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N o t e  o n  m u l t i p l i c i t i e s  o f  i d e a l s  

By C H R I S T E R  L E C H  

I n t r o d u c t i o n  

In  this note we prove some formulae involving lengths and multiplicities of 
ideals. Our results are incomplete but, in the absence of more final results, they 
are perhaps not without interest. 

We begin by proving a generalization of Samuel's well-known inequality 
e (x I . . . . .  xr) ~ L (x 1 . . . . .  xr) interrelating the multiplicity and length of an ideal 
generated by a system of parameters in a local ring (Theorem 1). By combining 
this generalization with an argument in [2] we obtain an asymptotic expression 
for e (x 1 . . . . .  x~) which is more general than the one given in the paper cited 
(Theorem 2). 

The rest of the note is independent of the results just mentioned and mainly 
concerns flat couples of local rings (Serre, [10], pp. 34-41). Let (Q0, Q) be such 
a couple with maximal ideals (m0, m). Assume tha t  m0Q is a m-primary ideal 
or, equivalently, that  Q0 and Q have the same dimension. Denote by e (Q0)and 
e (Q) the multiplicities of mo and m respectively. We prove tha t  if the dimension 
of Q0 and Q is less than or equal to two, then 

e (Qo) ~< e (Q), 

a n d  we make some further observations in support of a conjecture that  this 
inequality is always true. The truth of the conjecture would imply the general 
t ru th  of the inequality 

e (Q~) < e (Q) 

for prime ideals p of Q satisfying dim p + r a n k  p = d i m  Q. For, according to 
Nagata ([4], w 13), this inequality is valid when Q is complete, and one could 
pass from Q to its completion Q* by means of a suitable flat couple (Q,, Q~.). 
- -  However, our arguments are powerless in the general case. The result for 
dimension two is obtained by using ideals similar to form ideals but generated 
by  power products of the variables. An application of these ideals also gives 
another estimate which bears a slight resemblance to the formula e {Q~)~<e (Q} 
(Theorem 3). 

Serre defines fiat couples in homological terms. In  the present note we use 
hardly anything of the homologieal machinery, and in an appendix we give an 
alternative non-homological definition of flat couples, which would serve us 
equally well and which ties up this new concept with an older result of Samuel- 
Nagata. 
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CH. LECH, Note on multiplicities of  ideals 

1. Preliminaries 

I n  this section we settle some questions of terminology and notation, and 
recall some prerequisites. (As a general reference for the terminology, see North-  
cott 's  book [5]; concerning length and multiphcity, see e.g. [2].) 

(i) Let  F [X 1 . . . . .  Xr] be a ring of formal polynomials over a field F.  An ideal 
in F [X 1 . . . . .  Xr] will be called multihomogeneous if it can be generated by ele- 
ments  of the form X~' ... X2". This agrees with the customary use of the term, 
except tha t  we have settled, once for all, a particular division of the set of 
variables, namely the one where each subset contains just  one variable. Every  
multihomogeneous ideal has a normal decomposition in which the pr imary com- 
ponents  are also multihomogeneous. This c~n be shown by  replacing, in a given 
decomposition, each component  by  the largest multihomogeneous ideal contained 
in it. 

(ii) I f  q is a pr imary ideal of a Noetherian ring R, we denote its length by  
L(q)  and its multiplicity by  e (q); if a is an ideal in R and p a minimal prime 
ideal of a, we pu t  L ( a ; p ) = L ( a R p )  and e(tl; p )=e(aR~) ,  where Rr denotes the  
generalized ring of quotients with respect to p; if Q is a local ring, e (Q) will 
denote the  multiplicity of its maximal  ideal. Suppose t h a t  q = (ql . . . . .  q~). Then 
we shall use L(q  1 . . . . .  q,) as an  alternative of L(q), and similarly for other  
functions of ideals. I n  Section 2 we shall further use L (a, ~) to denote the length 
of an ideal (a, ~) generated by an ideal a and an element ~. 

(iii) We recall the associativity ]ormula for multiplicities ([2], [4]). Let  {x~ . . . . .  xr} 
be a system of parameters in a local ring. Pu t  a = ( x  1 . . . . .  xm), 5=(x,,+1 . . . . .  xr) 
(O <~ m <~ r). Then 

e (a + ~) = Y~ e ((a + ~ ) / ~ )  e (b; ~), 

where ~0 ranges over those minimal prime ideals of b for which dim ]3 + rank p = r. 
As a corollary we have 

nr _ _  . . . . .  e(x~*, .... xt ) - n l .  n , e (x l ,  %). (1.1) 
(See [2], p. 314.) 

We shall also use another formula, related to the associat;vity formula. Let  
Q be a local ring and let q be a pr imary idval belonging to the maximal ileal 
of Q. Let  Px . . . . .  p~ be those prime ideals in Q whose dimensions are equal to  
dim Q, and let tt x . . . . .  lt~ be the corresponding pr imary  components of the zero 
ideal. Then 

(q) = ~ e ((q + ~,)/~,) L (n,). 
| f f i l  

We shall call this formula the additivity formula. A short  proof can be obtained 
by  using a lemma by  Artin-Rees (cf. [2], the addendum; see also e .g .  [2], 
Section 4). 

(iv) Let  Q be a local ring of dimension r and let {x 1 . . . . .  xT} be a system of 
parameters in Q. Denote by  m the maximal  ideal of Q. In  the deduction of 
Theorem 2 from Theorem 1, and also in Section 5, we shall apply  a formula 
in [2] (the formula (6), p. 305) which gives an expression for the  length of a n  
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arbi t rary m-primary ideal in Q. If  we let q denote such an ideal, the formula 
can be written as follows: 

l - 1  

L ( q ) =  ~ L( I , (q ) ) .  (1.2) 
v ~ 0  

I t  refers to an arbi t rary but  fixed composition series of the Q-module Q//(x I . . . . .  xT). 
The values of v involved correspond to the successive steps of this series; in 
particular, 1 = L (xl, ..., x~). The Iv (q) are homogeneous, (X 1 . . . . .  Xr)-primary ideals 
of the polynomial ring K [ X ]  = K  [X1, ..., XT] where K =  Q/re. In  fact, with each 
ideal a in Q there are associated l homogeneous ideals Iv(a) (~=0,  1 . . . . .  l - 1 )  
in K [ X ] ,  which enjoy the following properties1: 

(A) a ~ b  implies Iv(a)_~I~(b); 

(B) I~ (0) = (0) for exactly e (x 1 . . . . .  xr) values of r; 
(C) Io (a )~_ I , (a  ) (v=0 ,  1 . . . .  , l - l ) ;  
(D) I f  x~' ... x~" E a, then X[ '  ... X~" E I 0 (a). Further,  suppose tha t  Q contains 

a field k (the eqnicharacteristic case), and let ~ E k [x 1 . . . . .  xr] N a. Denote by 95 
the element of k [x, . . . . .  x~] which is equal to the sum of the terms of lowest 
degree in ~. Then Io(a  ) contains the form tha t  is obtained from ~ by  re- 
placing x, by  X, (i = 1, 2 . . . . .  r) and the coefficients in k by  their canonical 
images in K. 

These properties of the I ,  (a) will underlie our applications of the formula (1.2). 
(v) Consider the four conditions on a local ring Q of dimension r which con- 

sist in claiming the validity of the statements (A) and (B)be low a ) f o r  at  least 
one system of parameters {x 1 . . . . .  x~} in Q, b) for all such systems. 

(A) e (x  1 . . . . .  x , ) = L ( x l , . . . , x r ) ;  

(B) (x I . . . . .  x , , ) : x , ~ + l = ( x  1 . . . . .  xm) (O~<m~<r- 1). 

These four conditions (Aa, Ab, Ba, Bb) are equivalent, and if they  are satisfied, 
Q is called a Cohen-Macauley  ring. (The concept of Cohen-Macauley ring was 
introduced simultaneously in [4], [6], and [8]. We shall use it only to make the 
s ta tement  of Theorem 1 as complete as possible.) 

2. Generalization of  the formula e ( x z , . . . ,  x~) ~< L ( x z , . . . ,  x~) 

Denote by  Q a local ring of dimension r and let {x 1 . . . . .  xr} be a system of 
parameters in Q. We shall be dealing with ideals in Q generated by power 
products of x 1 . . . . .  xr. To get a suitable notat ion for these ideals we introduce 
a ring, of formal polynomials, F [X] = F [X 1 . . . . .  X,], where F is a quite arbi t rary 
field. I f  I is a multihomogeneous ideal of F [ X ]  (or F [ X  1 . . . . .  X,-1]), then 1 
will denote the ideal in Q generated by  those power products  x'~' ... x'}" for 
which X~' ... X~" E I .  

1 The properties (C) and (D) are not stated explicitly in [2], but follow directly from the 
definitions. 

65 



CH. LECH, Note on multiplicities of  ideals 

T h e o r e m  t .  Let I be a multihomoyeneous, (X  1 . . . . .  Xr)-primary ideal in F [X]. 
Then 

L (I) >1 L (I) e (~1 . . . . .  x~). 

Equality holds if and only if Q is a Cohen-Macauley ring. 

For  I =  (X 1 . . . . .  X,) this theorem gives Samuel's formula 

e (x 1 . . . . .  x,) <, L (x~ . . . . .  x~). 

To prove the theorem we shall need a lcmma. 

L e m m a  ~1. Let r >1 1. Then 

e ((xl  . . . . .  x r ) / ( x , ) )  >i e (xl ,  . . . ,  x~). 

Equality holds if and only if x r is not contained in any (r-1)-dimensional  prime 
ideal belonging to the zero ideal of Q. 

Proof o/ Lemma 1. First  assume r = 1. P u t  x 1 = x. We have to prove tha t  
L(x)>~e(x), and tha t  L ( x ) = e ( x )  if and only if the maximal  ideal of Q does not  
belong to the zero ideal. This is t rue according to Samuel 's  formula cited above 
and by  the properties of Cohen-Macauley rings. - -  A simple direct proof is ob- 
tained by  considering the Q-homomorphism 

Q/(x)--->(xn)/(x n+l) 

induced by multiplication with x n. This homomorphism is onto and has the 
kernel ((0) : x"+ (x))/(x), which varies monotonously with n. I n  view of the de- 
finition of e (x) one sees tha t  L(x)>1 e (x), and tha t  L ( x ) =  e (x) if and only if 
( 0 ) : x ~ _  ~ (x) (all n). The latter condition is easily seen to be equivalent  with 

(0) : x ~ _  ~ N (x ' )=  (0) (all n), which gives the result. 

When  r >  1, we apply the associativity formula twice: first to  the ring Q and 
the parameters x I . . . . .  x~, then to the ring Q/(x~) and the parameters  in t h a t  
ring represented by  x 1 . . . . .  xr-1. Both  times we take r e = r - 1 .  This gives the 
two formulae 

e (xl  . . . . .  x , )  = ~ e (((xl  . . . . .  x , -1 )  + p ) / p )  e ((x,); ~) ,  

e ((x 1 . . . . .  x,)/(x,)) = ~ e (((x 1 . . . . .  xr-1) + ~ ' ) /P ' )  L (x, Q~,), 

where p ranges over those minimal prime ideals of (x,) for which dim p = r - 1  
and rank p = 1, and where p '  ranges over (all) those for which dim p'  = r - 1 .  
The s tatement  of the lemma follows b y  a comparison between the two formulae, 
taking the previous, one-dimensional result into account.  

Remark. By an iterated use of Lemma 1 one could prove the equivalence of 
the four properties which caracterize Cohen.Macauley local rings (cf. Section 1, (v)). 
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Proo/ o/ Theorem 1. Let  us first settle one minor point. Suppose tha t  I is a 
multihomogeneous, (X1, ..., X~)-primary ideal in F (X) ,  and that.  X (') is a power 
product  in I : ( X  1 . . . . .  Xr) not  belonging to I .  Consider the Q-homomorphism 

Q / ( x  1 . . . . .  x~) -> (I, X<~'))/i 

induced by  multiplication with the power product  x (") of x I . . . . .  x~ tha t  corresponds 
to  X (~). Since this homomorphism is onto, it follows tha t  

L (i) - L ((I, X<~))) < L (x 1 . . . . .  x,). 

Hence, by  induction, L (I) ~< L (I) L (x~ . . . . .  xr). 

I f  Q is a Cohen-Macauley ring, this means tha t  

L (i) <~ L (I) e (xl . . . . .  x~). 

For  such a Q it therefore suffices to prove the reverse inequality. 
Now we come to the main par t  of the proof. We shall use induction, in the first 

place on r. When r = 0, we have I = (0), and the contention is trivially true. If  
r =  1, then I = ( X ' ~ )  (n>~ 1), and the result follows from Lemma 1, applied with 
r = 1, Assume then tha t  r I> 2 and tha t  the theorem is true when r is replaced 
by  r - 1 .  

We shall first p rove  tha t  the theorem is valid for all i d e a l s / i n  F I X ]  of the 
form (I ' ,  X~) where I '  is a multihomogeneous, (X I . . . . .  Xr_l)-primary ideal in 
F [ X  1 . . . . .  Xr:l]. Note  tha t  in this case 

L ( I )  = k L ( I ' ) ,  (2.1) 

for  there is a F-isomorphism F [ X  1 . . . . .  X r - 1 ] / I '  :-+ (I', x ~ - l ) / ( I  ', Xr)  (1 < ~ k )  
induced by  multiplication with X{ -~. By  our inductive hypothesis we can apply 
the  theorem to the r i n g  Q/(x~). I n  this w a y  we get 

L (I) = L ((I', ~ ) / ( x~ ) )  >1 L ( r )  e ((xl . . . . .  x,_~, x~)/(x~)). (2.2) 

:By Lemma 1 and the formula (1.1), we have 

e ( (x  1 . . . . .  ;~r-1, xrk)/(xrk)) ~ e (3c I . . . . .  x r _ i ,  ~r  k) = k e (x  I . . . . .  x r ) .  (2.3) 

Pu t t ing  together (2.2), (2.3), and (2.1), we obtain 

L (1) >~ L (I) e (x x . . . . .  x:). 

I t  remains to show t h a t  we have equali ty here only if Q is a Cohen-Macauley 
ring. By  hypothesis we have equali ty in (2.2) only if Q/(x~r) is a Cohen-Macauley 
ring, hence only if 

L (x 1 . . . . .  xr-1, xk,) = e ((x 1 . . . . .  x,-1, x~)/(x~)). 
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Thus equality holds in (2.2) and (2.3) 0nly if 

L (z 1 . . . . .  X~-l, x~) = e (x I . . . . .  x~-l, x~), 

i.e., only if Q is a Cohen-Macauley ring. This completes the proof for ideals 1 
of the type (I ' ,  X~). 

Now we use induction on the number  k = m i n { n l X ~ E I } .  I f  k = l ,  then I 
has necessarily the form (I ' ,  X~), and we are in the case just treated. Suppose 
tha t  k~> 2 and tha t  the theorem is true when I is replaced by an ideal con- 
taining Xr *-1. Pu t  

I ' =  (I : Xkr -1) (~ F [ X  1 . . . . .  Xr-1] .  

Then 1' is a multihomogeneous, (X 1 . . . .  , X,_l)-pr imary ideal in F [ X  1 . . . . .  Xr-1]. 
We have 

L (I) = L (I, X~ -1) + L (I '),  (2.4) 

for there is a F-isomorphism $ ' [ X  1 . . . . .  X,_~]/I '  ---> (I, X ~ - I ) / I  induced by  multi-  
plication with X~ -1. Taking into account  tha t  I and I ~ are multihomogeneous 
ideals, we further derive tha t  

I = (I, X~ -~) N (I', X~). 

Hence i ~  (i, x~ -1) n (i', x~). 

If  we write ql N q2 for the r ight hand side of this inclusion, then, as is seen 

from the Q-isomorphism (ql + q~)/q~ --> ql/ql  N q~, we have L (q113 q~) = L (ql) + 
+ L (%) - L (ql + q2). Thus we deduce tha t  

L (I) >1 L (i, x~ -1) + L (I' ,  x~) - L (i',  x~-l). (2.5) 

We shall estimate separately the terms L ( I , x ~  -1) and L ( i ' , x ~ , ) - L ( i ' , x ~  -~) on 
the right hand side of this inequality. By  the inductive hypothes is ,  

L( I ,  x~ -1) >1 L (I, / k - l )  e (x I . . . . .  Xr). (2.6) 

Xr), we have, for According to what  we have proved for ideals of the type  (I ' ,  
every n, 

(L (I', x~) - L (I', x~-l) ) = L (I', x~) >~ n L (I') e (x 1 . . . . .  x~). 

Since the terms L ( _ P , z ~ ) - L ( I ' :  x~ '~) ea:n~.ot incrvuse ~fft~t v (c~. ~;~ !:rst, par:- 
of the proof of Lemma 1), it follows tha t  they  all must  be larger than or  
equal to L (I ') e (x 1 . . . . .  x~). I n  particular, 

L ( i ' ,  x ~ ) - L ( I ' ,  k-1 xr )/> L (I ')  e (xl . . . . .  x,). (2.7) 

Combining (2.5), (2.6!, (2.7), and (2.4), we obtain 

L (I) >i L (I) e (x 1 . . . . .  x,). 
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Here equality can hold only if equali ty holds in (2.6), hence, by  the inductive 
hypothesis, only if Q is a Cohen-Macauley ring. Thus the proof is complete. 

Remark. I f  11 and 12 are multihomogeneous, (X 1 . . . . .  X~)-primary ideals such 
tha t  I 1 ~ I  2 and L ( I 1 ) - L ( I 2 ) =  1, then it is not  necessarily true tha t  L ( i l ) -  
- L ( i 2 )  >1 e (x~ . . . . .  x , ) .  Example:  Let  k be a field and k[[zi, z2] ] a ring of formal 
power series over k. Let  Q be the subring of k [[z 1, z2] ] whose elements have 
the form ~o0 + ~ ~ z l z ~  ( ~ E k ) .  Take 2 x z 2 - ~ 2 v Xl : 2:1' 2 : 2, 11 = ( X 1 , / 2 ) ,  I 3  : 

= (X~, X1X2,  X~). Simple direct calculations show tha t  e(xl, x2)=4,  L ( i l ) -  
- L (13)  = 2 .  

T h e o r e m  2. Let 11, 12, 13 . . . .  be a sequence o I multihomogeneous, (X  1 . . . . .  Xr)- 
pr imary  ideals in F[X] .  Suppose that lim L ( I , ) =  oo and that, /or exery /ixed N,  

t t - . .~oo 

L (~, X~) 
lim 0 (i = 1, 2 . . . . .  r). 
~-,~ L (1 , )  

T~en e (x 1 . . . . .  x~) = lim L (I~) 
n - ~  L (I~)" 

i ( I n )  ~ e ( x i ,  Xr). By Theorem 1, L ~  .... 

I t  therefore suffices to show tha t  

lim L (i4) ~< e (x 1, xr). (2.8) 
~ i - ~ . )  . . . .  

To do this we apply the formula (1.2) with q = l , .  (We must  then make a strict 
distinction between the symbols I~ and I , (  ).) Evident ly  

L ( L ( I , ) ) < ~ L ( I ~ )  (v=0 ,  1 . . . . .  l - l ) .  (2.9) 

By  the same lexicographical argument  as in [2], p. 305, one can further show 
that ,  for those values of v for which Iv (0)~-(0), we have 

L ( L ( i , ) ) = o ( L ( I ~ ) )  for n - >  co. (2.10) 

Iuserting (2.9) and (2.10) in (1.2) we get (2.8). This completes the proof. 

~,v~rollary. Let o and fi be analytical,,ly di~o';nt ideals in Q, and suppose tha~ 
a + b is pr imary to the maximat ideai, o/ Q. Then 

L (a" + ~") 
e (a + 5) = ,,m-~lim (ml,/l 1 !) (nl,/l ~ [), 

where 11 and 12 are the analytic spreads o/ a and b respectively 1. 

1 I owe to Dr. P. Roquetto a suggestion that this result should be true, and this gave 
the impulse to the results of the present section. 
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In  the special case where ct = (x I . . . . .  xl,), b = (xl,+l . . . . .  xz,+t,), the corollary is a 
direct consequence of the theorem. By  using reductions of ideals one can then 
pass to the general case (cf. [7]). 

3. Ideals of highest power products 

Let  Q be a local ring and let r r t=(u  D ...,u~) be its maximal  ideal. P u t  
K = Q / m  and form the polynomial ring K [X] = K [X 1 . . . . .  Xs]. With  each ideal 
a in Q we shall associate a multihomogeneous ideal I ( a )  in K [ X ] .  This will 
be done by first passing from a to its form ideal with respect to 11~ = (u 1 . . . . .  us) 
and then applying a t ransformation (denoted by ~v be low)which  transforms 
every homogeneous ideal of K [ X ]  into a multihomogeneons idea l  

To begin, let us recall the notion of form ideal. Let  a be an ideal of Q. I f  
~b (X) is an element of the polynomial ring Q[X] = Q [ X  1 . . . . .  X~], let if(X) de- 
note its image under the natural  map Q [ X ] - > K [ X ] ,  and let ~b(u) be the ele- 
ment  in Q obtained from ~b (X) by  substituting u 1 . . . . .  us for X 1 . . . . .  Xs.  The set 

(x) I (x) form of Q ix], (u) a) 

is the set of forms in a homogeneous ideal of K [X]. This ideal is called the 
form ideal of a with respect to m =  (u~ . . . . .  us) and will be denoted by  h. Let  
b be another ideal of Q. I t  follows directly from the definitions of ~ and b tha t  

a ~ b  implies ~ _ b ,  (3.1) 

and tha t  a b - a b. (3.2) 

We shall derive one further proper ty  of the mapping a--> a. Denote by  F~ the 
K-module consisting of the forms of degree /x in K [X]. There is a K-homomor-  
phism of F ,  onto the canonical K-module ( m " + a ) / ( m " + l + a )  which maps 
X[ '  ... X ?  (al + "" + as = # )  on the residue class represented by  u[  L ... us." I t  is 
readily verified tha t  the kernel of this homomorphism is F ,  fla.  Thus 

dimtr (F t , /F  ~, N a) = dimK ((In" + a)/(llt "+1 + a)). (3.3) 

Next  we introduce a preliminary transformation r Extend  the field K by  
adjunction of a set {a~k}t,k=L~ ...... of independent indeterminates over K.  Call 
the extension L, Let  ~v be the automorphism of L [ X ]  over L (i.e. leaving the 
elements of L fixed) defined b y  

X~ --> ~ a~ Xz (i = 1, 2 . . . . .  s). 
k ~ l  

Now let 9~ be a homogeneous ideal of K [ X ] .  Order the power products  
of X 1 . . . . .  X,  lexieographieally by  prescribing tha t  X[ '  ... X~' is higher than  
XI '  ... X~' if the htst of the differences 

G1--TI~ G2--T2~ ...~ G s ~ T  s 
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which is different from zero, is positive. Associate with each form in the ideal 
~ ( 2 L [ X ] )  its highest power product. The set of power products which arise 
in this way is the set of power products in a multihomogeneous ideal of K [X]. 
We denote this ideal by v 2 (2). The mapping 2 -+~  (2) can then be split up as 
follows : 

2 - + 2  L [X]-+~o (2  L [X])-+~ (2). 

By considering these mappings separately one can readily verify the following 
three statements, where 2 and ~ denote homogeneous ideals of K [X]: 

2 ~ !5 implies ~ (2) -~ ~o (!5) ; (3.4) 

~0 (2) ~0 (~) _~ ~ (2 !3) ; (3.5) 

dimK (F~,/F~, fl ~ (2)) = dim~ (F~,/F~ N 2). (3.6) 

Because of the preliminary transformation r the mu]tihomogeneous ideals in 
K [X] which can be written on the form V (2) will have some special properties. 
We record two of these in a lemma. 

L e m m a  2. Every ideal o/ the form y~ (2); where 2 denotes an arbitrary homo- 
geneous ideal of K [X], has the properties (A) and (B) bdow. 

(A) Assume ~(2)4:(0) .  Let k be the least integer such that 

(2) n K [Xl . . . . .  X,]  :~ (0). 

Then, /or some natural number n, 

(xk  . . . . .  xs) n ~ ~ (2)_c (xk  . . . . .  x , ) .  

In particular, .(X~ . . . . .  X~) is the only minimal prime ideal of ~ (2). (For k = 0 
the ideal (Xk . . . . .  X,) should be interpreted as (1).) 

(B) I/  
X~'... X1' ~ ~0 (2), 

then also 
( a z  + - - - + q m )  a m  Xm Xm'++~x ... X~'r (1 <m <s). 

The proof of the two properties will be based on one and the same principle, 
which in outline runs as follows. Suppose that f is a form of 9 ( 2 L  [X]), and 
let 9' be a transformation of the same type as ~0. Then, if ~0 and 9' are in a 
natural sense independent of  each other, the highest power product of ~0' (f) 
will belong to ~o (2). 

We now set forth the details of this principle. Let (b,k) be a non-singular 
s xs-matrix with elements in an extension field M of L. Let  (c,k)be the product 
matrix (at,)(bl~). With a slight change in the definition of T, denote by 9, 9' ,  
and 9"  the automorphisms of M IX] over M defined by 

X,-+ ~ a,k X~, X,-+ ~ b,~ X~, and X,-+ ~ c,k X~ 
k - 1  k - 1  k = l  
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respectively. Then ~v" is equal to the composition ~v'o~v. Denote by  L '  and L "  
the extensions of K generated by  the b~k and t h e  c~k respectively. 

Assume tha t  L and L '  are free over K, i.e. tha t  the a~ are independent 
indeterminates over L' .  (This is the condition on q and q '  which we have 
alluded to above.) Then the c~ are independent indeterminates over K.  For,  
since the atz are independent indeterminates over L' ,  there is an endomorphism 
(specialization) of L'  [a11, al, . . . .  ,as~] over L '  which maps (a,~)on (atk)(bi~) -x. 
(Strictly speaking, the elements of the first matrix are mapped on the corre- 
sponding elements of the second one.) This endomorphism then maps (cik)= 
= (a,k)(b,k) on (aiz). I t  follows tha t  the ci~ are independent indeterminates over 
L' ,  hence, a fortiori, over K. As a consequence, there is an isomorphism of L "  
onto L over K which maps (c,z) on (a~k), hence takes the L"  [X]-restriction of 
~"  into the L [X]-restriction of ~o. 

Let  now f be a form of ~v (9XL[X]), and let X (~ be the highest power pro- 
duct  of T'( /) .  We have qJ( / )EqjoqD(91L[X])=qJ ' (?~L[X]) .  Thus X (~ is the 
highest power product  of a form belonging to T" (2 M [X] )=  ~"  ( ~ L "  [X]).  M [X]. 
I t  follows tha t  X (~ is the highest power product  of a form in ~0" (9~L" [X]), 
hence, in view of the isomorphism of L"  onto L, of a form in ~0(9/L[X]). 
Thus X(~ ~ (9/). This establishes our principle. 

I t  remains to prove (A) and (B) by  making suitable choices of / and ~'. 

Proo] o] (A). The case k = 0  is trivial. Assume k >0 ,  and let I be an  integer 
satisfying k ~< l ~< s. Since ~p (~) ~ K [X~ . . . .  , X~] =~ (0), we have 

(9~ L [X]) n L [Xl, . . . ,  Xk] ~: (0). 

Take ] as a non-zero form in ~ ( 2 L [ X ] ) N  L [ X  1 . . . .  Xk], say of degree d. As 
] $ L ,  we have d > 0 .  Define ~ '  by  

X,---> X, + b, X, (i = 1. , 2 . . . . .  s), 

where b 1 . . . . .  bs are independent indeterminates over L. Then X~ is the highest 
power product  of r  (/). By  varying 1 we see that  (X~ . . . .  , Xs a) is contained in 
~o (9~), hence also (X~ . . . . .  X~) ds. This proves the left inclusion. The right inclu- 
sion is an immediate consequence of the definition of k and the fact tha t  ~ (9~) 
is multihomogeneous. 

Proof o / (B) .  Choose ] such tha t  X [  ~ ... XI" is the highest power product  of f. 
Define ~0' by  

X r + X ~  + c, Xm (1 ~< i ~ m), 

X,---> X, (m < i <~ s), 

where c 1 . . . . .  cm are independent indeterminates over L. Then ~mY~ +"m --m+lY"m+l ... Xs ~, 
is the highest power product  of ~o' (f), which gives the result. 

The proof of Lemma 2 is complete. 
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We now compose the mappings  a - - ~  and ~ - - ~  (9~): if a is an ideal of the 
local ring Q, we define I ( a ) = ~ o  (~). The ideal I (a) is then a mult ihomogeneous 
ideal of K [X] which has the properties ( A ) a n d  ( B ) o f  L e m m a  2. Further ,  
combining (3.1), (3.2), and (3.3) with (3.4), (3.5), and (3.6), we see tha t  

a -~ 5 implies I (a) _c I (b) ; (3.7) 

I (a) I (t~) ~ I (ct 5) ; (3.8) 

dimK (F~,/F~, N I (a)) = dimK ((m ~ + a ) / (m ."+1 § a)). (3.9) 

We shall derive some consequences of the formula (3.9), which expresses a 
length-preserving p roper ty  of the mapping  a--+I(a). Denote by  ~J~ the ideal 
(X z . . . . .  X,) in K [X]. F rom the canonical K-homomorphism ~)~'/~JJ~'+I---->-F~, we 
get the induced isomorphism 

(~J~t~ nt_ I ( a ) ) / ( ~  ~+1 § I (a)) ~-~ ~[~/~/((~/~ N I ({:I)) § ~J~/~+l) ,~ F u/Fl ~ N I (fl). 

Combining this isomorphism with {3.9), we get  

dim~ ( ( ~  + I ( a ) ) / ( ~  "+'  + I (a))) = dimK ((m" + a ) / (m "+1 + a)). 

Thus, summing from # = 0 to # = n - l ,  

L (~j[n + I (a)) = L (mn + a). (3.10) 
This means t ha t  

dim a = dim (I  (a) K [X]~), (3.11) 

e 0n/a)= e (FJ~/I (a)) (3.12) 

(cf. the definition of multiplicity). 
The right hand sides of (3.11) and (3.12) can be expressed in terms of the 

special structure of I(a). Let (Xa,+1 ..... Xs) be the minimal prime ideal of I(a) 
(cf. L e m m a  2). Then 

dim (I  (a) K [X]~) = dim ((Xa,+~ . . . . .  Xs) K [X]~) = d' ,  (3.13) 

and, by  the addi t iv i ty  formula,  

e ( ~ t / I  (a)) = e (~i[/(X,~.+~ . . . .  , X , ) ) .  L ( I  (a); (Xd.+~ . . . . .  Xs)) = 

= L ( I  (a); (Xd'+I . . . .  , X~). (3.14) 

I n  particular,  if (Xa+l . . . . .  X , )  is the minimal  pr ime ideal of I (0 ) ,  then by  
(3.11)-(3.14), 

d im Q = d, (3.15) 

e (Q) = L ( I  (0); (Xa+~ . . . . .  X3)). (3.16) 
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In  (3.14) the ideal ~ can be replaced by  (X~+I . . . . .  Xs)(O<~c<~d'). Thus, for 
a = ( 0 ) ,  

e((X~+~ . . . . .  X~)/I(O))=e(Q) (O<c<<.d). (3.17) 

Finally, if q is a m-pr imary  ideal, we get from (3.10), by  taking n large, 

L (I  (q)) = L (q). (3.18) 

4. Applications of the preceding section 

T h e o r e m  3. Let q be a primary ideal in a local ring Q. Assume that 
dim q + rank q = dim Q. Put  rank  q = m. Then 

e (q) 
- -  < ( m ! )  e (Q) .  
L (q) 

Proof. 1) Let  F [X] = F [ X  1 . . . . .  Xa] be a polynomial  ring over a field F,  and 
let O/ be a mult ihomogeneous,  (X 1 . . . . .  X~)-primary ideal of F [ X ] .  Denote by  
9A~ the ideal in F [X] generated by  the n th powers of the power products  con- 
tained in 9~. Then L (0/n)= naL (O/). For, if O/' is a mult ihomogeneous ideal con- 
taining O/ such tha t  L (O/ ' )=L (O/)-  1, and if O/~ is defined in analogy with o/n, 
then O/'~//O/, is F[X]- i somorphic  to F [ X ] / ( X [  . . . . .  X$). This gives L(gA~)= 
=L(O/'~)+n d, and thus, by  induction, L(O/,)=n~L(O/). Since O/,___O/", we get  

L (O/n) <~ haL (O/). Hence 

e(o/)  = lim (d!) L(o/") <d! .  
L (O/) n-~oo ndL (O/) 

(4.1) 

Let  us remark  that ,  for d > l ,  we actual ly have strict inequali ty in (4.1). 
2) Assume tha t  dim q = 0. P u t  dim Q = d. We shall apply  the mapping  a-->I (a) 

of Section 3 (with respect to an arb i t ra ry  basis of the maximal  ideal of Q). 
By (3.18), (3.7), and (3.8), 

L (q~) = L ( I  (q~)) < L (I(q)" + I (0)). 

Hence, applying the addi t iv i ty  formula and the formulae (3.15) and (3.16), 

lim L (q") +'I '(0)) 

= e ( I ( q ) / I ( O ) ) = e ( I ( q ) + ( X a + l  . . . . .  Xs)/(Xd+~ . . . . .  Xs ) ) ' e (Q) .  (4.2) 

P u t  I (q) = ( I  (q) + (Xa+l . . . . .  Xs))/(Xa+I . . . . .  X,).  (4.3) 

In  view of the canonical isomorphism K [X]/(Xa+I . . . . .  Xs)-->K [X  1 . . . . .  Xa], we 
can regard I (q) as a multihomogeneous,  (X x . . . . .  Xa)-primary ideal of K [X 1 . . . . .  Xa]. 
Thus, by  (4.1), 

e ( I  (q)) ~<d!. (4.4) 
l (I (q)) 
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Combining (4.2), (4.3), and (4.4) with the obvious fact  tha t  

we obtain  
L (I  (q)) < L ( I  (q)) = L (q), 

e (q) ~< (d!) e (Q). (4.5) 

3) Assume dim q = d ' >  0. Again we shall apply  the mapping  a - > I  (a) of Sec- 
t ion 3. Observe that ,  b e e a u ~  dim q + rank q = dim Q, we have rank ( I  (q) / I (0))  = 
= r a n k q = m  (el. (3.11) and (3.13)). 

Le t  p be the pr ime ideal belonging to r By  the addi t iv i ty  formula we have  

e ( m / q " )  = e ( m / p )  L (q ' ;  p) (n  = 1, 2, 3 . . . .  ). 
Hence 

L(qn;p)  e (m/qn).  (4.6) 
L (q; p) e (nl/q) 

Similarly, in the ring K [X], with ~rj~= (X 1 . . . . .  X~), 

L ( I  (q)* + I (0); (Xa.+z . . . . .  X~)) _ e (~)~/(I (q)~ + I (0))). (4.7) 
L ( I  (q); Xa,+l . . . . .  X~)) e (~JJ~/I (q)) 

Comparing the right hand sides of (4.6) and (4.7), and using (3.12), we see t h a t  
the expression (4.6) is less than  or equal to the expression (4.7). Thus, mul t i -  
plying (4.6) and (4.7) by  (m! ) /n ' ,  and passing to the limit, we get  

e (q) ~< e (I  (q ) / I  (0); (Xd'+l . . . . .  X~)/ I  (0)) 

Applying (4.5) to the r ight  hand side of this inequality,  we obtain, by  (3.17), 

e (q) 
L ~  ~< (m!) e (Q). 

This completes the proof of Theorem 3. 

C o r o l l a r y .  I] ((2o, Q) is a fiat couple of d-dimensional local rings, then 

e (Qo) ~< d! e (Q). 

Proof. Apply  Theorem 3 with q = 11/0 Q where m o is the maximal  ideal of Q0, 
and observe t ha t  e (m 0 Q) = e (Q0) L (1110 Q) (cf. the appendix).  

Theorem 1~. I f  (Qo, Q) is a flat couple of two-dimensional local rings, the~ 
e (Qo) ~< e (Q). 

Proof. Let  m o and m be the maximal  ideals of Qo and Q respectively. P u t  
K o = Qe/me, K- -Q/ /n t .  We shall app ly  the mapping  a-->I (a) of Section 3 to the  
present  ring Q. Since dim Q = 2 ,  it  follows from (3.15) tha t  (X 3 . . . . .  Xs) is the  
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minimal prime ideal of I(0).  Let us define I* (0 )as  the (X 3 . . . . .  XA-primary 
component of I(0).  Then, by (3.16), 

e (Q) = L (I* (0)). (4.8) 

Further, I* (0) can be generated by power products of X 3 . . . . .  Xs, and L (I* (0)) 
is equal to the number of such power products which are not contained in 
I* (0) (cf. Section 1, (i), and e.g. [5], 4.11). 

Define b as the least integer for which 

X~ E I (m 0 Q). (4.9) 

I t  then follows from (B) of Lemma 2 that there are no power products of the 
form X~X~-I-"iO<~,<~b-1) in ](m0Q). Thus, putting 

q l = m o Q + m  b-l, q ~ = m o Q + m  b, 

we get from (3.9), 
dim~ (ql/q2) >/b. (4.10) 

(In view of this inequality the number b may be looked upon as a lower 
estimate of some kind of "breadth" of the ideal inoQ. ) 

We shall estimate in two ways the number 

dim,r (trig ql/rrt~ q2) 

for large values of n. (The m~ qt (i = 1, 2) denote ideals of Q.) 
By (3.18), we have 

dimK (mR q~/m~ q,) = dim~ (I (m~ q~)/I (m~ q,)), 

and we may compute the right hand side of this equality, that  is, count the 
number of power products X~' ... X~' which belong to I (m~ ql) but not to 
I (n1~ q~). Since 11t (m~ ql) -~ 111~ q,, we have, by (3.8), 

I (m) I (rrt~ q:) _ I (m~ q,), 

i.e. ( X  1 . . . . .  Xs)  I (tn~ ql)_~I (m~ q2)- 

This implies that  there are no two power products belonging to I (m~ ql) but  
not to /(111~ q2) which differ in merely one of the exponents. These power pro- 
ducts are then characterized by their associated ( s -  1)-tuples (a 2 . . . . .  as}. Thus, 
to get an upper estimate of dimK (m~ ql/ra~ q2), we may compute the number 
of elements in the set S of ( s -  1)-tuples (a s . . . . .  as) which have the property 
that,  for some o'1, X~ t . . . .Xs  a' does not belong to I ( m ~ + l Q ) ~  I (m~ q2). 

In doing so we shall distinguish between three possibilities for (a3 . . . . .  a,). 
(i) X~'...X~oEI(O). Since I (0) =_ I (m~+l Q), it follows that  (a s . . . . .  a,) does 

not belong to S for any %. 
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(ii) Xg . . . . X ~  *EI*(0) ,  Xg ' . . . X ~ I ( 0 ) .  B y  (A) of L e m m a  2 there are only 
finitely m a n y  (a s . . . . .  as) of this kind. For  each of these there is some pair  
(a, fl) such t ha t  X~ Xg X~ ~ ... X~ ~ E I (0). Then, by  (B) of L e m m a  2, X~+~Xg ~ ... 

as ... Xs E I ( 0 ) ,  so t h a t  if (a 2 . . . . .  as) ES,  then a s <  a + f l .  
(iii) X~' ... X~' $ I*  (0). B y  (4.8), this case arises for e (Q) different va]ues of 

(a~ . . . . .  as). Since, by  vir tue of (4.9) and (3.8), X~(~+I)EI(m~+IQ),  there are, 
~or each such value of (a a . . . . .  as), a t  mos t  b ( n +  l) ( s -  1)-tuples (a s . . . . .  as) in S. 

Pu t t ing  together,  we get  

d ime  (,rt~ q J n i ~  q2) ~< e (Q) bn  + 0 (I). (4.11) 

n + l  On the other  hand, since (Q0, Q) is a f lat  couple, the module M = m~ Q/m0 Q 
is a free (Q/nt0Q)-module with a basis of d im~, (m~/m~ +') elements (cf. the 
appendix) .  Hence 

d ime  (m~ q,/m~ %) = dimK (ql M / q 2  M) = dimK, (m~/m~+~) �9 dimK (q~/qs)- 

Since dim Q0 = 2, 
- n n + l  dlm~o (~o/tlt0 ) = e ( Q o ) n + O ( 1 ) .  

Thus,  on account  of (4.10), 

d im e (m~ q l /m~ q2) i> e (Qo) b n + 0 (1). (4.12) 

A comparison of (4.11) and (4.12) gives 

which was to be proved.  

e (Q0) ~< e (Q), 

5. Flat couples (Qo, Q)  with special conditions on Q / m  0 Q 

Let Q be a local ring, m its maximal  ideal, and q a m-primary ideal. Suppose 
that there is a ring isomorphism 

O / o - + K  [Xl, ..., X~]/(h . . . . .  L), (5.1) 

where K is a /ield, K [ X  1 .... 
(X~ . . . .  ,Xs)-pr imary  ideal in 
equicharacteri~t~c. Then 

Xs] a polynomial ring over K ,  and (/1, ..-,/~) a 
K [ X  1 . . . . .  X,]. I n  addition, suppose that Q is 

e (q) ~< L (q) e (n~). 

We shall outline a proof  of this s ta tement .  For  s=O we have q = m, and the 
assertion is t r ivial ly true.  Thus we can assume tha t  s > 0 .  We shall subject  the 
triple {Q, m, q} to a number  of successive changes, which will not. affect  the 
values of e (m), L (q), and e (q), nor  the assumpt ions  on Q/q.  Before we list 
these changes it  will be convenient  to introduce the homomorphism 
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0 : Q--->K [X  1 . . . . .  X~] / (h  . . . . .  t~), 

defined as the  composi t ion of the  na tu ra l  homomorphism Q--->Q/q a n d  the iso- 
morphism (5.1}. 

(i) Replace Q by  Q ' = Q [ z  1 . . . . .  z~](m.z ...... z,) where z 1 . . . . .  zs are inde termina tes  
over Q. Replace m b y  111' = (nt, z 1 . . . . .  zs) Q' and q b y  q' = (q, z I . . . . .  z~) Q'. Then  
Q'/q '  ~_ Q/q.  The ideals q q '  and  (z 1 . . . . .  z~) Q' are ana ly t ica l ly  dis joint ,  whence, 
by  [2], Theorem 3, 

e ( q ' )  = e ( q ' / ( Z l  . . . . .  z~) q ' ) .  e ( (z l  . . . .  , z~) Q ' )  = e (q ) .  

I n  a similar way  we get  e ( m ' ) = e  (m). 
Af ter  this change we have dim Q >/s. 
(ii) Replace  Q by  Q ' =  Q [z]mQ[~] where z is an inde te rmina te  over  q .  Replace  

m and  q by  m Q' and  q Q' respect ively.  Concerning the equat ions e (m Q') = e  (m) 
etc., cf. [5], 4.11. The ring Q/ q  will undergo an a l te ra t ion  corresponding to a 
replacement  of K by  K (z) in (5.1). We  achieve t ha t  Q / m  is necessari ly infinite.  

(iii) Our  nex t  object  is to achieve t ha t  dim Q = s and  .that m has a reduc t ion  
(x~ . . . . .  x~) such t h a t  0 (x~) = X~ (i = 1, 2 . . . . .  s). P u t  d im Q = t. Note  tha t ,  by  (i), 
t>~s. P u t  q = (ql . . . . .  qm), and le t  x~ . . . . .  x8 be elements of Q such t h a t  0 (xt)= 
= X~ (i = l ,  2 . . . . .  s). Then m = (ql . . . . .  q,~, xl  . . . . .  xs). Consider the  ideal  genera ted  
by  the t elements 

a~l ql + "'" + a~m qz + b~l x 1 + "" + b~s x8 (v = 1, 2 . . . . .  t) (5.2) 

where the  av, and  the b~, belong to Q. This ideal will be a reduct ion of m if  
and  only if the residue classes of the  a~, and  b~, modulo  11t do not  belong to  
some proper  algebraic set definecl over Q/n t  {[7], Sections 5 and  6). Since, b y  
{ii), Q / m  is an infinite field, we can choose a sys tem {a~,, b~} sat isfying th is  
condit ion and having the  fur ther  p rope r ty  t h a t  the  de t e rminan t  [b, ,  [mpffil. 2 . . . . . .  
is a uni t  in Q. Thus, replacing the  elements  (5.2) b y  sui table  l inear  combina- 
tions, we see t ha t  there  is a reduct ion of m generated by  t elements of the  form 

c~1 ql + "'" + c~m q~ + x~ (v = 1, 2 . . . . .  s), 

cvl ql + "'" + C,m qm (v = s +  1 . . . . .  t). 

We  conclude t ha t  t e lements  of this  form will generate a reduc t ion  of 11t when- 
ever the  residue classes of the  c,,  modulo 11t are outs ide some proper  a lgebra ic  
set. I t  follows t ha t  the  c,,  can be so de te rmined  tha t ,  if a denotes  the  ideal  
genera ted  by  the  t - s  e lements  

C, x ql + " " + c, m qm ( v = s + l  . . . . .  t), 

then  e ( m / a ) = e ( m ) ,  e ( q / a ) = e ( q )  (cf. L e m m a  I ;  note t ha t  s > 0 ) .  Thus we can 
replace Q, m, and q by  Q/a,  m / a ,  and  q /a .  After  this  change d im Q =  s, and  
nt has a reduc t ion  genera ted  b y  s e lements  which are m a p p e d  on X 1 . . . . .  X s  
b y  0, namely  the  residue classes modulo a of the former elements 

c, l q l + ' " + c ,  mqm+x~ ( v = l ,  2, . . . ,  S). 
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(iv) Replace Q by  its completion Q ' ;  replace 11t and q by m Q' and q Q' 
respectively. After this change Q contains a field k such t h a t  0 ( k ) = K .  For, 
by  Geddes's method ([1], esp. Lemma 4, p. 338), a coefficient field of Q/q can 
be lifted successively to a coefficient field of Q/q2, Q/q4 . . . . .  Q/q2~, .... Q. 

Q now has the dimension s and contains a field k such tha t  0 (k)= K. There 
i s  a reduction (x I . . . . .  xs) of • such tha t  0 (x~) = Xi (i = 1, 2 . . . . .  s). 

Let  ~1 . . . . .  ~0s be the elements in k Ix I . . . . .  xs] obtained from /1 . . . . .  ]s by  re- 
placing Xt by xt (i = 1, 2 . . . . .  s) and the coefficients in K by  their inverse images 
in k under 0. Then the ideal (~1 . . . . .  ~s) in Q is contained in q. We shall 
estimate the length of its n th  power, (~1 . . . . .  ~s) ~, by  applying the formula {1.2) 
with respect to the parameters x 1 . . . . .  xs. In  view of the length-preserving pro- 
perties of form ideals we readily see tha t  

L(L((qJI . . . . .  ~)"))  ~< L ((/~ . . . . .  /~)n) (~=0,  1 . . . . .  l - l ) .  (5.3) 

Further ,  if m is an integer such tha t  

(Xs . . . . .  x s )m  _~ (/1 . . . . .  /s), 

then  (X~ . . . . .  Xs) mn ~ I0 ((~1 . . . . .  ~s) ~) (n = 1, 2, 3 . . . .  ). 

(Strictly speaking these two inclusions refer to different rings.) By  means of 
a n  argument  in [2] (lower half of p. 305) it follows that,  for large values of n, 

L (I~ ( ( ~  . . . . .  ~s)~)) = o (n s) if /~ (0) * (0). (5.4) 

Insert ing the estimates (5.3) and (5.4) in (1.2), and observing that,  e.g. by  
Theorem 1, 

L(( ] I  . . . . .  ]~)n)= (n : s) L (q), 

we get L ((~1 . . . . .  ~ ) ' )  = (n~/s!) L (q) e (xl . . . . .  x,) + o (n~). 

Hence, since L (qn) < L ((~x . . . . .  ~)n)  and e (x~ . . . . .  x~) = e (m), 

L ( q ' )  ~< L e (q) = n-.~lim ~ (q) e (m), 

which was to be proved. 
As a corollary we obta in :  

Let (Qo, Q) be a fiat couple o/ local rings with maximal ideals (m0, m). Suppose 
that Q//m0 Q is isomorphic to a ring 

g [X~ . . . . .  X , ] / ( h  . . . . .  h), 

where K is a /ield, K IX x . . . . .  X,] a polynomial ring over K, and (]1 . . . . .  Is) a 
(X 1 . . . . .  X~)-primary ideal. In  addition, suppose that Qo and Q are equicharae- 
teristic. Then 

e (Qo) <- e (Q). 

For the proof, cf. the proof of the corollary of Theorem 3. 
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Next  we consider a type of residue class rings Q/q for which the factor d! 
in  Theorem 3 cannot  be replaced by any  smaller number .  We shall prove the  
following s ta tement :  

Let (Qo, Q) be a fiat couple o/ local rings with maximal ideals (too, m). Sup- 
pose that there is a ring isomorphism 

Q/m o Q --+ K [X~ . . . . .  X,]/(X~ . . . . .  XA m, (5.5) 

where K is a /ield and K [X t . . . . .  X~] a polynomial ring over K. Then 

1 
c(Qo) L(moQ) e(Q) �9 

If s = 0, then m = m o Q, and  the assertion is t r ivial ly true. Thus we can as- 
sume tha t  s > 0 .  We shall prove tha t  

m m = m o m m-l, (5.6) 

which means tha t  moQ is a reduct ion of nt (cf. [7]). This implies tha t  

e (m) = e (mo Q) = e (m0) L (m 0 Q) 

(cf. the appendix),  and  thus gives the result. 
Both sides of (5.6) contain the ideal m~ n Q. By passing, if necessary, from 

(Q0, Q) to (Q0/m~, Q/m~ Q) we can assume tha t  m ~ = ( 0 )  (cf. the appendix).  
Then  Q0 and  Q are zero-dimensional. 

Let  u, ( tES) be elements in  Q representing a basis of Q/m over Qo/mo. Let  
xl . . . . .  xs be representatives in Q of those elements in Q/mo Q which correspond 
to X 1 . . . . .  Xs under  the isomorphism (5.5). If a = (al . . . . .  as) is a sequence of 
s non-negat ive  integers, we shall write x" for x~' ... x~ s. If a = (a 1 . . . . .  a~) is an  
a rb i t ra ry  sequence of s integers, we pu t  l a ] = ( h  + "" + a s  and  write a>~O if 
at~>0 ( i = l ,  2 . . . . .  s); we define a + z  as (a I + T  1 . . . . .  as+v~) if ~=@1 . . . . .  Ts). 
When  we use the symbol  x" i t  will always be understood tha t  a >~ O. 

The elements u, x ~ (t E S, [ v[ < m) represent a basis of Q/m o Q over Qo/mo. For ,  
in  view of (5.5), 

Q ~  ~ Qou,+(x, . . . . .  xAQ+moQ,  

where ~ Q0 ~, s tands for the Qo-submodule of Q generated b y  the u,. I t e ra t ing  

this inclusion and  observing t ha t  (x 1 . . . . .  xs) m Q ~ m  o Q, we get 

Q ~_ ~, Qou, X~+moQ. 
a 

I~l<m 

On the other hand,  if there were a relat ion 

I~[<m 

(at. ~ E Qo) 
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with  a,.,=O for all  bu t  a finite number  of indices (t, ~) and  with a t  least  one 
a,.,(~t~t o, one could assume (after a possible mul t ip l ica t ion  with  some x ~ t h a t  
the  range of z were jus t  I~] = m -  1, and  read i ly  get  a cont rad ic t ion  to the  
i somorphism (5.5). 

As is shown in the  appendix ,  i t  follows t ha t  the  elements  n,x~(tES, I vl < m )  
also form a basis of Q over  Q0 (because these r ings are zero-dimensional) .  Con- 
sequent ly ,  denot ing b y  M the Q0-submodule of Q genera ted  by  the ~,, t he re  
are for each y ~ Q unique coefficients a (y; v) E M (v ~> 0, I ~ I < m) such t h a t  

y =  ~ a (y ;  v) x ~. (5.7). 
[vl<m 

We define a ( y ; v )  as 0 ( E M )  when r ~ 0  or ]~i ~ m -  Fur the r ,  if a, b E M  and  
a -  b E m~ M, we shall  wri te  a--- b (nI~ M )  (~ = 0, l ,  2 . . . .  )~ 

Denote  by  a the  ideal  (x 1 . . . . .  x~) in Q. Then l~t=~lt 0Q+~t.  To prove  (5.6) 
i t  suffices to  show t h a t  

m - 1  

V=0 

To do this we in t roduce  an  in tegra lvalued,  posi t ive,  non-increasing funct ion q0 (v), 
defined for v = 0, 1 . . . .  , m - 1, which we assume to have the p r o p e r t y  t h a t  

m - 1  

a ~ _  Z n~ (~) a~. (5.8) 

We shall  show qui te  genera l ly  how this  funct ion can be improved  upon.  Our  
resul t  will make  i t  possible to pass  from q0 (~)---1 to ~ ( v ) - = m - v .  This  will 
complete  our proof, for, in view of the  fact  t h a t  am___ m 0 Q = m 0 a0, i t  is ev ident  
t h a t  the  funct ion ~ ( ~ ) -  1 satisfies al l  our  assumptions .  

F i r s t  we prove  tha t ,  for k = 0 ,  1, 2 . . . .  ; 0~<ITI ~ < m -  1, 

y Em~ a m implies  a (y; T) Eln~ (l~l)+k M.  (5.9) 

This is t rue  for ]c>~ m, since then  y = 0. We proceed b y  induct ion  on k. As- 
sume t h a t  0 ~ < k < m ,  and  t h a t  (5.9) has been proved  for all  larger  values of 
the  induc t ive  var iable .  F r o m  (5.8) and  the  fact  t h a t  every  e lement  in Q can 
be wr i t t en  on the  form (5.7), i t  follows t h a t  y can be wr i t t en  as a sum of 
terms of the  form axT'x T'" where I'~'l<m, Ir"l<m, and aEllt~(IT'I)+~M. I t  suf- 
fi . . . .  ces to prove  the  conclusion of (5.9) for each such term.  When  ~ + ~ <m, 
we get  the  resul t  d i rec t ly  from the  fact  t ha t  ~ ( ~ ' I + i T " I ) - < _ ~ ( I T ' I ) .  When  
I.~'l+lT;"l>~rn, then,  since V(I ~' ) > 0 ,  we have ax~'x~"Eli"t~+lam, and the re- 
sul t  follows b y  the induct ive  hypothesis .  

Fo r  i = l ,  2 . . . . .  s, let  e~ denote  the  sequence (0 . . . . .  1 . . . . .  O) whose i th ele- 
men t  is 1 and whose remaining  e lements  are O. We shall  prove  tha t ,  if 

] a [ = m ,  a~O, a+e, -e l~O,  o ~ I v l ~ m - 2 ,  

then a(x(~; r ) ~ a ( x ~ + ~ ;  ~+e~) -=a(xa+~ , -~ ;  v + e ~ - e j )  (m~(I~i+l)+lM). 
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The left  and the r ight  congruence are qui te  analogous.  Thus i t  suffices to  
prove the left  one. I f  T + e t ~ 0 ,  then T ~ 0 ,  and  the resul t  follows from the  
fac t  t h a t  we have defined a (y; T) as 0 when v ~ 0 .  Assume then  t ha t  ~ + el/> 0. 
Express ing  x" on the  form (5.7) and  mul t ip ly ing  b y  x~, we get 

x ~+8, = ~ a (x~; T) x~+% 
T 

B y  (5.9) and  the  fact  t h a t  the  funct ion T (v) is posi t ive,  the  coefficients a (xa; ~) 
t h a t  occur here, belong to m0 M. Thus the  te rms with  I z I = m - 1 belong to m 0 (1 m. 
The  resul t  therefore follows from (5.9). 

By  repea ted  appl ica t ion  of the  congruence 

a (x" ; T) -- a (xa+~,-*J ; ~ + si -- ej) (I11o ~(1r 

we see tha t ,  if 

I l=l 'l=m, 

then  a (x"; T) = a (x"'; v + a '  - a) ( r ~  (t~1+1)+1M). 

Since v - a ~ 0, i t  is a lways possible to choose a '  such t h a t  v + a '  - a ~ 0. Hence,  
for o<l l<m-2, 

a (xa; ~) ~ 0  (m~<t~l+l)+lM). 

I n  view of (5.7) and  the fact  t h a t  a = (x I . . . . .  xs), this  means  t ha t  the  func- 
t ion  yJ(v) defined as ~ 0 ( v + l ) + l  for v=O, 1 . . . . .  m - 2  and  as q ( m - 1 ) f o r  
v = m - 1  will have all  the  proper t ies  which we have assumed for ~(v).  If  
~ 0 ( v ) - m i n ( m - v , k ) ,  then  ~ ( v ) ~ m i n ( m - v , k + l )  ( l ~ < k ~ < m - 1 ) .  Thus we can 
pass from ~(v)------l~ min  ( m - v ,  1) to  c f ( v ) - - m - v ~  rain ( m - v ,  m). This com- 
pletes  our proof. 

The results  of th is  section, together  wi th  Theorem 4, s t rongly  suggest tha t ,  
for d > 1, the  factor  d! in the  Corollary of Theorem 3 could be replaced  by  a 
smaller  number .  I hazard  the  conjecture t h a t  this  factor  can ac tua l ly  be re- 
p laced b y  1, i.e. t h a t  

e (Qo) < e (Q) 

for f lat  couples (Q0, Q) of local r ings of the  same dimension.  (This would imply  
t h a t  e(Qo)<~e(Q ) for all f lat  couples (Q0, Q) of l o c a l  rings, whether  of t he  
same dimension or not.) 
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A P P E N D I X  

Let  R be a commutat ive  ring with uni ty  element, and let M be a uni tary  
R-module.  We have the following definition by  Serre: 

M is called R-/lat (or /lat) i~ the /unctor 

T: T ( E ) = E |  

de/ined on the categary o/ unitary R-modules, is exact. 

I f  M is flat, it satisfies in particular the condition that ,  for every ideal a 
of R, the sequence 

O--->a|174 

is exact. Using the functor Tor, Serre shows tha t  this condition is also suf- 
ficient ([10], p. 35). We shall derive another criterion, namely: 

M is flat i/ and only i/ ( a : a ) M = a M : ~  /or every ideal a and every element 
a i n R .  

Proo]. 1) Suppose tha t  (a:~c)M=aM:o( for all a, c(. We have to show tha t  
for any fixed a the sequence O---~a|174 is exact. I n  other words, if 

~1 . . . . .  er are elements of a and )'1 . . . . .  ~'r elements of M such tha t  ~ e, ~,~ = 0, 

then we must  show tha t  ~ evN~,~=0 in a |  This will be done by  indue- 

t ion on r. Assume tha t  r >~ 2 and tha t  the assertion is true for all smaller values 

of the inductive variable. Since ~ ~v ~ = 0, we have ~r ~'r E (~1 . . . .  , er-1) M. 
~,ffil 

Hence, by  our assumption, ~,r E ((~l . . . . .  er-1) : ~r) M. Let  ~1 . . . . .  ~ be elements 
t p ! 

of (~1 . . . . .  ~ - 1 ) : ~  and ~1 . . . . .  ~ elements of M such tha t  7r= ~ fl~y~. Then 
/ ~ = 1  

a~| ~. ~ ( r |  ~ ~ |  Since ~ r~E(c (  1 . . . . .  :(r-l), this means tha t  
, u ~ l  ,uffil - 

we can write ~, |  on the form ~ |  with ~ " E M .  Then ~ |  
r - 1  v = l  v = l  

= ~.. e , |  As this relation in a |  obviously implies the relation 
r r - 1  

O =  ~ ~ , , =  ~ ~,(?,~+~,~') in R| it follows by the inductive hypothesis 
~r 

t ha t  ~.. ~,| Thus we have reduced the proof to the case r =  1. I n  this 

ease we can proceed in the same way as above, interpreting ( ~  . . . . .  e~_l) as 

the zero ideal. We get ~| = ~ e~ ~ , |  with ~ ~, = 0 (/~ = 1, 2 . . . . .  s), i.e. 
, ~ 1  

~ |  which was to be proved. 
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2) Suppose tha t  M is flat, and let us show tha t  (a : ~ ) M = a M : ~ .  We shall 
need two auxiliary statements.  

(i) Suppose tha t  E and F are two uni tary  R-modules and tha t  F~_E. B y  
applying the functor  T defined above to the exact sequence 

O--> F-+ E-> E / F-+ O, 

we obtain a canonical isomorphism 

(E/F)|  ~ M  ~_ E | 1 7 4  M. 

(ii) Similarly, applying T to the sequence 

0-->a-->R, 

we obtain a canonical isomorphism 

a|  

Now, let a be an arbi t rary  ideal and ~ an arbi t rary element in R. Consider 
the exact  sequence 

(a : ~)/a--> R/'c~-+ R/a,  

where the first map is induced by inclusion and the second by multiplication 
with ~. Applying T to this sequence and taking the above canonical isomor- 
phisms into account,  we get  a sequence 

(a : ~) M / a  M-+ M / a  M--+ M / a  M, 

whose exactness implies tha t  

(a : ~) M/ct M = a M : o~/a M, 

i.e. ( a : ~ ) M = a M : ~ ,  

which was to be proved. 

The relation la : ~) M = a M : ~r is well known from the special si tuation where 
R is a local ring and M its comp]etion (ef. [9], p. 9; ef. also [10], Prop. 27, 
p. 39). Moreover, there is a result by  Samuel-Nagata  to the effect that ,  if the 
condition ( a : : r  a M : ~  is satisfied for all a and ~ in R, then 

(aN~)M=aM~bM 

for all ideals a and b of R. (The result is formulated for the special situation 
mentioned above, but the proof extends to the general case. See [3].) 

Flat couples (of rings) can be defined as follows (Serre [I0], Def. 4 and 
Prop. 22, p. 36): 

Let R be acom, mutative ring and R o a subring o/ R. Assume that R and R o 
have a common unity element. The couple (R 0, R) is called fiat i/ R is Ro-flat 
and i/, /or every ideal a o o/ R o, we have a oR fl R o=a o. 

84 



ARKIV FOR MATEMATIK. B d  g n r  8 

I t  suffices to require t ha t  % R  N R o = %  for all maximal  ideals of R o. Fe r  
suppose tha t  a o is an ideal and 5o an element of R o such tha t  % E a o R  fi Ro, 
5 o ~E %. Then 1 E ao R : 5 o = (a o : 50) R. Thus, if mo is a maximal  ideal containing 
ao:5o,  we get m o R N R  o = R  o 4 m  o. 

We now record those facts about  flatness t ha t  are used in the present note. 
Let  the module M be R-flat. Suppose tha t  a is an ideal and S a multipli- 

eatively closed set in R. Then M/a M is (R/a)-flat,  and Ms is R-flat (cf. [10], 
or apply the criterion a M : 5 = (a : 5) M). 

Let  (Qo, Q) be a flat couple of local rings with maximal  ideals (11~o, m). This 
means tha t  Q is Qo-flat and tha t  moQ--mf.  I t  follows that ,  if % is a proper 
ideal of Qo, and if p is a prime ideal of Q containing ~1to, then the couples 
(Qo/%, Q/% Q) and (Qo, Q~) are flat (cf. the preceding paragraph).  

I f  ao is an ideal of Qo, then %Q/a01rt oQ is a free (Q/m oQ)-module, and if 
~1, . . . ,  5 ,  form a minimal basis of %, they  represent a basis of %Q/aomoQ 
over  Q/m o Q: For  suppose tha t  71 . . . . .  ~,~ are elements of Q such tha t  

Then  

51 ~31 ~- " ' "  -~ 5 n  ~2n = O. 

7~ E (51 . . . . .  5~_1) Q : 5~ = ((51 . . . .  , 5~-1) : ~ )  Q ~ mo Q, 

and  similarly 71 . . . . .  7~-1 E rao Q. This gives the result. 
Suppose tha t  lif o Q is m-primary.  Since m~ Q/m~o +1 Q is a free (Q/lit o Q)-module 

with a basis of L(mf~;+i)-L(m~) elements, we have 

hence 

I t  follows tha t  

L (mf~ +1 Q) - L (rag Q) = (L (m[ +1) - L (mf~)) L (too Q), 

L(mf~)Q)=L(mf~)L(mfoQ ) (v=l ,  2, 3, ...). 

dim Qo = dim Q 

e (lif o Q) = e (lifo) L (mo Q) 

(cf. the definition of multiplicity). 
I f  lif o Q is not  m-primary,  it has a minimal prime ideal p 4= m. Since (Qo, Q~) 

is flat and since lif o Q, is a (p Q~)-primary ideal, we deduce tha t  dim Qo = dim Q,, 
hence t h a t  dim Qo < dim Q. Thus it is equivalent to say tha t  lif o Q is m-pr imary 
and tha t  Qo and Q have the same dimension. 

Assume tha t  Qo and Q are zero-dimensional. Then Q is a free Qo-module, 
and  if o), (t E S) are representatives in Q of a basis of Q/m o Q over Qo/rlto, then 
the oh form a basis of Q over Qo. To see this, we first observe tha t  

Q c- Y, Qo ~o, + lifo Q, 

where ~ Qo co, denotes the Qo-submodule of Q generated by  the co,. I tera t ing 

�9  inclusion, we obtain 

Q~_~Qoco,+mf~Q (v=I, 2, 3 . . . .  ). 
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Because m~= (0) for v sufficiently large, this means tha t  Q_~ ~ Qoeo,. I t  remains 
L 

to show that  the (D, arc independent.  Assume that  there is a relation 

al (D1 +" "  + ~n (Dn = 0 (*) 

with o~EQo , (D,E(eo,[LES}. Let a I . . . . .  ~r be a minimal  basis of the ideal 
(~1 . . . . .  an) in Qo. Then there are relations 

a , =  ~ fl~.~ ~ ( v = r + l  . . . . .  n) 
pffil 

with fir. ~ E Qo- Insert ing these in (*), we get 

a l  (r ~- fir +1.1 (Dr + 1 Jr "'" -~ fin. 1 (Dn) ~- "'" -~- O~r ((Dr ~- "'" ) = 0 

Hence 0)1-~-flr+l. 1 (Dr+l-]-" '" +fln. l(Dn E ((az . . . . .  at) : al) Q-~mo Q, 

which is a contradiction, as the (D, represent a basis of Q/m o Q over Qo/mo. 
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