)-�89 
A 

B B 

d=f f(oeF(o and f(s)=f R(s, tlaF(t). 
A A 

i ] Z B B B 
Proof. Sincef  x(t)dF(t) dm=SdF(s)fdF(t)R(s,t)<oo,fx(t)dF(t)exists 

A A A 

almost everywhere and is in L2. We now define the subfield S,, the function 
r and the constant Cn as in Theorem 2.1. We have 

f ~ (x) x (t~) d m = Y, A~  / (tj) R (tt, tk) = / (tk) 

a nd  [i ] " f  (t)dF(t) x(tk)dm=fR(tk, t)dF(t)=/(t~), 
A 
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B 

so Cn (x) is the projection off x(t)dF(t)  on the linear manifold spanned by the 
A 

B 

x (t~). Since f x (t) d 2' (t) and the x (t~) are Gaussian, this implies tha t  ~bn (x) is the 
A 

B 

conditional expection of f x (t) d F  (t) on Sn, and by the martingale theorem (The- 
A 

B 

orem 4.1, page 319 of [3]) tha t  ~ , ~ ( x ) - + f x ( t ) d F ( t )  almost everywhere and in 
A 

mean. In  particular Cn=fr  dm- -~ f  x(t)dF(t)  dm=f/(t)dF(t). It  only 
A 

remains to show tha t  exp ( ~ n - � 8 9  converges to dmf/dm.  

f exp ~ (~bn (x) - �89 Cn ) d m = e cn f exp (2 Cn (x) - 2 Cn) d m - e cn 

since exp (2 ~ n -  2 Cn) differs from exp ( ~ n - � 8 9  Cn) only in having / replaced by 2/ .  
1 The e cn are uniformly bounded so by the martingale theorem exp ( ~ n - ~  Cn) 

converges almost everywhere and in mean to a limiting function which is easily 
shown as in the proof of Theorem 2.1 to be dmi/dm.  

Conversely, suppose 
B 

A 

B 

Then r~ (x) - f x (t) d F  (t) is a constant  and integrating shows this constant  to 
A 

be zero. 
B B 

/(s) = f x(s)r x(s) f x(t)dF(t)=f R(s, t)d~(t) 
A A 

and 

d = C = f r  x(t)dF(t)  d m = f d F ( t ) f d F ( s ) R ( s , t ) = f / ( t ) d F ( t ) .  
A A 

3. The infinite  case 

I n  this section the results of section 1 are extended to the infinite case. 
Let  Sn be the subfield generated by  the s (t)'s with 

A n = m a x  (A,-n)<~t<~ rain (B,n)= Bn. 

Let  m'n.r, S'n be the measure and the field of measurable sets associated with the 
Gaussian stochastic process x (t), An ~< t < Bn with autocorrelation function R (s, t) 
and mean /(s) defined for An ~< s, t ~< Bn. If  we write an for the map which takes 
every sample function of the original process into the restriction of tha t  function 
~o (A~, Bn) then an sets up a 1 : 1 correspondence between Sn and S~ for which 
ml ,,A)= m',j (an (A)). 
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Lemma 3.1. m t and m are mutual ly  absolutely continuous over the subfield 
Sn if and only if m'n-~m'~,r and in this case 

dd~ (x ) dm'~ 

Proo[. Let  Ca be the characteristic function of a set in Sn, then 

d m'. d m'. 
f -  - - ~ -  (a.  (x)) d m = f ~ , - ( a .  (x)) C~.(A)(~. (x))d m 

d mn,f a mn,f 

d m'n C = f  (x) J~.(A)(x)dm:, 
n , f  

= m'. (c~n (A) - [) = m'= (an(A - 1)) = m (A - 1). 

The above lemma Shows tha t  for each S .  either mr and m are total ly singular 
over Sn and hence are total ly  singular or else mf and m are mutual ly  absolutely 
continuous over S .  with derivative equal to exp (Ca(x) - �89  C.). 

Theorem 3.1. The C.  are non-decreasing. If  C = l i m  C,,< oothen ml--:~m and 
(dmf fdm)  (x) = exp (r ( x ) -  ~ C), where ~b. (x) -+ r (x) almost everywhere, if lira 
C.  = c~ then mr ]] m. 

Proo[. 

f ex1,2 (r  (x) - ~ C.) d m = [ f exp (2 r  2 c.)  dm] = o . ,  

which proves tha t  l~he C .  are non-decreasing since exp 2 (r  (x) - �89 C.) is a semi- 
martingale. If  lim C n <  oo the martingale theorem implies tha t  C. (x) -§ r (x) 
almost everywhere and it can be shown as in Theorem 2.1 tha t  (dmf fdm) (x )  
= exp (r (x) - �89 C). 

Conversely, suppose C - +  oo. By  the martingale theorem ~tCn- �89  con- 
verges almost everywhere. We first prove tha t  ~t r  �89 2 ~ C . - - > -  oo with pro- 
babili ty one for any  ~t*0. If  not  there is a set A, r e ( A ) > 0  on which lira 
2 r 1 8 9  oo and for large enough n there are sets An on which 
) . r 1 8 9  We have 

1 = f exp ( (~-  ~.) r  �89 (~ -  ~.)' C.) dm 

and choosing ~ .  so tha t  ~ , - ~ 0  and ) .~ .C. - -~  ~ makes the r ight hand side go 
to + oo which is a contradiction. If B is the set where ~b.-  �89 C ~ - + -  oo then 
m (B)== 1. mt (B)= m ( B -  ~) and elements of B -  ~ are y's such that ~ .  (y + ~ ) -  �89 C. 
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= ~ n ( y ) ~ -  1 I ~ C ~ - - - > - ~ .  I f  mr(B)~O then  the  set where ~ - ~ C ~ , - r 1 8 9  
and  ~ +  �89 all  go to  - ~  has posi t ive  measure  hence is no t  e m p t y  so for 
some x, 0 = - ~ (x) - �89 C~ + ~ (x) +�89 C~ --> - co. The  set B separa tes  m and  mr. 

If  C is the  set of funct ions on (A, B) which are solutions of 

B 

/ (s) = f R (s, t) d F (t) 
a 

for some F of bounded  var ia t ion ,  D is the  set of funct ions  f for which mr=m 
and E is the  set of all  sample funct ions on (A, B) then by  Theorem 2.3 C ~ D ~ E. 
D is, in a p robab i l i t y  sense, ve ry  rare  in E.  In  fact ,  if A and  B are  finite, 
Theorem 1.1 says  t h a t  D consists of those x for which the  series 

x( t ) r  2. 
n = l  

converges to a f ini te  l imi t  and  since the  summands  are independen t  ident ica l ly  
d i s t r ibu ted  r andom variables ,  thus  has p robab i l i ty  0. In  the  infini te case, using 
the no ta t ion  es tabl i shed  a t  the  beginning of this  sect ion C is conta ined  in the  
set of functions / for which mr--m over S~ and  this has  p robab i l i t y  0. 

d mr 
For  / in D write drag = exp ( r 1 8 9  Cr). 

If  / and  g are  in D, 

dmr+o, dmr+g,  ,dmr,  , 

d rag d mt 
- d m (x + / )  ~mm (x) 

= exp (r (z + / )  + Cr (x) - �89 C r -  �89 cg) 

= exp (r (x) + Cg (x) + (r (/) - �89 O r -  �89 Co) 

= exp (~bt (x) + Cg (x) + (r (l) - �89 C t -  �89 Co) ,  

so D is a l inear  space and  C t + g = r 1 6 2  

Theorem 3.2. D is a Hi lbe r t  space with  the  inner  p roduc t  (~, g} = f ~t (x)Cg (x)din. 
C is dense in th is  H i lbe r t  space. 

Proof. To prove t h a t  D is a Hf lber t  space we mus t  show t h a t  i t  is complete  
in the  norm es tabl ished b y  the  inner  product .  I f  ]~ is a Cauchy sequence then  
r is a Cauchy sequence in the  o rd ina ry  L 2 so i t  converges in mean  to a ran-  

dom var iable  ~. I f  f(t)=fx(t)ve(x)dm, then  f ( t ) = l i m  •(t) since 

I f (t) - /~  (t)12 = I f x (t)(v 2 (x) - Cr~ (x)) d m 12 < n (t, t) f I ~ (x) - ~r (x)12 d m --> 0. 
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Let  Sn be the  subfield generated by  x (k/n), m a x  (A, -n)<~ k /n  < m i n  (B, n). 
The  conditional expecta t ion of d m f J d m  on S~ has the form 

exp Z An (x (i/n)fk (i/n) - �89 fk (i/n)/k (j/n)) 

and converges, pointwise and in mean,  to 

d ,  = exp ~ A~ (x (i/n) / (j/n) - �89 (i/n) / (j/n) ). 

d~ is a mart ingale ,  

A n f d~ d m =  lim exp �89  ~j/~ (i/n) /k (j/n) <-..lim sup exp CI~ = f ~p~ dm, 

so d~ converges, pointwise and in mean,  to d rnJdm. I t  remains to show tha t  
[ [ / ' - / H - - >  O, i.e., t ha t  r converges to r in mean,  which is equivalent  to r  
N o w f x ( t ) ( ~ ( x ) - ~ p ( x ) ) d m = / ( t ) - / ( t ) = O  so r  is orthogonal to the mani-  
fold M spanned by  the  x(t) 's .  However  ~ and all the ~ft 's are in M, from their  
method  of construction and so is ~o which is a limit of the ~r's so ~0 = ~ and the  
space D is complete.  

C is clearly a linear subspace of D. We need to show tha t  if ( [ , g ) = 0  for 
every  g in C then  / =  0. We will prove  below tha t  if 

B 

g(s)=f R(8, t)dO(t), 
A 

B 

then  ([, g) = f ] (8) d O (8). 
A 

Choosing G (s) = 0 for 8 < so and G (8) = 1 for s >1 so will then give 

B 

0 = f [ (8) d G (s) = / (8o) for alI so 
A 

which will complete the proof. 

B 

L e m m a  3.2. I f  g(s )=f  R(8, t) dO(t) is in C, then  for any  [ in D 
,4 

B 

(/, g) = f / (8) d G (8). 
A 

Proo/. (/, g) = f Cr (x) r (x) d m 
B 

= f ~r(x) ~ x ( t )dG( t )dm 
A 

f l  

= f  ( f r x(t)dm)dG(t)  
A 

B 

=~/(tlda(t). 
,4 
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The following example shows tha t  C is not  all of D. Let  R ( s , t ) = r ( s - t )  
where r has two continuous derivatives and 

f 0 if t<  - l / n ,  
Fn (t)=~ - 2n  i f ] t l <  l / n ,  

[ 0  if t>~l/n,  

B 

then [~ (s) = f R (s, t) dFn (t) = 2n (r (s + l / n )  - r (s - l /n)) .  
A 

[n is a Cauehy sequence from C and its limit is dr /ds .  If  d r / d s  is in D we have 

B 

A 

which is not  t rue in general. In  fact if r (s)= exp ( - s  ~) we have 

B 

- s  exp ( - s 2 ) = e x p  ( - s  2) f e x p  ( 2 s t - t ~ ) d F ( t )  
A 

and multiplying by  exp s 2 and differentiating twice gives 

B 

0 = f  t 2 exp (2st - t 2 ) d F ( t ) .  
A 

Since the integrand is positive this means F is constant  except for a jump a t  
0 and this gives - s  exp ( - s  2) = C exp ( - s  2) which is impossible. 
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