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w 1. Introduction 

The main objective of this paper is to establish the structure theorem in w 5. 
If K and M are subsets of a linear space we let K + M denote the set of all sums 

k +m,  where kEK and mEM. If  K consists of only one point k, we write k + M  
instead of {k} + M. This operation of addition is obviously commutative and associa- 
tive. Thus a family of subsets forms a commutative semigroup under addition if it 
is closed under this 6peration. Such a semigroup is called a one-parameter semigroup 
if there exists a one-to-one application: 6-->A (r of the set of positive real numbers 
onto the semigroup, satisfying: 

A ((31 -~ (32) = A (~1) "~- A (62)" 

In  his paper (2) Gleason introduced the concept of a one-parameter semigroup of 
subsets of an arbitrary toplogical group. In  my thesis (3, henceforth referred to as 
CN) I obtained results concerning the structure of such semigroups in Lie groups. 
In particular, it follows from results in CN that in a finite-dimensional linear space 
every one-parameter semigroup A (d) of closed sets which come arbitrarily close to 
the origin as (3-->0 is of the form A (~) = (3.M where M is a convex, compact set and 
6M denotes the set of all ~m with m EM. This is of course a consequence of the much 
more general results in w 5 below. 

I t  should be observed that the definition of one-parameter semigroups given above 
is neither equivalent to the one in CN nor to Gleason's although there are no very 
essential differences. 

We remark that: 

1 ~ In  CN a one-parameter semigroup is the mapping d-->A(5), and not a family of 
sets. Thus in CN A (~) could be constant which is not possible with the present 
definition. (We require 5-->A ((~) to be one-to-one.) 
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2 =' I n  CN the  mapp ing  is defined for d ~ 0 and not  only for / i  > 0. 

3 ~ I n  CN the  sets A (8) are assumed to be closed for all small  8. 

4 ~ I n  CN the mapp ing  is assumed to be cont inuous with respect  to  Hausdorf f ' s  
topo logy  for sets (see below, s e c t i o n  3.1). 

If  the  semigroup is pa rame t r i zed  in two ways  with  pa rame te r s  5 and  e, t hen  theIe  
exists  a one-to-one mapping ,  [, of the  set of posi t ive  reals onto i tself  sat isfying 

e = [(b) and ](6: + d2) = ](81) + [(~2)- 

I t  is well known that, the  only posi t ive solutions of this  funct ional  equat ion  are of the  
form /(5) - const .  8. Therefore every possible r epa ramet r i za t ion  of a given semigroup 
consists s imply  in a change of uni t  for the  parameter .  

w 2. Remarks  and examples  

2.1, We denote  by  0 M  the set of all 8m where m E M .  
Example 1. If  M is convex i t  is easy  to  prove  t h a t  (81 + 82) M = 81M + 82 M- Thus,  

for a convex set  M ,  which is no t  a cone, the  sets  8 M cons t i tu te  a one-paramete r  semi- 
group with  5 as parameter .  (We mus t  require t ha t  M no t  be a cone in order  to  guaran-  
tee t h a t  the  mapp ing  8---~8M be one-to-one.) 

Conversely,  suppose t ha t  M is a set such t h a t  the  sets 8 M  form a one-paramete r  
semigroup with 5 as parameter .  Then M is conve2. Namely ,  let  x and  y be e lements  of 
M. Then 2 x E 2 M  and (1 - ) , ) y C ( 1  - ) , ) M  for 0 <  2 <  1. I t  follows t h a t  ),x + (1 - X ) y C "  
E),M + (1 - 2 ) M  = M .  

2.2. De/inition: A one-parameter semigroup A (8) is called linear i / there  is a set M 
such that 

A (8) = d M  
for all 6 > O. 

We have  seen t h a t  a l inear  semigroup consists of convex sets. The converse is not  
t rue,  no t  even in the  case of a one-dimensional  space as the  nex t  example  proves.  

Example  2. Let  [ (d) be a rea lva lued  funct ion of the  ~ posi t ive  real  var iable  8 and  
sat isfying the  funct ional  equa t ion  

/ (81 + 52) = ] (61) -~ / (82). 

Pu t t i ng  A (d) = {[(8)} for each 8 we obta in  a one-paramete r  semigroup of poin ts  on 
the  real  line. I t  is known t h a t  under  a lmost  any  (even ve ry  mild) regular i ty  condi t ion 
the  funct ion /(5) m u s t  be of the  form const .8  and  consequent ly  A (8) l inear.  On the  
other  hand  there  also exist  pa thologica l  solut ions of the  equat ion.  Thus  a semigroup 
of poin ts  need no t  be linear. 

2.3. The resul t  in w 5 below shows t h a t  for one-paramete r  semigroups of compact  
sets  in a local ly convex space, the  two examples  given cover all possibili t ies.  We  shall  
see t h a t  if A (5) is such a semigroup,  i t  can be expressed in the  form A (8) = / (8) + 8- M,  
where [ (d) is a semigroup of poin ts  and  M a compac t  convex set. I f  the  compactness  
condi t ion is not  made  the  conclusion A (d) = [(8) + 8 M  wi th  convex M is no longer 
~s 
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Example 3. On the real line, let A (6) be the set of all rational numbers r with 

0 < r < 6 .  

Then the sets A (6) form a one-parameter  semigroup of non-convex sets. 
However,  in this example the closure, A (6), of each set in the semigroup is convex. 

Examples 5, 6 and 7 below show, among other things, t ha t  this is not  always the case. 

2.4. We shall also be somewhat  interested in finding conditions to ensure tha t  
A (~) or A (5) is linear. I f  A (6) is given and r (6) is a one-parameter  semigroup of points, 
then r + A (6) is a one-parameter  semigroup. Can r be chosen so tha t  r + 
+ A (5) is linear? Our next  example shows tha t  this need not. be possible even if the 

sets A (6) are convex. 
Example 4. Let  /(6) be a pathological function in example 2. I n  the xy-plane, 

consider the set A (6) of all points (x, y) with 0 < x < 6 together with the points (0, 0) 
and (5,/(6)). Then the sets A(6) form a non-linear, one-parameter  semigroup of 
convex sets such tha t  r + A (5) is not  linear for any choice of r 

2.5. The following s ta tement  is an application of Theorem 5.6 of CN (p. 133) to 
the case of a linear space: Let a t ranslat ion invariant  metric be given on a linear 
space and denote the closed sphere of radius 6 around the origin by S(d). A necessary 
and sufficient condition tha t  S (6) forms a one-parameter  semigroup is tha t  the metric 
be convex. (See CN p. 133.) A well known case when this occurs is when the metric 
is defined by  a norm. I t  can, however, occur also in other cases. 

Example 5. Consider for 0 < p ~< 1 the space L p of functions [(t) (with the usual 
1 

identifications) defined for 0 ~<t ~< 1 and such tha t  II/ll - f l / ( t )  l "dt < ~ '  ( O b s e r v e !  
0 

1 

Unusual notation. I f  p ~ > l  the norm is defined by ]]/IP =fl / ( t ) l  pdt. Our ]]/ll is 
0 

not u norm for p < 1 since it is not  homogeneous.) I f  t t / -  g II is taken to mean the 
distance between / and g this makes the space a complete metric space which is not 
locally convex for p < 1 but  locally bounded (see Tychonoff  4, or Bourbaki  1 p. 224 
ex 17). The triangle inequali ty follows from the e lementary inequali ty 

la+bl'<lal'+lbl" 
in which for p < 1 the sign of equali ty holds if and only if either a or b is zero. Thus the 
triangle inequality is strict unless the two functions involved are different from zero 
on disjoint sets in which ease equali ty holds. Now the triangle inequality: 

Iit +gll < II/ll + Ilglt 
is obviously equivalent to the following inequali ty for the spheres: 

We obtain equali ty if and only if to  any  h with II h II ~< 61 + 62 it is possible to find [ 
and g with / + g -- h, / ~< 6~ and II g II ~< 62. I t  is obviously sufficient to prove tha t  
g i v e n h  with I h l l=61+d~ ,  there exist / and g with [ + g = h  and 11/11=51 and 
II g II = 62. This is done in the following way. Let  2 be a number  such tha t  
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f lh(t)l= dt=81 
0 

1 

which exists since 0 < (~1 < 81 ~- 82 = f  I h l ' ~  
0 

Pu t  
h (t) for 

f (t) = 0 for 
0 < t < ~  
2~<t~<l 

f 0 for 0 ~ < t < 2  
g ( t ) =  

h(t) for 2-<<t~<l 

Since the sets where ] and g are different from zero are disjoint the result follows. 
Thus the spheres form a one-parameter semigroup and the metric is convex. Since 
the spheres are closed and it is known tha t  they are bounded, this is also an example 
tha t  a one-parameter semigroup of closed bounded sets need not consist o/convex sets. 

2.6. The spaces L v for p < l are not  locally convex and for p = 1 the semigroup of 
spheres in example 5 does in fact consist of convex sets. Thus we have not  yet  obtained 
an example of a pathological ( = consisting of non-convex sets) semigroup of closed 
bounded sets in a locally convex space. Example 6, however, shows tha t  such an 
example exists in L 1. 

Example 6. In  example 5 let p = 1 and pu t  A (8) = the set of those functions ] which 
satisfy 

1 
1 ~ j f , z t = 8  

o 

2 ~ f / >O  

3 ~ The values of ] are integers almost everywhere. 

Then I]/II = 8 so tha t  A (8) c S(8). Thus A (8) is bounded and it is obviously closed. 
Now let ]fiA (81) and gEA (82). Then f + g is clearly in A (81 + 82) which shows tha t  
A (81) + A (82) c A (81 + 82). The reversed inequality is obtained by  considering an 
element h in A (81 + 82) and applying the decomposition of example 5. This yields 
] e A  (81) and g e A  (82). 

Now A (8) is not  a semigroup of convex sets. We prove tha t  A (�89 is not  convex. 
Let  fl and/2  be defined as follows 

1 if O~x~<�89 
] l ( x ) =  0 if � 89  

] 2 ( x ) = { 0  if 0 < x < � 8 9  
1 if � 8 9  

Thus ]1 and ]2 are elements of A (�89 but  (fl + f2)/2 = �89 for all z and is therefore not  
integervalued almost everywhere and so it is not  an element of A (�89 
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2.7~ 

Example 7. Let A ((~) be the set of all integervalued functions in L 1 (0, 1) of norm ~< ~$. 
Then A ((~) is closed and bounded and A (�89 contains the functions ]1 and ]2 of example 
6, but it does not contain the function (]1 + [2)/2. Thus the function (]1 +/2)/2 has a po- 
sitive distance to the closed set A (�89 and therefore there is a positive number k so 
small that  A(�89 + kS (�89 is not convex. (S((~) denotes the sphere of radius c$ in the 
norm.) Hence the semigroup $1((~ ) = A  (~)+ kS((~) does not consist of convex sets. 
On the other hand all these sets are symmetric neighborhoods of the origin and 
again by Theorem 5.6 of CN they are the spheres around the origin in a translation 
invariant convex metric for L 1. This shows therefore that such spheres need not be 
convex even in a locally convex space. 

w 3. Auxi l iary  materia l  

3.1. Hausdor//'s topology /or sets. 

The following is a well known method to define a topology on the family, F, of all 
subsets of a linear space. Let U be a neighborhood of the origin and A a given set, 
the neighborhoods in F of which we want to define. Let U' (A) be the subset of F 
consisting of those sets B in the space for which the two inequalities hold: 

A c B + U  
B c A + U .  

If  U varies in the set of all neighborhoods of the origin, the corresponding sets U' (A) 
run through a fundamental system of neighborhoods of A in a topology for F. This 
will be called HawsdorH's topology. 

In general (.i.e. if the space has more than one point) Hausdorff's topology does not 
satisfy Hausdorff's separation axiom, T~, for it is clear that  if A is not closed the sets 
(or points in F) A and ~ are two different elements of all sets U'(A) or U'(~).  On 
the other hand, the restriction o] Hausdor[f s topology to the family of closed subsets of 
the linear space satisfies T 2 and so does the restriction to the open convex subsets. The 
first part of this proposition is standard and the second is an immediate consequence 
of the following theorem in the theory of convex sets: If A is open and convex then 
A = I n t ] .  

Although limits are not unique in Hausdorff's topology we can thus nevertheless 
pick at most one limit among the closed sets and if there exists an open convex limit 
it is also unique. 

3.2. The convex hull. 

We denote the convex hull of a set A by HA. The closed convex hull will be denoted 
by ]qA. In  this section we prove the formula: 

H ( A  + B) = H A  + H B  

which is important in the sequel and, rather surprisingly, does not seem to be ex- 
plicitly mentioned in the literature on convex sets. 

Although the formula follows rather easily from the barycentric representation 
of the points in the convex hull, we prefer to deduce it as a special case from the 
following consideration which is much to general for our immediate purpose but has 
also other applications. 
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By a hull operation we mean  an  operat ion,  T, which is def ined on a f ami ly  of subsets  
of a given space, takes  i ts  values  in the  same fami ly  and  which satisfies 

1 ~ T A r A  

2 ~ T2A = T A  

3 ~ A c B implies T A  c T B .  

If  we call any  set A sat is fying T A  = A a hull,  i t  is immedia t e  t h a t  for an  a r b i t r a r y  
set A the set T A  is the  in tersect ion of all hulls conta ining A. We r emark  also t h a t  if 
T is not  defined for all  subsets  of the  space, we can ex tend  i t  b y  defining T A  as the  
in tersect ion of all  hulls containing A if there  is such a hull  and  as the  ent i re  space 
otherwise.  Now suppose t h a t  the  space is a l inear  space and  t h a t  our hull  opera t ion  is 
translation invariant, t h a t  is 

Then we have 
4 ~ x + T A  = T ( x  + A)  for all x in the  space. 

T A  + T B ~  T ( A  + B) 

and equality holds if and only i f  the left member is a hull. 
Proof. Let  a E A .  Then b y  4 ~ and  3 ~ 

a + T B  = T (a + B) c T (A + B).  
I t  follows t h a t  

(1) A + T B c  T ( A  + B).  

Subs t i tu t ing  T A  for A we ob ta in  

T A  + T B c  T ( T A  + B)  
and by  use of (1) 

T A  + T B c  T T ( A  + B) = T ( A  + B),  

which proves the  f irst  pa r t  of the  proposi t ion.  
Now observe t h a t  from A c T A  and  B ~ T B  follows 

A + B c  T A  + T B .  

Thus T ( A  + B) c T ( T A  + T B ) c  T2(A + B ) = T ( A  + B) so t h a t  T ( T A  + T B ) =  
T (A + B). I n  th is  equa t ion  the  left  member  equals  T A  + T B  if and  only if this  
set is a hull, which proves the  second pa r t  of the  proposi t ion.  

As special cases we t ake  T = H and  ob ta in  the  formula  which we set  out  to  prove.  
Other  special izat ions are ob ta ined  b y  le t t ing  T A  denote  the  l inear  va r i e t y  spanned  
by  A or the  add i t ive  va r i e ty  genera ted  b y  A. I n  these  cases we have  T A  + T B  = 
T (A + B). An example  where equa l i ty  does not  a lways hold is furnished b y  choosing 

T to be the  opera t ion  of closure: T A  =.~.  Thus A + / ~ c A  + B and  equa l i ty  holds 
if and  only if A + / ~  is a closed set. I n  pa r t i cu la r  equa l i ty  holds if A or B has compact  
closure. 

3.3. The support function. 

Let  T be a l inear  system.  B y  T* we denote  the  algebraic  ad jo in t  of T, t h a t  is the  
l inear sys tem consist ing of all  l inear  funct ionals  on T. Le t  L b e s u c h  a funct ional  
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and  K a set in T. By L o K we denote the supremum of L on K. This supremum may 
of course assume the value + ~ ,  bu t  if K is non-empty  it  does not  assume the value 
- co. If  K and  M are two non-empty  sets we have 

3.31. L o ( K  + M) = L � 9  + L o M ,  

where in  the case when the value + ~ occurs the obvious conventions "oo + real = ~ "  
and  "c~ + ~ = cr should be made. If the set K is kept  fixed and  the funct ional  L 
varies in  T*  the mapping L - + L  o K is a (real- or + c~-valued) funct ion on T* 
which is called the support  funct ion SK of K. Formula  3.31 above shows tha t  

3.32. SK+M = S~ + S~. 

I t  is easy to set tha t  the support  funct ion is positively homogeneous: 

SK(~L) =2SK(L) if ~ 7> 0, 
and  subadditive: 

SK (L1 + L2) <- SKL1 + SKL2. 

I t  is therefore a convex function.  
For a one-point  set K the support  funct ion is a l inear and  everywhere finite- 

valued funct ion on T*, i.e. SK is an  element of T**. The mapping  of T into T** 
defined in  this way: a-->Z{a}; is called the canonical embedding of T in T**.  I n  the 
following considerations we shall assume tha t  T is embedded in T** in this way. 

If K c T is a t ransla te  of M c T,  say K ~ M ~- a, then  3.32 gives 

3.33. SK = SM + S{~} 

where the second term in the right member  is a l inear funct ional  on T*. Conversely, 
suppose we know that  SK = SM + (line,~r funct ional  on T*). Does it  follow tha t  K is 
a t ranslate  of M? The answer is yes if both  sets are convex and compact in a locally 
convex, Hausdorff  topology for T. I n  fact 

3.34. Let a locally convex, Hausdor// topology be given on T. Then there exists a 
projection P o / T * *  onto a subspace containing T such that i/ 

1 ~ K and M are compact, convex subsets o/ T and s E T**, 
2 ~ SK(L) = SM(L) +s(L)  /or those /unctionals L E T *  which are continuous on T, 

then K = M + Ps. 

Proo[. Any  linear funct ional  L on T has a na tura l  extension to T**, for given s E T**  
defined by  L (s) = s (L). We assume henceforth tha t  the elements of T* are extended 
in this way. 

Now we consider the weak topology on T** defined by tile set T" of functionals L 
which are cont inuous on T. This topology need not  be Hausdorff  bu t  the topology 
which i t  induces on the subset  T of T** is Hausdorff since i t  is the weakening of the 
original topology on T. Therefore K and  M are compact  also in  the new topology. 
The closure of the origin in T** is the intersection R of all nullspaces of functionals 
in T' .  

We define P in the following way. Let T 1 be a supplement  of T + R in  T**. 
Thus T** = T + R + T 1 and  this is a decomposition of T** in  a direct sum. We 
define P to be the projection on T + T 1. 
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T r :Now the  re la t ion SK = S M A7 8 says t h a t  for each L E : 

L o K  = L o M  + L(s) = L o ( M  + s ) .  

Thus any  closed halfspace in T** which contains one of the  sets K or M + s also 
contains the  other  set. This means  tha t  the  closed convex hulls of the  sets coincide. 
Since the  sets are convex i t  follows t ha t  

(1) K = M + s .  

Since R is the  closure of the  origin in T** the  set K" will contain  K + R. On the  
other  hand  this  set, being the  sum of a compact  set and  a closed set, is closed, so t h a t  
we have  K = K + R. The same argument  applies to  M. Subs t i tu t ing  in (1) we obta in  

(2) K + R = M  + R +s. 

We now use the  fact  t h a t  P is a l inear t ransformat ion  so t ha t  for any  two sets M 
and N the formula  P (M + N) = P (M) + P (N) is valid.  Apply ing  P to  bo th  members  
of (2) and  observing t h a t  P(K) = K, P(M) = M and P(R) := 0 we obta in  

K = M  +Ps 
which was to be proved.  

Inc identa l ly ,  i t  follows t ha t  Ps E T so t h a t  s E T + R. This shows t h a t  condit ion 2 ~ 
is a r a the r  s t rong res t r ic t ion on s. Fo r  in general,  of course, T + R is ve ry  far from 
being all of T**.  

w 4. One-parameter semigroups of convex sets 

4.1. We suppose in this  pa rag raph  t h a t  the sets A ((~) are convex and ]orm a one. 
parameter semigroup. Then/or arbitrary ~ > 0 and rational 5 > 0: 

A ( ~ )  = ~A (~). 

Proo/. We have  A ( A ) = A ( ~ ) + A ( ~ ) + . . - + A ( ~ ) ,  ( n t e r m s ) ,  which i s =  

= n A ( ~ )  since A ( ~ ) i s  convex. Thus A ( ~ )  =I-A(A)'n B y  a change of nota-  

t ion we have also A(m),)=ma(A).  Combining these two formulas  we ob ta in  

4.2. Example  2 (section 2.2) shows t ha t  the  above proposi t ion need not  be t rue  for 
all ~ > 0, i.e. a one-parameter  semigroup of convex sets need no t  be linear.  I /we  make 
the/ollowing topological assumptions, however,  the linearity /ollows almost  t r iv ia l ly .  

1. The convex sets A (5) are bounded and either all closed or all open. 
2. The mapping A is continuous. 

I t  is easy to see t ha t  for a bounded  set K the sets 5 K  v a r y  cont inuously wi th  8. 
(Not t rue  for all unbounded  sets. Counterexample see CN p. 106.) F r o m  4.1 we have 
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A (6) = 6A (1) for rational 5 > 0. 

Since both  members vary  continuously with 6 the result would follow if Hausdorff  
limits were unique. Now the result follows from proposit ion 3.1. Example 2 shows 
tha t  the assumption 1 alone does not  imply linearity. Example 4 shows tha t  neither 
does assumption 2. 

4.3. The following result is basic in the proof of the main theorem in w 5. 
Let A (5) be a one.parameter semigroup of compact convex sets in a Hausdor/f, locally 

convex linear space, and let a E A (1) be given. Then there exists a function f defined for 
all 6 > 0 taking (point) values in the space and satisfying 

1. f(6: + 62) =/(61) +/(62) 

2. /(6)~A(6) 

3. f(1) = a. 

Proof. Let  the space be T and its topological adjoint T' .  For  each 6 > 0 we denote 
by ~(6, L) the restriction to T'  of the support  function of A (6). Then ~0 is a realvalued 
function. From the semigroup proper ty  of A (5) it follows tha t  ~0 is additive as a func- 
t ion of 6 for each L. Since ~0 is a support  function it is subadditive as a function of L 
for each 6 > 0. 

Now let L 1 and L~ be two elements of T'. By the subaddit ivi ty in L of ~0 (6, L) we 
have 

~0 (6, i l )  + ~0 (5, L2) - ~ (6, L 1 § L2) ~ 0. 

The left member of this inequality is an additive real-valued function %0 (6) for 6 > 0. 
I t  is wellknown tha t  such a function can be non-negative only if ~p(6) = 6%o(1). Thus 
~0(6) -6%0(1) = 0 or in other words ~0(5, L) -6~0(1, L) is additive in L on T '  for each 
6 > 0. Moreover ~ (5, L) is positively homogenous in L. Thus we can state the pre- 
liminary result: For  6 > 0 and L E T' :  ~0 (6, L) = 6~0 (1, L) + ~ (6, L) where ~ (6, L) is a 
realvalued function with ;t(1, L) = 0, additive in 6 and linear in L. 

By  use of 3.34 we see tha t  there is a function g(6) taking values from T and such 
tha t  

A (6) = 6A (1) + g(6). 

Here g (6) is the element of T on which ~ (6,.) E T** is projected. Since the projection is 
linear and ~ is additive in 6 it follows tha t  g is additive and g (1) = 0. Now put  /(5) = 
=g(5)  + 6a. Then f is additive so tha t  the s ta tement  1 of the theorem is proved. 

The result 3 is immediate and 2 follows since a E A (1) implies 

/(6) = 6a § g(5) E6A (1) § g(6) = A (5). 

4.4. If  all the sets in a one-parameter semigroup contain the origin the semigroup 
is monotone in the sense tha t  61 < 62 implies A (61)c A (62). For  A (62)= A (61)+ 
+ A (6~ - 61) and since A (62 - 51) contains the origin A (52) c A (61). 

One-parameter semigroups of convex sets containing the origin are "a lmost"  
linear. The following proposition gives the  exact formulation. 

I f  B (6) is a one-parameter semigroup of convex sets containing the origin, there exist 
two convex sets K 1 and K 2 containing the origin and such that 6 K 1 ~ B(6) c 6 K 2. The 
set K 2 is obtained from K 1 by adjoining to K 1 the endpoints of all radii of K 1. 
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Remark. By a radius  of K 1 we mean,  of course, the  in tersect ion be tween K 1 and  a 
r a y  from the  origin. Such a radius  is e i ther  the  ent ire  ray,  the  origin or a segment ,  
one endpoin t  of which is the  origin and belongs to  K1, while the  o ther  endpoin t  m a y  
or m a y  no t  belong to K~. 

Proo/. B y  4.1 we have  for ra t iona l  r > 0 

B(r )  = rB(1) .  

Now let  K 1 be the  set ob ta ined  from B(1) b y  dele t ing from B(1) all po in t s  which are  
endpoin ts  of a rad ius  and  different  from the  origin. Le t  K 2 be ob ta ined  b y  adjo in ing  
these poin ts  to B (1). Thus 

r K  1 c B(r)  ~ r K  2. 

Since B (8) is monotone  i t  follows t h a t  for 8 a r b i t r a r y  

13 r K 1 c  B((~)c  N r K2. 
r<~ r>6 

I t  follows from the  proper t ies  of K 1 and K s tha~ 

(J r K1 = 8 K 1 

and f l  r K 2 = 8 K s 

which proves the  proposi t ion.  

4.5. By  combina t ion  of 4.3 and  4.4 i t  is possible to complement  t he  resul t  of the  
discussion in 2.2. 

I /  A (8) is a semigroup o/ compact, convex sets, in a locally convex, Hausdorf/,  linear 
space, it is o/ the /orm 

A(8) = / ( 8 )  + S K  

where K is a compact convex set and ] (6) is a one-parameter semigroup o/points .  
Proo/. Let  / be the  funct ion of propos i t ion  4.3, p u t  B (~) = A (8) - / (6) and  a p p l y  4.4. 

w 5. One-parameter semigroups of compact sets 

5.1. Theorem. I n  a locally convex space any one-parameter semigroup o/compact sets 
consists o/convex sets. 

Proo/. Let  the  semigroup be A (8). We  fix 0 and  consider  the  sets  

B , = 2 " A ( ~ . ) ,  n = O ,  1,2  

Then 
1 ~ B ,  is compact  

2 ~ B,,+I c B ,  

3 ~ H B ,  = H B  o 

1 ~ is obvious.  2 ~ follows f rom the  formula  2M c M + M. 3 ~ follows b y  induct ion  f rom 
3.2 in the  following way  
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5 = 2"H A (~;~ HB~= H (2"A ( :~  = 

Consider now the compact set B =  [')Bn. We observe first tha t  B is convex. 
n~0 

Let namely  x, yEB.  Then x, yCB~ for all n. I t  follows tha t  if n>~l  we have 
x -:- y 

x+--YcI - (B ,~+B,~)=B,~ .  T h u s - - 7 ) "  EB. Since B is close~l this implies t ha t  B 
2 2 z 

is convex. 
Next  we observe tha t  B,,-~ B in Hausdofff 's  topology for sets. Tha t  this follows 

from 1 ~ and  2 ~ is a s tandard  topological theorem. 
I t  follows tha t  HB~--~ HB,  for the operation H is a cont inuous operation in a loca!ly 

convex space. (We can also prove the result  directly in the following way. Let U 
be a convex neighborhood of the origin. We need the inequalit ies HB~ c- H B  + U 
for all sufficiently large n. Simply choose n so large t ha t  B~ ~ B + U. Then by 3.2 
we obta in  H B ~  H B  + HU. But  U = H U  since U is convex.) 

Combining this with 3 ~ above we obta in  H B  0 = / 1 B  = B since B is convex and 
closed. On the other hand  B 0 ~ B = H B  0 ~ B 0 so t ha t  equal i ty  holds everywhere 
and it  follows tha t  B o = A (5) is convex. The theorem is proved. 

5.2. Strneture Theorem: 

Any  one-parameter semig~vup A (5) o/compact  sets in a locally convex, Hausdor[], 
linear space is o/the/orm 

A (5) = I(5) + 5 K  

where ] (5) is a one-parameter semigroup o/points and K a compact convex set. 
Proo]. Theorem 5.1 and proposit ion 4.5. 
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