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Note on multiplicities of ideals

By CaRISTER LECH

Introduction

In this note we prove some formulae involving lengths and multiplicities of
ideals. Our results are incomplete but, in the absence of more final results, they
are perhaps not without interest.

We begin by proving a generalization of Samuel’s well-known inequality
e(z,, ...,z )< L(z;, ..., x,) interrelating the multiplicity and length of an ideal
generated by a system of parameters in a loeal ring (Theorem 1). By combining
this generalization with an argument in [2] we obtain an asymptotic expression
for e(x,, ...,2,) which is more general than the one given in the paper cited
(Theorem 2).

The rest of the note is independent of the results just mentioned and mainly
concerns flat couples of local rings (Serre, [10], pp. 34-41). Let (Q,, @) be such
a couple with maximal ideals (mi, m). Assume that m,@ is a m-primary ideal
or, equivalently, that @, and @ have the same dimension. Denote by e(@,) and
¢(Q) the multiplicities of m, and m respectively. We prove that if the dimension
of @y and @ is less than or equal to two, then

e (@) <e(Q),

and we make some further observations in support of a conjecture that this
inequality is always true. The truth of the conjecture would imply the general
truth of the inequality

e(@)<e(@)

for prime ideals p of @ satisfying dim p+rank p=dim Q. For, according to
Nagata ([4], § 13), this inequality is valid when @ is complete, and one could
pass from @ to its completion @* by means of a suitable flat couple {(Qy, Qps).
— However, our arguments are powerless in the general case. The result for
dimension two is obtained by using ideals similar to form ideals but generated
by power products of the variables. An application of these ideals also gives
anothelj estimate which bears a slight resemblance to the formula e(Q)<e(Q)
(Theorem 3).

Serre defines flat couples in homological terms. In the present note we use
hardly anything of the homological machinery, and in an appendix we give an
alternative non-homological definition of flat couples, which would serve us
(;}plally well and which ties up this new concept with an older result of Samuel-

agata.
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CH. LECH, Note on multiplicities of ideals

1. Preliminaries

In this section we settle some questions of terminology and notation, and
recall some prerequisites. (As a general reference for the terminology, see North-
cott’s book [5]; concerning length and multiplicity, see e.g. [2].)

(i) Let F[X,, ..., X,] be a ring of formal polynomials over a field F. An ideal
in F[X,, ..., X,] will be called multihomogeneous if it can be generated by ele-
ments of the form X7 ... X?+. This agrees with the customary use of the term,
except that we have settled, once for all, a particular division of the set of
variables, namely the one where each subset contains just one variable. Every
multihomogeneous ideal has a normal decomposition in which the primary com-
ponents are also multihomogeneous. This ccn be shown by replacing, in a given
decomposition, each component by the largest multihomogeneous ideal contained
in it.

(ii) If q is a primary ideal of a Noetherian ring R, we denote its length by
L(q) and its multiplicity by e(q); if a is an ideal in R and p a minimal prime
ideal of a, we put L(a;p)=L(aRy) and e(a; p)=e(aRy), where R, denotes the
generalized ring of quotients with respect to p; if @ is a local ring, €(Q) will
denote the multiplicity of its maximal ideal. Suppose that q=1{(g;, ..., ¢,)- Then
we shall use L(g,,...,q,) as an alternative of L(q), and similarly for other
functions of ideals. In Section 2 we shall further use L (a, ) to denote the length
of an ideal (a, ) generated by an ideal a and an element «.

(iii) We recall the associativity formula for multiplicities ([2], [4]). Let {z), .., m,}
be a system of parameters in a local ring. Put a=(x,, ..., Zw), b= (zms1, --os %)
(0<m<r). Then

e(@+b)= 3 e((a+p)/p)e(d;p),

)

where D ranges over those minimal prime ideals of b for which dim p +rank p=r.
As a corollary we have

e(xi, ..., a7 )=n, ... ne(Zy, ..., T,). (1.1)
(See [2], p. 314.)

We shall also use another formula, relat~d to the associativity formula. Let
Q be a local ring and let ¢ e a primary ideal bolonging to the maximal iJeal
of Q. Let p,, ..., P, be those prime ideals in @ whose dimensions are equal to
dim Q, and let 1, ..., 1, be the corresponding primary components of the zero
ideal. Then

s

e(@)= 2 e((q+p)/ps) L ().

i=1

We shall call this formula the additivity formula. A short proof can be obtained
by using a lemma by Artin-Rees (cf. [2], the addendum; see also e.g. [2],
Section 4). :

(iv) Let @ be a local ring of dimension r and let {z,, ..., z,} be a system of
parameters in Q. Denote by m the maximal ideal of @. In the deduction of
Theorem 2 from Theorem 1, and also in Section 5, we shall apply a formula
in [2] (the formula (6), p. 305) which gives an expression for the length of an
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arbitrary m-primary ideal in . If we let q denote such an ideal, the formula

can be written as follows:
-1

L@= 3 L) (1.2)
It refers to an arbitrary but fixed composition series of the ¢-module Q/(xys ..., z,).

The values of » involved correspond to the successive steps of this series; in
particular, = L{(z,, ..., z,). The I, (g) are homogeneous, (X;, ..., X,)-primary ideals
of the polynomial ring K[X]=K[X,, ..., X,] where K =@/m. In fact, with each
ideal a in @ there are associated I homogeneous ideals I,(a) (»=0,1, ...,1-1)
in K{X], which enjoy the following properties':

(A) ac<h implies I, (a)< 7, (b);

(B) I,(0)=(0) for exactly e(x,, ..., z,) values of »;

C) Ija)sL{a) (@=0,1,..,1-1)

(D) If «71* ... 2/ €a, then X7* ... X7 € I,(a). Further, suppose that @ contains
a field k (the equicharacteristic case), and let @ €k[z,, ..., %,] N a. Denote by ¢
the element of k[xz, ..., x,] which is equal to the sum of the terms of lowest
degree in . Then I,(a) contains the form that is obtained from ¢ by re-
placing z; by X, (¢=1,2,...,7) and the coefficients in £ by their canonical
images in K.

These properties of the I,(a) will underlie our applications of the formula (1.2).

(v) Consider the four conditions on a local ring @ of dimension r which con-
sist in claiming the validity of the statements (A) and (B) below a) for at least
one system of parameters {z,,...,z,} in @, b) for all such systems.

(A e(xy, ...,2)=L(x, ..., z,);

B) @ s %) 1 Ta1= (2, ..., #n)  (O<M<r—1).

These four conditions (Aa, Ab, Ba, Bb) are equivalent, and if they are satisfied,
@ is called a Cohen-Macauley ring. (The concept of Cohen-Macauley ring was
introduced simultaneously in [4], [6], and [8]. We shall use it only to make the
statement of Theorem 1 as complete as possible.)

2. Generalization of the formula e (x1,..., )<L (x1,... %;)

Denote by @ a local ring of dimension r and let {z;, ...,z,} be a system of
parameters in . We shall be dealing with ideals in @ generated by power
products of z,, ..., 2, To get a suitable notation for these ideals we introduce
a ring.of formal polynomials, F[X]=F[X,, ..., X,], where F is a quite arbitrary
field. If I is a multihomogeneous ideal of F[X] (or F[X,, ..., X,_1]), then [
will denote the ideal in @ generated by those power products x7* ... 27" for
which X7 ... X/ €l

! The properties (C) and (D) are not stated explicitly in [2], but follow directly from the
definitions.
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CH. LECH, Note on multiplicities of ideals

Theorem 1. Let I be a multihomogeneous, (X, ..., X,)-primary ideal in F[X].
Then

LzL)e(x, ..., 2,).

Equality holds if and only if @ is a Cohen-Macauley ring.
For I=(X,, ..., X,) this theorem gives Samuel’s formula

e{xy, ...,z )< L(z,, ..., )
To prove the theorem we shall need a lemma.

Lemma 1. Let r>1. Then

e((xy, ..., z,)/(2,)) Ze(xy, ..., x,).

Equality holds if and only if x, ts not contained in any (r —1)-dimensional prime
ideal belonging to the zero ideal of Q.

Proof of Lemma 1. First assume r=1. Put z; =z. We have to prove that
L(z)>e(x), and that L{z)=e(x) if and only if the maximal ideal of @ does not
belong to the zero ideal. This is true according to Samuel’s formula cited above
and by the properties of Cohen-Macauley rings. — A simple direct proof is ob-
tained by considering the @-homomorphism

Q/ (@) > (@")/(="*)

induced by multiplication with ". This homomorphism is onto and has the
kernel ((0) : 2" + (x))/(z), which varies monotonously with n. In view of the de-
finition of e(x) one sees that L(x)>e(x), and that L(x)=e(x) if and only if

(0):2"<(z) (all n). The latter condition is easily seen to be equivalent with

0):z"< ﬂ1 (")=(0) (all n), which gives the result.

When r>1, we apply the associativity formula twice: first to the ring @ and
the parameters z,,...,%,, then to the ring Q/(z,) and the parameters in that
ring represented by =z, ...,7,_;. Both times we take m=r—1. This gives the
two formulae

ey, ..., x,) = Z e(((xy, ..., 2r_1) + P)/P) e((x,); ),

p

e((xy, ..., x,)/(x,)) = %’. e{((zy, ooy 1) + P')/?') L(.’t,. Qb')’

where p ranges over those minimal prime ideals of (z,) for which dim p=r—1
and rank p=1, and where b’ ranges over (all) those for which dim p’'=r—1.
The statement of the lemma follows by a comparison between the two formulae,
taking the previous, one-dimensional result into account.

Remark. By an iterated use of Lemma 1 one could prove the equivalence of
the four properties which caracterize Cohen-Macauley local rings (cf. Section 1, (v)).
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Proof of Theorem 1. Let us first settle one minor point. Suppose that I is a
multihomogeneous, (X,, ..., X,)-primary ideal in F(X), and that. X* is a power
product in I:(X, ..., X,) not belonging to I. Consider the @-homomorphism

Q/(xv AR xr) g (I: X(F))/I-

induced by multiplication with the power product z*> of z,, ..., , that corresponds
to X®. Since this homomorphism is onto, it follows that

L(I)— LI, X®)< L(z,, ..., ,).
Hence, by induction, LKLY L(x,, ..., z,).
If @ is a Cohen-Macauley ring, this means that
L <L)e(w, ..., z,).
For such a @ it therefore suffices to prove the reverse inequality.
Now we come to the main part of the proof. We shall use induction, in the first
place on r. When r=0, we have I=(0), and the contention is trivially true. If

7=1, then I=(XT7) (n>1), and the result follows from Lemma 1, applied with
r=1, Assume then that r>2 and that the theorem is true when 7 is replaced

by r—1.
We shall first .prove that the theorem is valid for all ideals I in F[X] of the
form (I', X7) where I' is a multihomogeneous, (X, ..., X,_1)-primary ideal in

FlX,, ..., X, 1]. Note that in this case
LI)=k L), (2.1)
for there is a F-isomorphism F[X,, ..., X, ,)/I' —~ (', X:7Y)/(I', X}) (1<v<k)
induced by multiplication with X;™. By our inductive hypothesis we can apply
the theorem to the ring @/(z,). In this way we get
L=L{(I', %) /()= L(I')e((xy, ..., 21, 25)/(2F)). (2.2)
By Lemma 1 and the formula (1.1), we have
e((@yy ooos Troy, ) /(X)) Z € (R, oovy Bra, 2F) =k e (Ty, ..., Ty). (2.3)
Putting together (2.2), (2.3), and (2.1), we obtain
Ly=LIye(x,, ..., z,).
It remains to show that we have equality here only if @ is a Cohen-Macauley
ring. By hypothesis we have equality in (2.2) only if Q/(x%) is a Cohen-Macauley
Ting, hence only if
Lz, ..., 21, 2F) =e((@y, ..., Tr-1, 2F)/(2F))-
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CH. LECH, Note on multiplicities of ideals
Thus equality holds in (2.2) and (2.3) only if
Lz, ..., 21, 2) =e(2y, ..., o1, 37),

ie., only if @ is a Cohen-Macauley ring. This completes the proof for ideals I
of the type (I', X7).

Now we use induction on the number k=min {x|X7€I}. If k=1, then I
has necessarily the form (I', X,), and we are in the case just treated. Suppose
that %>2 and that the theorem is true when 7 is replaced by an ideal con-
taining XF~'. Put

=({I:XFYnFPIX,, ..., X, 41)

Then I’ is a multihomogeneous, (X, ..., X,_;)-primary ideal in F[X,, ..., X, 4].
We have

L) =L (I, X5 + L(D), (2.4)
for there is a F-isomorphism F[X,, ..., X, 1]/I' = (I, Xf')/I induced by multi-
plication with X!, Taking into account that 7 and I’ are multihomogeneous
ideals, we further derive that

I=(L X770 ', X7).

Hence I, & Yn (I, «5).

If we write q,Nq, for the right hand side of this inclusion, then, as is seen

from the @-isomorphism (q;+q,)/q,—> q,/q, N gy, we have L(q, Ngy)=L(q,)+
+ L(qy) — L(q, + q;). Thus we deduce that

Lh=L, Y+ LI, ofy—~ L(I’, F7Y). (2.5)

We shall estimate separately the terms L (I, zf™!) and L(I', )~ L(I', ;") on
the right hand side of this inequality. By the inductive hypothesis,

LI, zf Y=L, X Yel(ay, ..., 7). (2.6)

According to what we have proved for ideals of the type (I, X¥), we have, for
every n,

é L,y —LI', ™"))y=LI',z})2n L) e(x,, ..., ,).

Since the terms L(F, 2)— L(I, zi%) cammot increase with v {ci. the furst purd
of the proof of Lemma 1), it follows that they all must be larger than or
equal to L(I')e(,, ..., 2,). In particular,
L2y~ L', 2E Y2 L(I')e(x,, ..., 7). (2.7)
Combining (2.5), (2.6, (2.7),- and (2.4), we obtain
LhyzLI)e(x,, ..., x,)-
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Here equality can hold only if equality holds in (2.8), hence, by the inductive
hypothesis, only if @ is a Cohen-Macauley ring. Thus the proof is complete.

Remark. If I, and I, are multlhomogeneous (X;, ..., X,)-primary ideals such
that I, <1, and LI, ) L(I,)=1, then it is not necessarily true that L(I,)—
- L, )>e(x1, ..., z,). Example: Let k be a field and k[[z,, #,]] a ring of formal
power series over k. Let @ be the subring of k[[zl, z,]] whose elements have
the form o+ §2av”zlz” (u €k). Take x =25, z,=25, I,=(X}, X3, I,=

viuz

= (X% X, X,, X3). Simple direct calculations show that e (v, z,)=4, L(I,)—
—L (I 2) =

Theorem 2. Let I,, I, I, ... be a sequence of multihomogeneous, (X, ..., X,)-
primary ideals in F[X]. Suppose that im L(I,)= co and that, for exery fized N,

I £y 0 6ohan
Tien €@y, ..., %) =nlirg —zg:;
By Theorem 1, LEI"; €@y ..., )
It therefore suffices to show that
im 2 <o, ), 28)

To do this we apply the formula (1.2) with q=1I,. (We must then make a strict
distinction between the symbols I, and I,( ).) Evidently

LI, )<L, (@=0,1,..1-1). (2.9)

By the same lexicographical argument as in [2], p. 305, one can further show
that, for those values of v for which I,(0)=:(0), we have

LI, (I)=0(L({I,)) for n— oco. (2.10)
Inserting (2.9) and (2.10) in (1.2) we get (2.8). This completes the proof.

TDurollary. Let o and B be analytically disjoint ideals in Q, and suppose thai
a-+b is primary to the maximal ideai of @. Then

g La™+b")
elatb)= n,%noo (@) (/LY
where 1, and 1, are the analytic spreads of o and b respectively?.

1 I owe to Dr. P. Roquette a suggestion that this result should be true, and this gave
the impulse to the results of the present section.
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.In the special case where a=(z,, ..., #,), D=(,11, ..., %143), the corollary is a
direct consequence of the theorem. By using reductions of ideals one can then
pass to the general case (cf. [7]).

3. Ideals of highest power products

Let @ be a local ring and let m=(u,, ...,u;) be its maximal ideal. Put
K=@/m and form the polynomial ring K[X]=K[X,, ..., X;]. With each ideal
a in Q@ we shall associate a multihomogeneous ideal I (a) in K[X]. This will
be done by first passing from a to its form ideal with respect to 1= (uy, ..., %)
and then applying a transformation (denoted by wu below) which transforms
every homogeneous ideal of K[X] into a multihomogeneous ideal.

To begin, let us recall the notion of form ideal. Let a be an ideal of @. If
#(X) is an element of the polynomial ring @[X]=@Q[X,, ..., X,], let ¢ (X) de-
note its image under the natural map Q[X]— K[X], and let ¢(u) be the ele-
ment in @ obtained from ¢(X) by substituting wu,, ..., us for X;, ..., X,. The set

{$(X)|$(X) form of Q[X], ¢ (u)€a}

is the set of forms in a homogeneous ideal of K[X]. This ideal is called the
form ideal of a with respect to m=(u,, ..., ;) and will be denoted by a. Let

b be another ideal of Q. It follows directly from the definitions of a and b that
a<h implies a<H, (3.1)
and that ab<ab. (3.2)

We shall derive one further property of the mapping a->a. Denote by ¥, the
K-module consisting of the forms of degree u in K[X]. There is a K-homomor-
phism of F, onto the canonical K-module (m*+a)/(m**'+a) which maps
X¢ ... X% (0,+ - +0,=pu) on the residue class represented by uf' ... u5e. It is
readily verified that the kernel of this homomorphism is F, N a. Thus

dimg (F,/F, 0 2) = dimg (m* + a)/(m*** + a)). (3.3)
Next we introduce a preliminary transformation ¢. Extend the field K by
adjunction of a set {@u}ix-12...s of independent indeterminates over K. Call

the extension L. Let ¢ be the automorphism of L[X] over L (i.e. leaving the
elements of L fixed) defined by.

8
X, —> JapX, (=12, ..53).
k=1

Now let % be a homogeneous ideal of K[X]. Order the power products
of X,,..,X, lexicographically by prescribing that X{' ... X{* is higher than
X% ... X% if the last of the differences

G1— Ty Og— Ty ooes 05— T
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which i¢ different from zero, is positive. Associate with each form in the ideal
@ (U L[X]) its highest power product. The set of power products which arise
in this way is the set of power products in a multihomogeneous ideal of K [X].
We denote this ideal by 4 (). The mapping A—>p (A) can then be split up as
follows:

A=A L X]>@ A LX]D)—>yp ).

By considering these mappings separately one can readily verify the following
three statements, where ¥ and B denote homogeneous ideals of K [X]:

A<B implies p A)<yp (B); (3.4)
vy Wy @) sy AB); (3.5)
dimpg (F,,/F, 0y ) = dimg (F,,/F, 0 ). (3.6)

Because of the preliminary transformation @, the multihomogeneous ideals in
K [X] which can be written on the form y (%) will have some special properties.
We record two of these in a lemma.

Lemma 2. Every ideal of the form y (N), where U denotes an arbitrary homo-
geneous ideal of K [X], has the properties (A) and (B) below.
(4) Assume p (N)==(0). Let k be the least integer such that

Yy (?1) nK [XI’ rees Xk]:': (0)'
Then, for some natural number n,
(Xpy oo, X)"Sp (WS (X -0 Xo).

In particular, (X, ..., X,) is the only. minimal prime ideal of y (). (For k=0
the ideal (X, ..., X,) should be interpreted as (1).)
(B) If
X . Xrep ),
then also
Xgrootom Xomer L X €p(A)  (1<m<s).

The proof of the two properties will be based on one and the same principle,
which in outline runs as follows. Suppose that f is a form of ¢ (X L[X]), and
let ¢’ be a transformation of the same type as @. Then, if ¢ and ¢’ are in a
natural sense independent of each other, the highest power product of ¢’ (f)
will belong to w ().

We now set forth the details of this principle. Let (by) be a non-singular
3% g-matrix with elements in an extension field M of L. Let (c;) be the product
matrix (ay) (by). With a slight change in the definition of @, denote by ¢, ¢,
and ¢” the automorphisms of M [X] over M defined by

38 F 8
X~ Zam X, X— me X, and X~ Zcm X,
k=1 k=l k=1
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respectively. Then ¢ is equal to the composition ¢’ Og. Denote by L' and L”
the extensions of K generated by the b, and the ¢y respectively.

Assume that L and L' are free over K, i.e. that the a;, are independent
indeterminates over L'. (This is the condition on ¢ and ¢’ which we have
alluded to above.) Then the ¢, are independent indeterminates over K. For,
since the @, are independent indeterminates over L', there is an endomorphism
(specialization) of L'[ay, a4y, -.-, @] over L' which maps (ay) on (ay) (by) L.
(Strictly speaking, the elements of the first matrix are mapped on the corre-
sponding elements of the second one.) This endomorphism then maps (cy)=
=(ay) (bx) on (ay). It follows that the c¢; are independent indeterminates over
L', hence, a fortiori, over K. As a consequence, there is an isomorphism of L”
onto L over K which maps (cy) on (ay), hence takes the L' [X]-restriction of
¢" into the L[X]-restriction of ¢.

Let now f be a form of ¢ (A L[X]), and let X” be the highest power pro-
duct of ¢'(f). We have ¢’ (f)€¢ o (UL[X])=¢" (AL[X]). Thus X© is the
highest power product of a form belonging to ¢ (A M [X])=¢" (AL" [X])- M [X].
It follows that X® is the highest power product of a form in ¢” (¥ L [X]),
hence, in view of the isomorphism of L” onto L, of a form in ¢ (A L[X]).
Thus X© €4 (A). This establishes our principle.

It remains to prove (A) and (B) by making suitable choices of f and ¢'.

Proof of (A). The case k=0 is trivial. Assume k>0, and let I be an integer
satisfying k<I<s. Since p )N K [X,, ..., X,]#(0), we have

¢ (A LX) N LX,, ..., Xi]*+(0).

Take f as a non-zero form in @ (A L{X])n L[X,, ... Xi], say of degree d. As
f¢ L, we have d>0. Define ¢’ by

-Xi'_>X1+bi Xl (i=}) 2’ ...,8),

where b,, ..., b; are independent indeterminates over L. Then X{ is the highest
power product of ¢’ (f). By varying ! we see that (X2, ..., X&) is contained in
w (A), hence also (X, ..., X,)%. This proves the left inclusion. The right inclu-
sion is an immediate consequence of the definition of k& and the fact that ()
is multihomogeneous.

Proof of (B). Choose f such that X% ... X% is the highest power product of f.
Define ¢’ by

X{“>X1+C{ Xm (l<i<m),
X—X; (m<i<s),

where ¢,, ..., ¢,, are independent indeterminates over L. Then X7+ * Xom+1.. X3

is the highest power product of ¢’ (f), which gives the result.
The proof of Lemma 2 is complete.
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We now compose the mappings a—a and A—y (A): if a is an ideal of the
local ring @, we define I (a)=1(a). The ideal I (a) is then a multihomogeneous
ideal of K[X] which has the properties (A) and (B) of Lemma 2. Further,
combining (3.1), (3.2), and (3.3) with (3.4), (3.5), and (3.6), we see that

‘a<h implies I (a)<1(b); (3.7)
I@I®)cI@h); (3.8)
dimy (F,/F, 0 I (a)) = dimg (" + a)/(m*** + a)). (3.9)

We shall derive some consequences of the formula (3.9), which expresses a
length-preserving property of the mapping a—1I(a). Denote by I the ideal
(X, ..., X,) in K[X]. From the canonical K-homomorphism I*/M**'—>F, we
get the induced isomorphism

(I + 1 (a)) /(IR + I () =M/ (R* 0 1 () + MYy~ F,/F. 0 I ().
Combining this isomorphism with (3.9), we get
dimg (R + I (0))/ (M + I (1)) = dimg (" + a) /(0" + ).

Thus, summing from 4=0 to y=n—1,

LM+ 1 (a))= L (m" +a). (3.10)

This means that
dim a=dim (I (a) K [X]m), (3.11)
e(m/a)=e(M/I (a)) (3.12)

(cf. the definition of multiplicity).

The right hand sides of (3.11) and (3.12) can be expressed in terms of the
special structure of I(a). Let (X414, ..., X,) be the minimal prime ideal of T (a)
(cf. Lemma 2). Then

dim (I (0) K [X]w) = dim (X g4, +.., Xo) K [XIm) =d', (3.13)
and, by the additivity formula,
e@/I@)=eM/(Xos1, ., X)) LUT(0); X sty ooy X)) =
=L (0); (Xas1s oo Xo). (3.14)

In particular, if (X441, ..., X;) is the minimal prime ideal of I(0), then by
(3.11)—(3.14),

dim Q=d, (3.15)
e (@ =L(I(0); (Xas1, aee, X)) (3.16)
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In (3.14) the ideal I can be replaced by (X1, ..., X;)(0<e¢<d’). Thus, for
a=(0),
e((Xer1, .., Xo)/L(0))=0¢(Q) (0<c<d). (3.17)

Finally, if q is a m-primary ideal, we get from (3.10), by taking # large,
L(I(q))=L(q) (3.18)

4. Applications of the preceding section

Theorem 3. Let q be a primary ideal in a local ring Q. Assume that
dim q +rank g =dim @. Put rank q=m. Then

@ .
L(q)<(m-)e (@).

Proof. 1) Let F[X]=F[X,, ..., X4] be a polynomial ring over a field F, and
let A be a muitihomogeneous, (X, ..., X,)-primary ideal of F[X]. Denote by
U, the ideal in F[X] generated by the n™ powers of the power products con-
tained in A. Then L (A,)=n"L(A). For. if ¥’ is a multihomogeneous ideal con-
taining A such that L(A')=L A)—1, and if A, is defined in analogy with U,
then A,/A, is F[X]-isomorphic to F[X]/(XT...., Xq). This gives L ()=
=LU,)+n? and thus, by induction, L (3,)=n?L(¥). Since A, A", we get
LA™ <nL (N). Hence

e(A) - lim (@n L@

LA~ m e <dl. 4.1)

Let us remark that, for d >1, we actually have strict inequality in (4.1).

2) Assume that dim q=0. Put dim Q@=d. We shall apply the mapping a—I (a}
of Section 3 (with respect to an arbitrary basis of the maximal ideal of @).
By (3.18), (3.7), and (3.8),

LM =L (@) <LI(q)"+1(0)).

Hence, applying the additivity formula and the formulae (3.15) and (3.16),
LI (q)"+110))

o Lgn _
ela)= ,lLl_r,x:on"/d! < ,ffi, nt/d! -

=e(I ()/TO)=e(T(q)+ (Xas1, ..rs X5)/(Xast,s ... X)) € (Q). 4.2)

Put T@Q) =T @)+ Xas1 oo X))/ (Xarr, -y Xo). (4.3)

In view of the canonical isomorphism K [X]/(X4.1. ..., Xo)>K [ Xy, ..., X4], we

can regard I (q) as a multihomogeneous, (X,, ..., X,;)-primary ideal of K [X,, ..., X4].
Thus, by (4.1), L
@ g (4.4)
LI (q))
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Combining (4.2), (4.3), and (4.4) with the obvious fact that

LI(q))<LI(q)=L(q),
we obtain

¢(0)
L(q)

3) Assume dim g=d'>0. Again we shall apply the mapping a—I(a) of Sec-
tion 3. Observe that, because dim g + rank ¢ =dim ¢, we have rank (Z (q)/1(0)) =
=rank q=m (cf. (3.11) and (3.13)).

Let p be the prime ideal belonging to g. By the additivity formula we have

e(m/qmy=em/P)L(@Gq%p) (n=1,2,3,..).

P(qn§p)=e(m/qn)_ 4.6
L(q;p) e(m/g) (4.6)

Similarly, in the ring K {X], with M= (X, ..., X,),

<(d!)e(Q)- (4.5)

Hence

L@ +1(0); (Xas, ..., X)) _e (/T (q)"+1(0)))
L(I1(q); Xa1, ..., X)) e (/1 (a))
Comparing the right hand sides of (4.6) and (4.7), and using (3.12), we see that

the expression (4.6) is less than or equal to the expression (4.7). Thus, multi-
plying {4.6) and (4.7) by (m!)/n™, and passing to the limit, we get

4.7)

e(@) _ e @/1(0); Xasy, ..., X)/T(0))
L) LUI@Q)/I1(0); (X, ..., X5)/1(0))

Applying (4.5) to the right hand side of this inequality, we obtain, by (3.17),

£ e (Q).

Lg)
This completes the proof of Theorem 3.

Corollary. If (@, @) is a flat couple of d-dimensional local rings, then
¢ (@) <d!e(Q).

Proof. Apply Theorem 3 with q=m,( where m, is the maximal ideal of @,
and observe that e (i, @) =e (Q,) L (n, Q) (cf. the appendix).

Theorem 4. If (Q,, Q) i3 a flat couple of two-dimensional local rings, then
e(Qo) <e(Q).

Proof. Let m, and m be the maximal ideals of @, and @ respectively. Put
Ky =Qy/my, K=Q/m. We shall apply the mapping a—>I (a) of Section 3 to the
present ring ¢. Since dim Q@=2, it follows from (8.15) that (X,, ..., X,) is the
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minimal prime ideal of I(0). Let us define I*(0) as the (Xj, ..., X;)-primary
component of I(0). Then, by (3.16),

e (@)=L (I*(0)). (4.8)

Further, I* (0) can be generated by power products of X,, ..., X;, and L (I* (0))
is equal to the number of such power products which are not contained in
I* {0) (cf. Section 1, (i), and e.g. [5], 4.11).

Define b as the least integer for which

Xbel(m,Q). (4.9)

It then follows from (B) of Lemma 2 that there are no power products of the
form Xj X3 " (0<vw<b-1) in I(m,Q). Thus, putting

g =1, @+m’}, gy=m,Q+m’,

we get from (3.9),
dimg (9,/q,) >b. (4.10)

(In view of this inequality the number b may be looked upon as a lower
estimate of some kind of ‘“breadth” of the ideal m,@.)
We shall estimate in two ways the number

dimg (Mg q,/m5 q5)

for large values of n. (The mgq, (=1, 2) denote ideals of @.)
By (3.18), we have

dimg (m§ q,/mG q,) = dimg (I (MG q,)/1 (M5 q5)),

and we may compute the right hand side of this equality, that is, count the
number of power products XP' ... X3 which belong to I (mggq,) but not to
I{mg qy). Since m (m§ q,) Smp g,, we have, by (3.8),

I(m)I(mg q,)<I(ms aqy),
i'e' (Xl; [RRF} Xs) I (mg ql)gl (mg qz)

This implies that there are no two power products belonging to I (mjg,) but
not to I (m§q,) which differ in merely one of the exponents. These power pro-
ducts are then characterized by their associated (s—1)-tuples (g, ..., 05). Thus,
to get an upper estimate of dimg(m§ q,/mg q,), we may compute the number
of elements in the set S of (s—1)-tuples (oy, ..., ;) which have the property
that, for some g,, X§'... X does not belong to I (m;*'Q) < I (mgqy).

In doing so we shall distinguish between three possibilities for (o3, ..., o).

(i) X3 ...X2€I(0). Since I(0)SI(mi*'Q), it follows that (o, ..., ;) does
not belong to S for any o,.
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(i) X§...XPel*(0), X3...X%¢I(0). By (A) of Lemma 2 there are only
finitely many (o3, ..., 05) of this kind. For each of these there is some pair
(o, B) such that X% X§ X% ... X3*€1I(0). Then, by (B) of Lemma 2, X§*/ X§ ...
... X2 €1(0), so that if (g,, ..., 0,) €S, then oy<a+p.

(i) X§...X3¢I*(0). By (4.8), this case arises for e(Q) different values of
(03 -.., 65). Since, by virtue of (4.9) and (3.8), Xerth e 1 (m2*1Q), there are,
for each such value of (o3, ..., 6,), at most b (n+ 1) (s — 1)-tuples (g,, ..., 05) in S.

Putting together, we get

dimg (g q,/mg g,) <e (Q) bn+ O (1). (4.11)

On the other hand, since (Q,, @) is a flat couple, the module M =m§ @/m;*" Q
is a free (Q/m,@)-module with a basis of dimg, (m§/mg*") elements (cf. the
appendix). Hence

dimg (MG G,/ MG qz) = dimg (9, M/q, M)=dimg, (m(’)l/mgﬂ) -dimg (ql/qz)-

Since dim @,=2,
dim g, (mg/mg ) =e (@) n+ O (1).

Thus, on account of (4.10),
dimy (mg q,/mG qz) =€ (@) b+ O (1). (4.12)
A comparison of (4.11) and (4.12) gives

e(@)<e(@),

which was to be proved.

5. Flat couples (Q,, Q) with special conditions on Q/m, Q

Let Q be a local ring, m its maximal ideal, and q a m-primary ideal. Suppose
that there is a ring isomorphism

Q/q—>K Xy, ..., Xs1/(fs s fo)s (5.1)

where K is a field, K[X, ..., X,] a polynomial ring over K, and (f;, ..., fs) @
(X ..., Xo)-primary ideal in K[X,, ..., X,). In addition, suppose that @ 1is
equicharacteristic. Then

e(q)< L(q)e(m).

We shall outline a proof of this statement. For s=0 we have qg=m, and the
assertion is trivially true. Thus we can assume that s>0. We shall subject the
triple {Q,n,q} to a number of successive changes, which will not. affect the
values of e(m), L(q), and e(q), nor the assumptions on @/q. Before we list
these changes it will be convenient to introduce the homomorphism
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6 : Q_>K [X17 (RS ] Xs]/(fl’ -'-:f.s:),

defined as the composition of the natural homomorphism @—Q/q and the iso-
morphism (5.1).

(i) Replace @ by @ =Q [z, ---, ZJm.z,....,zy Where 2z, ..., 2, are indeterminates
over Q. Replace m by m’'=(nt, 2, ...,2,)Q and q by ¢ =(q, 2, ..., 2;)@. Then
Q' /9'~Q/q. The ideals q@ and (2, ..., z) @ are analytically disjoint, whence,
by [2], Theorem 3,

e(@)=e(q/(z, --r 2) Q) € ((21, .-, 2) @) = (q)-

In a similar way we get e (m’)=e(m).

After this change we have dim @>s.

(i) Replace @ by Q' =@ [zlmq; where z is an indeterminate over ¢. Replace
m and q by m@’ and q Q' respectively. Concerning the equations e (m Q') =e (i)
etc., cf. [5], 4.11. The ring @/q will undergo an alteration corresponding to a
replacement of K by K (z) in (5.1). We achieve that @/m is necessarily infinite.

(ili) Our next object is to achieve that dim @ =s and that m has a reduction
{x), ..., z) such that 0 (z;)=X,(:=1,2, ...,9). Put dim @=¢. Note that, by (i),
t=s. Put g=(q, ..., ¢n), and let z,, ..., x; be elements of @ such that 0 (z,)=
=X,(¢t=1,2,...,5). Then m={(q,, ..., ¢ns %y, -.., ¥5). Consider the ideal generated
by the ¢ elements

ale1+"'+a/vmqm+ble1+"'+bvaxs (‘V=].,2,...,t) (5‘2)

where the a,, and the b,. belong to Q. This ideal will be a reduction of m if
and only if the residue classes of the g,, and b,, modulo m do not belong to
some proper algebraic set defined over @/m ([7], Sections 5 and 6). Since, by
(i), @/m is an infinite field, we can choose a system {a,,, b,.} satisfying this
condition and having the further property that the determinant [bul,.-12....s
is a unit in . Thus, replacing the elements (5.2) by suitable linear combina-
tions, we see that there is a reduction of m generated by ¢ elements of the form

07191+"‘+Cpmqm+x, ('V=1,2,...,8),
cvlql+"'+cvmqm ('V=v9+1, ...,t).

We conclude that t elements of this form will generate a reduction of nt when-
ever the residue classes of the ¢,, modulo m are outside some proper algebraic
set. It follows that the c,, can be so determined that, if a denotes the ideal
generated by the t—s elements

Caiqit -+ CmQm wv=s+1, ..., 1),
then e (m/a)=e(m), e (q/a)=e(q) (cf. Lemma 1; note that $>0). Thus we can
replace @, m, and q by Q/a, m/a, and q/a. After this change dim @=s, and
m has a reduction generated by s elements which are mapped on X, ..., X,
by 0, namely the residue classes modulo a of the former elements

Cr141+"‘+cmqm+x.. (’V=1,2,...,8).
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(iv) Replace @ by its completion Q'; replace m and g by m@' and q@’
respectively. After this change @ contains a field k such that. 6 (k)=K. For,
by Geddes’s method ([1], esp. Lemma 4, p. 338), a coefficient field of @/q can

be lifted successively to a coefficient field of Q/q% Q/q%, ..., @/9%, ..., Q.

@ now has the dimension s and contains a field % such that 6 (k)= K. There
is a reduction (%, ..., ;) of m such that 6 (x)=X,(:=1,2,...,s).

Let ¢y, ..., ¢; be the elements in k[z,, ..., z,] obtained from f,, ..., f; by re-
placing X; by #; (¢=1,2, ..., 5) and the coefficients in K by their inverse images
in k under 6. Then the ideal (g, ...,p;) in @ is contained in q. We shall
estimate the length of its n*™ power, (g, ..., )", by applying the formula (1.2)
with respect to the parameters x,, ..., ;. In view of the length-preserving pro-
perties of form ideals we readily see that

L(L (@1 s @) W< L((fy, ..., f)")  (»=0,1, ... 1-1). (5.3)
Further, if m is an integer such that
(Xl? (] Xs)mg (/1’ eey fs)y
then Xy 0 X™ ST (@, - @) (r=1,2,3,...).

(Strictly speaking these two inclusions refer to different rings.) By means of
an argument in [2] (lower half of p. 305) it follows that, for large values of n,

L(L (g - o)) =0 (w') if I, (0)=(0). (54)

Inserting the estimates (5.3) and (5.4) in (1.2), and observing that, e.g. by
Theorem 1,

L{(fy -ees f) = (”:S)L O}

we get L((@y; - @s)")=(n°/8Y) L(g) e (x4, ..., %) + 0 ().
Hence, since L(q") <L ((¢y, ..., @s)") and e (xy, ..., z,) =e (m),
e@=tim 2 < p e (m),

which was to be proved.
As a corollary we obtain:

Let (Qy, @) be a flat couple of local rings with maximal ideals (my, m). Suppose
that Q/m,Q is isomorphic to a ring

K[XP AR Xs]/(fl: “eey /s);

where K is a field, K[X,, ..., X,] a polynomial ring over K, and (f,, ..., fs) a
(Xy, ooy Xo)-primary ideal. In addition, suppose that Q, and @ are equicharac-
teristic. Then

e (Qo)<e (@)
For the proof, cf. the proof of the corollary of Theorem 3.
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Next we consider a type of residue class rings @/q for which the factor d!
in Theorem 3 cannot be replaced by any smaller number. We shall prove the
following statement:

Let (Qy, Q) be a flat couple of local rings with maximal ideals (m,, m). Sup-
pose that there is a ring isomorphism

Q/myQ—KI[X,, ..., X)Xy, ..., X", (5.5)

where K is a field and K [X,, ..., X,] a polynomial ring over K. Then

¢ (@)= 7 e (@)

(M, @)

If s=0, then m=1m,Q, and the assertion is trivially true. Thus we can as-
sume that s>0. We shall prove that

m"=mym"’, (5.6)
which means that m,Q is a reduction of m (cf. [7]). This implies that
e(m)=e (m,Q)=e (Mmy) L (M, Q)

(ef. the appendix), and thus gives the result.

Both sides of (5.6) contain the ideal mg . By passing, if necessary, from
(@, @) to (Q,/my, @/my' Q) we can assume that mg =(0) (cf. the appendix).
Then @, and @ are zero-dimensional.

Let x,(t€ES) be elements in @ representing a basis of @/m over @,/m, Let
7, ..., %, be representatives in @ of those elements in @/m, @ which correspond
to X,, ..., X, under the isomorphism (5.5). If o=(gy, ..., 0,) is a sequence of
s non-negative integers, we shall write 2° for 2f* ... aJs. If o=(0y, ..., 05) is an
arbitrary sequence of s integers, we put |¢|=o0,+ -+ 0, and write ¢>0 if
0,20 (1=1,2, ...,s); we define o+7 as (6, +7y, ..., 0s+7Ts) if T=(19, ..., 7).
When we use the symbol z” it will always be understood that o=0.

The elements »,2" (€S, |7|<m) represent a basis of @/m,@ over Q,/m,. For,
in view of (5.5),

QE Z‘Qoxt"}_(xl, cery xs)Q+m0Q,

where > @, %, stands for the @,-submodule of @ generated by the »x,. Iterating

this inclusion and observing that (z,, ..., )" @S m,Q, we get
QS 2 Quua+m,Q.
|1|‘<m

On the other hand, if there were a relation

Z @, %2 €My Q (@ €Qy)

3
|ef<m
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with a,,=0 for all but a finite number of indices (¢, ) and with at least one
a,.¢ny,, one could assume (after a possible multiplication with some %) that
the range of 7 were just |t|=m—1, and readily get a contradiction to the
isomorphism (5.5).

As is shown in the appendix, it follows that the elements x, 2" (1€S, |7|<m)
also form a basis of @ over (), (because these rings are zero-dimensional). Con-
sequently, denoting by M the @,-submodule of ¢ generated by the s, there
are for each y€Q unique coefficients a (y; 1) €M (>0, |z <m) such that

y=l‘gma(y; 7) 2. (5.7}

We define a(y; t) as 0(€M) when 730 or |7|>m. Further, if a, b€ M and
a—b€my M, we shall write a=b(m{M) (»=0,1, 2, ...).
Denote by a the ideal (z;, ..., 2,) in Q. Then m=u,@+a. To prove (5.6)
it suffices to show that
m-1
ams > mgt el
»=0

To do this we introduce an integralvalued, positive, non-increasing function ¢ (v),
defined for »=0, 1, ..., m—1, which we assume to have the property that

m-1

a"s > mE® e (5.8}
y=0

We shall show quite generaily how this function can be improved upon. Our
result will make it possible to pass from ¢ (»)=1 to ¢ (»)=m~—vp. This will
complete our proof, for, in view of the fact that a™ < m,@=1n1, a% it is evident
that the function @ (v)=1 satisfies all our assumptions.

First we prove that, for £=0,1,2, ...; 0<|z|<m—1,

yEmEa™ implies a (y; 7) €EMGI™P* M. (5.9)

This is true for k>m, since then y=0. We proceed by induction on k. As-
sume that O0<k<m, and that (5.9) has been proved for all larger values of
the inductive variable. From (5.8) and the fact that every element in @ can
be written on the form (5.7), it follows that y can be written as a sum of
terms of the form aa”z™ where |7'|<m, |7 |<m, and a€m§IP** M. Tt sui-
fices to prove the conclusion of (5.9) for each such term. When |7/ |+ |7 | <m,
we get the result directly from the fact that ¢ (|v'|+|7”"[)<¢({7’]). When
|7 |+{7"|>m, then, since ¢ (|t'[)>0, we have az”a” €mf*'qa™ and the re-
sult follows by the inductive hypothesis.

For i=1, 2, ..., s, let ¢ denote the sequence (0, ..., 1, ..., 0) whose i** ele-
ment is 1 and whose remaining elements are 0. We shall prove that, if

o|=m, 620, 6+8—6>0, 0<|r]|<m—-2,
then a@; )=a@ T rte)=a @@t THe—g)  (mEETO A,
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The left and the right congruence are quite analogous. Thus it suffices to
prove the left one. If tv+¢3#0, then 730, and the result follows from the
fact that we have defined a (y; 7) as 0 when 730. Assume then that v+¢,>0.
Expressing #° on the form (5.7) and multiplying by x;, we get

rre=>a (1% 7) g +e.
T

By (5.9) and the fact that the function ¢ (v) is positive, the coefficients a (z”; 1)
that occur here, belong to m, M. Thus the terms with |7|=m —1 belong to n,a™.
The result therefore follows from (5.9).

By repeated application of the congruence

a@;7)=a @ty T4 e —g) (ML)
we see that, if
lo|=|o'|=m, 620, 6'>0, 0<|t|<m—2,
then a@’ 1)=a (a:"'; r+d —a) (mg(mﬂ)uM).

Since T—¢* 0, it is always possible to choose ¢’ such that v+ o' —0*0. Hence,
for |g|=m, 0<|7|<m -2,

a(z® 1)=0 (m§dTdiig),

In view of (5.7) and the fact that a=(z,, ..., %;), this means that the func-
tion y (v) defined as @ (y+1)+1 for »=0,1, ..., m—2 and as ¢ (m—1) for
v=m—1 will have all the properties which we have assumed for ¢ (v). If
@ ()= min (m—v, k), then y (»)=min (m—v, k+1) (1<k<m—1). Thus we can
pass from @ (»)=1= min (m—w, 1) to ¢ (»)=m—»= min (m—», m). This com-
pletes our proof.

The results of this section, together with Theorem 4, strongly suggest that,
for d>1, the factor d! in the Corollary of Theorem 3 could be replaced by a
smaller number. I hazard the conjecture that this factor can actually be re-
placed by 1, ie. that

e (Qo)<e(Q)
for flat couples (@, @) of local rings of the same dimension. (This would imply

that e(Q,)<e(Q) for all flat couples (@, @) of .local rings, whether of the
same dimension or not.)
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APPENDIX

Let E be a commutative ring with unity element, and let M be a unitary
R-module. We have the following definition by Serre:

M is called R-flat (or flat) if the functor
T:T(E)y=E@,M
defined on the categary of unitary R-modules, is exact.

If M is flat, it satisfies in particular the condition that, for every ideal a
of R, the sequence

0>a@x MR, M

is exact. Using the functor Tor, Serre shows that this condition is also suf-
ficient ([10], p. 35). We shall derive another criterion, namely:

M is flat if and only if (a:a) M=aM:« for every ideal a and every element
o in R.

Proof. 1) Suppose that (a:a)M =a M:« for all a, x. We have to show that
for any fixed a the sequence 0—>a®p,M-—>R®; M is exact. In other words, if

7

&, ..., &, are elements of a and y,, ..., y, elements of M such that > «,y,=0,
y=1

then we must show that > «,®y,=0 in a®z M. This will be done by induc-
r=1

tion on r. Assume that r>2 and that the assertion is true for all smaller values
of the inductive variable. Since  «,y,=0, we have a, yr€(oty, ..o, ro1) M.
v=1
Hence, by our assumption, y, €((«y, ..., ar_1):e;) M. Let B, ..., B; be elements
. 38

of (ay, ..., r_1):0, and 'yi, . y; elements of M such that y,= > ﬁ,‘y,',. Then
p=1

8

8
o4y, = > o ® B, y,i= > o, Bu®@yu. Since «, B,€(;, ..., %r-1), this means that
pn=1 p=1 -
r-1 . T

we can write «,®y, on the form 3 «,®y, with p,’€M. Then Y «,®y,=
y=1 y=1

r-1
=2 8 (p,+7). As this relation in a®zM obviously implies the relation
r=1
T r-1
O0=2ay=2 a(y.+y) in ROzM, it follows by the inductive hypothesis
v=1, r=1

r

that > «,®y,=0. Thus we have reduced the proof to the case r=1. In this

v=1

case we can proceed in the same way as above, interpreting (x;, ..., ®r_1) as
s
the zero ideal. We get «,®y;= 3 o, ,®y, with «,8,=0 (u=1, 2, ..., 9), ie.

u=1

o, ®y,; =0, which was to be proved.
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2) Suppose that M is flat, and let us show that (a:ax)M =aM :«. We shall
need two auxiliary statements.

(i) Suppose that E and F are two unitary R-modules and that F<E. By
applying the functor 7' defined above to the exact sequence

0—F—>E—~E/F—0,
we obtain a canonical isomorphism
(E/F) @ M~EQy M/For M.
(ii) Similarly, applying 7 to the sequence
0—a—R,
we obtain a canonical isomorphism
aQyM~alM.

Now, let a be an arbitrary ideal and « an arbitrary element in E. Consider
the exact sequence

(a: oc)/a—>R/ai>R/a,

where the first map is induced by inclusion and the second by multiplication
with «. Applying T to this sequence and taking the above canonical isomor-
phisms into account, we get a sequence

(@: ) M/a M—~M/a M~ M/a M,
whose exactness implies that
(@) M/aM=aM:a/aM,
Le. (a:a)M=aM:«,

which was to be proved.

The relation (a:o) M =a M :a is well known from the special situation where
R is a local ring and M its completion (cf. [9], p. 9; cf. also [10], Prop. 27,
P- 39). Moreover, thers is a result by Samuel-Nagata to the effect that, if the
condition (a:«)M=a M :« is satisfied for all a and « in R, then

@anp)M=aMndbM

for all ideals a and b of R. (The result is formulated for the special situation
mentioned above, but the proof extends to the general case. See [3].)

Flat couples (of rings) can be defined as follows (Serre [10], Def. 4 and
Prop. 22, p. 36):

Let R be a commutative ring and R, a subring of R. Assume that B and R,
have a common wunity element. The couple (Ry, R) is colled flat if B is R-flat
and if, for every ideal a, of R,, we have a, BN By=a,.
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It suffices to require that oy BN R,=aq, for all maximal ideals of R,. For
suppose that a, is an ideal and &, an element of R, such that a«,€a, R N R,,
% §0ay. Then 1€0yR:ay=(0y: ) B. Thus, if m, is a mdximal ideal containing
Oy 09, We get My RN By=R,+m,.

We now record those facts about flatness that are used in the present note.

Let the module M be R-flat. Suppose that a is an ideal and S a multipli-
catively closed set in B. Then M/a M is (R/a)-flat, and My is R-flat (cf. [10],
or apply the criterion a M :a=(a:a)M).

Let (@, @) be a flat couple of local rings with maximal ideals (m,, m). This
means that @ is Q,-flat and that m,Q<m. It follows that, if q, is a proper
ideal of @, and if p is a prime ideal of @ containing M, then the couples
(Qo/ 09, @/, Q) and (Q,, @) are flat (cf. the preceding paragraph).

f a, is an ideal of @, then a,Q/a,1m,Q is a free (Q/m,@)-module, and if
%y, .., 0 form a minimal basis of a,, they represent a basis of a,Q/a, 1, @Q
over @Q/m, Q. For suppose that Y1r .- » Yn are elements of @ such that

Y1t oy =0.
Then Ya€(oty, ooy A1) @ro, = ((0tg, ooy Rn1)ioty) QS M, Q)

and similarly y,, ..., Yn-1€My Q. This gives the result.
Suppose that 1, @ is m-primary. Since mp Q/nto™! @ is a free (Q/m, @)-module
with a basis of L (my™!)— L () elements, we have

L™ Q) — L (mg @)= (L (m5™) — L (m§)) L (m, Q),
hence Lmg@Q)=L(mp) L(myQ) (v=1,2,3, ..).
It follows that

dim @,= dim Q
e (m, Q) =e () L (11, Q)

(cf. the definition of multiplicity).

If my @ is not m-primary, it has a minimal prime ideal p=m. Since (Q,, Qy)
is flat and since m,Qy is a (P Qy)-primary ideal, we deduce that dim @,= dim @y,
hence that dim @,< dim Q. Thus it is equivalent to say that mt, ¢ is n-primary
and that @, and @ have the same dimension.

Assume that @, and @ are zero-dimensional. Then @ is a free @,-module,
and if w,(¢€S8) are representatives in @ of a basis of @/m,@Q over Q,/ni,, then
the w, form a basis of @ over @,. To see this, we first observe that

QE‘ZQ0w5+m0Qa

where 2 Q,w, denotes the @,-submodule of @ generated by the o, Iterating

1]
this inclusion, we obtain

Q<S> Quu,+myQ (»=1,2,3, ...).
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Because mj=(0) for » sufficiently large, this means that Q<> @, w,. It remains

to show that the w, are independent. Assume that there is a relation
0w, + oo 0, =0 *)

with o, €Q,, ®,€{w,|t€S}. Let «,, ..., a, be a minimal basis of the ideal
(etys --- 5 o) in @y. Then there are relations

T
o= Zlﬁv.,,ac,, (v=r+1,...,n)
P

with B, ,€@,. Inserting these in (*), we get
o (w1+13r+1.1wr+1+ +ﬂn.lwn)+ sty (@t ) =0
Hence o+ Brin1rrF o A P10, € (&g, -o., o) toy) QEM @,

which is a contradiction, as the w, represent a basis of @/m,Q over Q,/m,.
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