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Introduction 

Like o ther  branches  of ma thema t i c s  p robab i l i t y  theory  of t c - d a y  is becoming 
more general  and  abs t rac t ,  one t r ies  to  ex tend  the theo ry  as far  as possible 
and  th rough  this  process one hopes t h a t  t he  fundamen ta l  conceptual  s t ruc ture  
will become clearer.  The road  to such a deve lopmen t  was opened some 25 years  
ago th rough  Ko lmogorov ' s  ax iomat ic  approach  to  p robab i l i t y  theory  considered 
as measure  theory  in a general  reference space. This  made  is possible to  create  
a m a t h e m a t i c a l l y  sa t i s fac to ry  theo ry  for s to ,has t i c  processes choosing the  ref- 
erence space as an app rop r i a t e  funct ion space or as a labeling of such a space. 

More recen t ly  a t t en t ion  has been drawn to other  extensions of classical pro- 
bab i l i t y  theory .  In  the  work of Mourier,  Fo r t e t ,  and  others  the  reference space 
is chosen, no t  as the  real  line, the  p lane  or higher  d imensional  Eucl idean  spaces, 
bu t  as the  ma thema t i ca l  s t ruc tures  t h a t  come nex t  in the  na tu ra l  order  of 
genera l i ty ,  viz. the  H i lbe r t  and  Banach  spaces. Al though this  is no t  unre la ted  
to  ear l ier  work  in s tochast ic  procr i t  marks  a new direct ion in research be- 
cause of i ts  emphasis  on th,.~ abs t r ac t  charac te r  of the  reference space. I t  is 
r e l evan t  to  the  subjec t  of the  present  paper  and  we mus t  discuss i t  a t  least  
br ief ly  below. 

The add i t i on  defined ia  a Banach  space is commuta t ive  jus t  as in f inite 
d imens iona l  vec tor  spaces. One asks na tu r a l l y  wha t  happens  if this  pos tu la te  
is no t  satisfied: wha t  can be said a b o u t  p robab i l i t y  d i s t r ibu t ions  on non-com- 
m u t a t i v e  groups? It, is in teres t ing  to  observe t h a t  th is  quest ion was raised and 
to  some ex ten t  answered as long ago as 1941 b y  I to  and K a w a d a .  These au thors  
publ i shed  the i r  work in a J apanese  journa l  dur ing the  war and  thei r  paper  has 
not  been given the  a t t e n t i o n  i t  deserves.  Recen t ly  a number  of authors ,  a p- 
pa ren t ly  independen t  of each other ,  have rediscovered some of these results .  
We  mus t  t ake  a brief look a t  these th ings  below, since t hey  will be of g rea t  
value  ind ica t ing  the  d i rec t ion  for fu ture  work  in th is  field. 

In the  l i t e ra ture  one can f ind a few papers  deal ing with  others  s t ructures ,  
e g. R iemann ian  manifolds,  Boolean algebras,  semi-groups  and  Lie groups. Th(~ 
reason why  we choose to  dea l  ma in ly  wi th  groups and  a lgebras  in th is  paper  
is t h a t  even wi th  this  l imi ta t ion  we will have such a formidable  t a sk  before us 
wi th  so m a n y  open and  perhaps  diff icult  p roblems  t h a t  the  subjec t  could not  
poss ibly  be t r ea t ed  in a def ini t ive way  in a single publ ica t ion .  This  will  be 
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more evident  as we go along. In  the  fu ture  we can expect  a more  sophis t ica ted  
and  general  approach,  perhaps  embrac ing  some of the  above  s t ruc tures  in a 
unif ied theory .  Anyway ,  the  t ime  seems to  be r ipe now for a sys temat ic  dis- 
cussion of stochastic groups  which will be a t t e m p t e d  in this  s tudy ,  of which this  
paper  contains the  three  first  par ts ,  and  of which fur ther  par t s  are p lanned  to 
appear  in this  journal .  

The main  s t imulus for the  au thor  to s t u d y  the  s tochast ic  groups has been 
cer ta in  problems in appl ied  p robab i l i ty ,  some of ~h ich  will be sketched in 
P a r t  1. Some have been found in the  appl ied  l i tera ture ,  especial ly in the  phys-  
ics journals.  Others have been ment ioned to  the  au thor  in discussions or have 
appeared  in his consul ta t ion  work. E x a m i n a t i o n  of such problems will help us 
wi th  the  pre l iminary  work t h a t  has to  be done, when t ry ing  to  bui ld  a theo ry  
for s tochast ic  groups.  I t  will guide us to  the  essential  problems and  concepts 
of such a theory,  how to choose the  te rminology  and  how to avo id  t r iv ia l  or 
inadequa te  generalizat ions.  

After  this  examina t ion  P a r t  2 will contain  defini t ions and  a fa i r ly  general  
discussion while la te r  par t s  will be deno ted  to  a more de ta i led  s t u d y  of sto- 
chastic groups, a lgebras  and  s imilar  s t ructures .  

Some of the  topics of this  paper  were ment ioned  in an earl ier  paper ,  Gre- 
nander  (1959), bu t  only  in a discursive way.  

Part 1. Background 

1.1. Le t  us s t a r t  wi th  the  s implest  case, the  real  line R1, on which prob-  
ab i l i ty  d is t r ibut ions  are given, corresponding to  independen t  s tochast ic  var iables  
xx, x z . . . . .  Considering R I as a group, wi th  add i t ion  as the  group operat ion,  
we can form the  sum x 1 +x~ which is a new stochast ic  var iable ,  whose dis tr i -  
but ion  is the  convolut ion of the  ones associa ted wi th  x~ and  x 2. Similarly,  the  
sum S~,= x~ + x 2 § . . . .  + x~ has a d i s t r ibu t io r  t h a t  is f~,lly k~aown to us, a~ least  
in principle. Much of modern  p robab i l i t y  tiaeory ~ells us how Sn or i ts  distr i-  
bu t ion  behaves  when n becomes large. 

We know e.g. t h a t  the  average S ~ / n  tends  to  the  mean  va lue  m if all x~ 
have the  same d i s t r ibu t ion  wi th  an exist ing expected  value  m. Here  " t ends  t o "  
can be unders tood  as convergence in p robab i l i t y  (the weak law of large numbers)  
or as a lmost  cer ta in  convergence (the s t rong law). 

Under  cer ta in  condit ions we know t h a t  the  sum, app rop r i a t e ly  normed  

Sn- -  an 
z,~ b. ' 

converges d is t r ibut ionwise  to  the  normal  d is t r ibut ion.  More generally,  if we con- 
sider a double a r r a y  of independen t  s tochast ic  var iables  

xl 1) 

x~ 2), x(~ 2) 
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and put  S~ - x (n) ~ x (~) - - 1 T .~ 7-...  + x(~ ~), then zn, with some norming, behaves asymp- 
totically in a way  tha t  is fairly well known to  us to-day.  This leads us to the 
infinitely divisible distributions, which are, vaguely speaking, the distributions 
tha t  can be represented as a sum of independent  and arbitrari ly small (in prob- 
ability) stochastic variables. 

To obtain these results m a n y  mathematical  techniques have been used, the 
most  impor tant  of which is probably the Fourier transform, the characteristic 
function ~ (z) = E exp i z x. The importance of the characteristic function is due 
to its three fundamental  properties 

1: the correspondence between distribution and characteristic function is 1 - 1. 
2: the correspondence is continuous with respect to simple and natural  to- 

pologies. 
3: to  the group operation x~+x2  corresponds simply multiplication ~1 "(~2. 

1.2. Passing to n-space we have very  much the same si tuation al though of 
course the higher dimension makes the derivations more cumbersome, and the 
subject has not  been covered quite as thoroughly as for n = 1. The characteristic 
function is now defined as ~ (z) = E exp i (x, z), where (x, z) stands for the inner 
product  of the stochastic vector x and the argument  vector z. The three funda- 
mental  properties of the last section still apply, and the reason why is as ob- 
vious for arbi t rary  n as for n = 1. Indeed, the reference space here is a commu- 
tative, locally compact  group with certain characters Z (x), and ~ (z)= exp X (x). 
The defining proper ty  of the characters together with their completeness is, in 
the last analysis, what  makes the characteristic function such a helpful in. 
s trument.  

For  related and more general questions of this type  the reader is referred 
to Bochner 's  recent book, see list of references. 

1.:L i n  1934 I'[hinchin shewed in his now classical research memoir "Asymp-  
totische Gesetze der Wahrscheinlichkeitsrechnung" tha t  the limit theorems of 
probabil i ty theory are in close logical relation to certain stochastic processes. 
A typical  example is the following. Consider a sum Sn as before with 

Ex~ ~ 0 ] 

Ex~= V~ J V1 + V2 + "'" + V~ = 1 

If  n is large and the V~ small then Sn must  behave almost  as the value W (1) 
of the Wiener process: 

W (t) has independent increments } 

W (t") - W (t') is normal  with mean zero and s tandard  deviation It" - t ' [ 

w (0) = 0 .  

In  other words the distr ibution function of S= is close to the normed, normal 
distribution function (I)(x). We will not  go into any  details here on how this 
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s ta tement  has to be supplemented to become complete, nor will we describe 
Khinchin 's  proof except remarking that. it is built on the observation tha t  the 

distribution function q ) i  ~ ) ~7)  satisfies the l~eat equation 

6r 1 02r 

~t  2 ~x  2" 

More generally one has to consider the stochastic process with independent  
and time homogeneol~s increments: the increments x ( t " ) - x  (t') should have dis- 
tr ibutions depending on t' and t" only through their difference t " - t ' .  The 
only possible form of these distributions are the infinitely divisible ones, which 
brings us back to the topic of the last section. 

1.4. The next logical step is clearly to consider probabil i ty distributions in 
infinite dimensional vector spaces. Recent ly  Mourier has shown how this can 
be done in a Banach,  or more specially in a Hilbcrt  space. As can be expected 
the measure theoretic set-up becomes more complicated than  in Rn, bu t  a good 
deal of the finite dimensional theory  seems to hold with appropriate  modifica- 
tions in this more general setting. 

To get a mean value operation defined on the Banaeh space X it is neces- 
sary to introduce integrat ion and in Mourier 's approach this is done by  using 
the Pett is  integral assuming tha t  every linear ]unctional x* ( x ) i s  measurable 
(if this holds we speak of an L-space) and integrable, one studies the integral 
equation 

x* (m) = Ex* (z). 

If  this equation has a solution m valid for all x*, then it is unique and m is 
called the mean value; this mean value operation has properties t ha t  should 
be demanded of it, such as addi t iv i ty  and monoton ic i ty . - -To  actual ly  introduce 
a concrete probabil i ty measure on the Banach space in question one will prob- 
ably usually do this indirectly by  prescribing the probabil i ty distributions of 
all the (numerically-valued) linear functionals x* (x). Again this makes it nec- 
essary to assume X to be an L-space. The fact  tha t  the probabil i ty distribu- 
t ion over X is uniquely determined in this way  is a direct generalization of a 
theorem of Cramdr and Wold to the effect tha t  the knowledge of the prob- 
ability masses in every half-space of Rn determines the whole distribution. 

This definition of mean value makes it possible to prove laws of large numbers 
in different versions, e.g. the following. If  the dual X* of X is separable, if x 1, 
x 2 . . . .  have the same distribution over X and are independent,  if EII  X, II < cr 
and E X t - m  exists then 

1 ~ x , -+m 
n 1 

weakly with probabili ty one. This theorem is due to Mourier as is this central 
:imit theorem: If  x 1, x 2 . . . .  are identically and independent ly  distr ibuted over 
a separable Hilbert  spat.': X with 

i66 



ARKIV YOR MATEMATIK.  Bd 4 n r  12 

E x i = m  a2 } 

then  

n 

1 

. VX 

is a sympto t i ca l l y  normal  over X dis t r ibut ionwise .  Here  a distribution over X 
is said to be normal i/ this is trae /or every linear /unctional x* (x). 

This theo ry  is only  a few years  old bu t  i t  is a l r eady  clear t h a t  i t  is an 
essential  extension of the  classical results.  Among  the m a n y  possible appl ica-  
t ions one notes  the  case when the  s tochast ic  e lements  x are  the  real izat ions  of 
a s tochast ic  process. One could also ment ion  s tochast ic  Schwartz  distributions 
as a re la ted  topic.  

1.5. Considered as a group the  B~nach space is commuta t ive .  To get  an  
idea of wha t  c~n happen  for non-commutative groups le t  us consider  k objects  
numbered  1, 2 . . . . .  k. W e  can pe rmute  t hem in k! different  ways  and  we 
will denote  this  set of pe rmu ta t i ons  b y  P and  b y  p an a r b i t r a r y  e lement  of P .  
Suppose  the  k objects  are mixed  in a r andom way, i.e. we have probabi l i t ies  
associa ted with  each p. I n s t e a d  of the  original conf igurat ion we now have a 
new one t h a t  can be deno ted  p~ (1, 2 . . . . .  k). Repea t i ng  the  mixing  n t imes,  
each t ime  independen t  of the  others, we get  P~P~-I ... P2P~ (1, 2 . . . . .  k) and  we 
m a y  ask how this  sto,~hastic permutation behaves  for large values  of n. 

Assuming  for s impl ic i ty  t h a t  all the  p ' s  have  posi t ive  probabi l i t i es  i t  is easy 
to  show (e.g. considering the mixing  as ~ Markov  chain) t h a t  the  d i s t r ibu t ion  
af ter  m a n y  mixings  converges to  the  uniform d i s t r ibu t ion  a t t r i bu t i ng  the  prob-  
abi! i t  3 1/k! to every  p. 

I n  this  examyle  P forms a g~ ap, :~nd i t  ma t t e r s  in which order  the  suc- 
cessive permutat ions:  are performed,  P ;.~ non-commuta t ive .  I t  is r emarkab le  
t h a t  one can s ta te  a general  result ,  ve ry  si,~dlar to  the  above  example,  for an 
i m p o r t a n t  class of groups,  c o m m u t a t i v e  or not ,  the  compac t  ones. This is due 
~o I to  and  Keowada, who 1 :oved this  b y  u ~ g  a beaut i ful  extension of Four ie r  
analysis .  Sinc~.~ the  gcoup %,erat ions ~ a y  : i  commute ,  the  numer ica l ly  wdued  
representa t iom; ,  the  ci:aracter~, are no ,  ~u :ent, bu t  we mus t  use ins tead  the 
unitary, representation. U(g) of the  group G, g CG, where U ( g ) i s  a u n i t a r y  
m a t r i x  and  

U ( g ) U ( h ) = U ( g h ) ;  g, hEG. 

The  set of irrc.,~:~cibl(, non-equiva len t  representa t ions  c:m be enumera ted ,  U o = I1, 
U 1, U 2 . . . .  and  ~! will now r~ f lace  the  characters .  I n s t e a d  of the  character is t ic  
func t ion  we no~,~ .~sve the  m a  r ix  va lued  q u a n t i t y  E U (g). Af ter  n successive 
opera t ions  we g~i the  q u a n t i t y  [EU(g)]n; her(  we have  jus t  used the  above  
re l a t ion  toge ther  wi th  the  independence  of the  operat ions .  Bu t  the  behaviour  
of a high m a t r i x  power  A n depends  upon the  largest  eigenvalues of A.  Under  
the  presen t  c i rcumstances  i t  can be shown for a case, which is not  qui te  general  
bu t  typ ica l ,  t h a t  t i,e ma t r ix  E U (g) has eigen-values of modulus  less t han  one 
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except  for the  i den t i t y  representa t ion  U 0 = I .  Hence 

l im E[U(g)]~=I I if U = I  
n - ~  [ 0  otherwise,  

and  one can now appea l  to the  Pe te r -Weyl  theorem,  guarantee ing  the  com- 
pleteness of the  set of representa t ions ,  to show t h a t  the  l imi t  d i s t r ibu t ion  over  
G mus t  sa t isfy  

E U (~,) = otherwise.  

W i t h  the  condit ions t h a t  we have in mind  here this  leads to  the  invar ian t  
(Haar)  measure  over  G normed so t ha t  P(G)= 1. This completes  the  sketch of 
the  proof. 

Recen t ly  i t  has been shown b y  Rosenb la t t  t h a t  one can dea l  successfully 
also wi th  the  case when G is only  a semi-group. 

I t  would be na tu ra l  to  ask how this l imi t  theorem is connected with  sto- 
chastic processes t ak ing  values  from a compact  group. This does no seem to 
have  been done and  we will r e tu rn  to this  quest ion in a for thcoming pa r t  of 
this  s tudy.  

1.6. Let  us consider a sys tem consist ing of a large number  of l inks in series. 
The l inks could be of a mechanical  or electr ical  na tu re  or t hey  m a y  represent  
indus t r ia l  operat ions  performed in a cer ta in  order. Say  for s impl ic i ty  t h a t  the  
s ta te  of a link, the  n th  one, can be represented  by  a vec tor  sn in Rn and t h a t  
the  operat ions  are l inear ly  re la ted  s~+l= Mns~. Then M .  is an n• mat r ix  and  

sn = M . . . .  M 2 M 1 s r 

I f  the  trans/er matrix My takes  different  values according to some p robab i l i t y  
d i s t r ibu t ion  we have a problem resembling the one of las t  section. We will 
have to  see wha t  group G is spanned b y  the possible values of M ;  if G is 
compact  the  resul t  of I to  and  K a w a d a  applies immedia te ly .  E.g. if the  My 
mean ro ta t ions  in n-space the  l imi t  d i s t r ibu t ion  would typ ica l ly  be t t a a r  meas- 
ure over the  or thogonal  group or over one of i ts  subgroups.  I f  G turns  out  
not  to be compact  (nor commuta t ive  making  Four ier  analysis  pos s ib l e )we  have 
a new diff icul ty  in front  of us. One might  th ink  of using the theo ry  of group 
representa t ions  for non-compact  groups but ,  since this  t heo ry  is bo th  compl ica ted  
and  incomplete,  this  does not  look too hopeful.  We will see in l a te r  par ts ,  how- 
ever, t ha t  for m a n y  i m p o r t a n t  concrete groups we can make  use of the  more 
de ta i led  s t ructure  of the  group implied by  the  problem.  

I n  the  above  example  the  G was a group with matr ices  as elements.  A more 
g e n e r a l - - a n d  more d i f f i cu l t - - a s sumpt ion  would be to le t  G consist of t rans-  
formations defined on a function space. This occurs na tu ra l ly  in the  s tudy  of 
non-linear stochastic di//erence equations. Let  xt, t = 0, 1 . . . . .  be (numerical ly  val-  
ued) s tochast ic  variables,  joined to each other  th rough  the relat ions 

x~§ =/ ,  (x~), 
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where for given t and x the value of /~(x) is a stochastic variable. For  fixed 
Xl, x 2 . . . .  we also assume tha t  /1 (xl), /2 (x2) . . . .  are stochastically independent.  
- - N o t e  tha t  this simplifies to the well-known autoregressive model if ] t ( x ) =  
= a x + ~t, where ~ are independent and identically distributed stochastic variables. 

Often the introduction of non-linearity into a stochastic problem gives rise 
to non-commutat ive  difficulties. I t  is gratifying though tha t  the process is Mar- 
kovian, so tha t  techniques exist t ha t  m a y  be of use in this context.  

1.7. We will arrive at  a different but  similar problem start ing from di//er- 
ential  equations wi th  stochastic coe//icients, as is clear from the analogy with the 
stochastic difference equations. Consider e.g. the equation 

x (~) (t) + a 1 (t) x (p-l) (t) -~ ' ' "  -~ a(~)_ 1 x' (t) ~- a~ (t) x (t) = 0 

in the interval I ,  0 <. t ~ T .  The coefficients a~ (t) are stochastic and, for the 
moment,  let us assume tha t  they  are " independent  at  different time po in t s" ;  
these things will be made rigorous in a later part.  Anyway,  if we divide our 

interval into n equal par ts  I =  i, + i S §  in, iv = ( ~ - 1  T, ~- T ] ,  it is clear t ha t  
\ n n ! 

specifying the values of the vector y ( t )= (x(t) ,  x '  (t) . . . .  x ('-1) (t)) at  the left end- 
point  of iv will determine y ( t )  at  the right endpoint  if the coefficients are 
t reated as constants throughout  the short interval iv. These two values of y ( t )  
are related linearly through a matrix M~ (n) and the M(~ n) should be considered 
as independent for different v's. Hence 

y (T) = lim M~ ) ... M~ n) M(~ n) y (0), 
n--) oo 

which should be coznpared to the corresponding finite relation of last section. 
Jus t  as in the classical cases we hope, so far without  any  real justification, 
tha t  the limit theorems on stochastic groups will be connected with stochastic 
processes taking values in these same groups. 

One task of ours will be to give a mathematical  meaning to differential 
equations of the type  mentioned above and to s tudy  their solutions. This will 
perhaps be of special interest for certain partial equations with physical inter- 
pretation, e.g. the equation governing stochastic waves in one dimension with 
random propagation coefficient a(x )  

~2 u a s u 

a (x)  ~ x" - ~ t 2" 

The wawes will be superpositions of components whose frequencies will depend 
upon the eigen values ~t defined by  the equation 

d 2 v 
a(x)z~-x +2 v=0  

with appropriate boundary  conditions. Therefore we have to  s tudy such s~o- 
chastic spectra, and of course we should do this for difference equations also. 
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In  the  l a t t e r  case there are  a l r eady  some pre l iminary  bu t  suggestive resul ts  
due to  Dyson and  Wigner .  

In  this  connect ion we should m e n t i o n  problems of the  following type.  In  
some n-space we are given a different ial  equat ion E, whose coefficients m a y  be 
random or cer ta in  functions.  The equat ion should be va l id  in some region D, 
which is l ikely to  be mul t ip ly  connected in some appl ica t ions  to  electrical  con- 
duc t iv i ty  and s imply  connected in others. However  t ha t  m a y  be, the charac- 
ter is t ic  thing abou t  D is t h a t  i t  is not  f ixed bu t  given in p robab i l i t y  t e rms  
only. I f  the  solut ion of E should sat isfy  cer tain condit ions on the  bounda ry  
of D we will again  be led to  s tudy  cer ta in  stochast ic  eigen value problems.  A t  
present  i t  is not  clear if these la te r  impor t an t  problems can be phrased  con- 
venient ly  within the  f ramework  of s tochast ic  groups, or if t hey  require  some 
other  thechnique for their  solution. 

1.8. Let  us sum up this discussion. We have  to  in t roduce p robab i l i ty  meas- 
ures on groups and  see wha t  general  relat ions we can get. These relat ions 
will of course be more informat ive  the  more de ta i led  s t ructure  we are given 
for the  group. At  present  the  most  challenging case seems to be groups which 
are  nei ther  commuta t ive  nor compact .  Fo r  some of the  cases t h a t  we have men- 
t ioned (or will arr ive a t  la te r  on) i t  is s tr iking t ha t  t hey  possess two funda-  
menta l  operat ions,  say  add i t ion  and  mul t ip l ica t ion,  and  form algebras. Actua l ly  
in many  impor t an t  s i tuat ions they  are Banach algebras, and  this  will be useful 
to us. This is stil l  a ve ry  general  concept  and  we will have to specialize more 
in var ious  directions.  

On the group, of whatever  t ype  i t  happens  to be, we will s t udy  stochast ic  
processes of independent  increments .  Only the  t ime homogeneous ones will be 
dea l t  with. In  the  classical cases this  would give a good picture  of what  hap-  
pens in genera l ;  in the  present  one the  lack of c o m m u t a t i v i t y  could possibly 
make  this  assumpt ion  of homogenei ty  in t ime  too narrow, bu t  th is  is not  known 
a t  present  and  should be invest igated.  

Wi th  the  help of the  knowledge we can get  for such s tochast ic  processes we 
hope to be able  to  s ta te  and  prove l imi t  theorems for " sums"  or "p roduc t s "  
of independent  s tochast ic  group elements.  Again  this  will require  some spe- 
cial izat ion of the  groups.  We will t r y  to  obta in  laws of large numbers ,  ana-  
logues of the  central  l imi t  theorem and  results  on inf ini te ly  divisible dis t r ibu-  
t ions on the  groups. As fa r  as inf ini te ly  divisible  laws on Lie groups are con- 
cerned the  in teres ted reader  should  s t u d y  the  i m p o r t a n t  work of Hunt .  

Often the  groups are  presented  as t ransformat ion  groups a l ready  in the  orig- 
inal  form of the  prac t ica l  p rob l em:  g t ransforms some space S (with elements  
s) in to  itself, g S~_S. Ins tead  of working with the  p robab i l i t y  d i s t r ibu t ion  of g 
over  G i t  m a y  be more convenient  to  work  with  the  d i s t r ibu t ion  of 9s o over 
S for an a rb i t r a ry  bu t  f ixed element  s o of S. 

Part 2. General discussion 

2.1. The objec t  of our inves t iga t ion  will usua l ly  have  three  s t ructures  super- 
imposed:  an algebraic, a topological, and  a probabilistic s t ruc ture .  These three 
cannot  be chosen independen t ly  of each other. The topology mus t  be chosen 
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to make  the  fundamenta l  operat ions  of the  group, ring, field, or whatever  i t  is, 
cont inuous functions of the  arguments .  But  in the  same way  we mus t  demand  
tha t  the  same functions be measurable  so t ha t  t hey  can be subjected to prob-  
ab i l i ty  s ta tements .  This leads us na tu r a l l y  to the  def ini t ion 

By a stochastic group u,e mean a topological group G /orming a probability 
space (G, 6, P), where the or-algebra ~ o/ subsets o/ G has the property that 
S T  E 6, S-1C 6, /or any S, T E G. Open sets should belong to 6. 

A t  present  we will wri te  the  group opera t ion  as mul t ip l ica t ion ,  and  S T 
means the  group opera t ion  produc t  and  not  the  set theoret ic  product ,  which 
will be deno ted  by  S (I T. 

Considering s tochast ic  groups G1, G~ . . . . .  G, t hey  are said to  be independent 
if the  p robab i l i t y  measure over the  Cartesian p roduc t  G 1• G 2 • ... • G is s imply  
the  p roduc t  of the  measures over the  ind iv idua l  components .  

The topology defined on G induces a topology in the  set of p robab i l i t y  dis- 
t r ibu t ions  on G, and this  gives us the  not ion of convergence in probability on a 
stochastic group. Given a sequence of p robab i l i ty  d is t r ibut ions  P~ (g=, g) defined 
on G• G we shall  say  t h a t  g= converges to g in p robab i l i t y  if for every neigh- 
bourhood N of the  un i t  e lement  e of the  group we have 

lim Pn {g~ g-1 E N} = l .  
n---> r 

Given two p robab i l i t y  d i s t r ibu t ions  /)1 and P~ on G we define thei r  convolu- 
tion as 

P I ~ P ~ ( S ) =  f d P l ( g l )  dP2(g2)=  
g l  ~ E S 

= f dPl (g )P~(g- lS )  . 
g~G 

The convolut ion opera t ion  will in general  not  be commuta t ive .  Here, as in t h e  
following, the  choice between r ight  and  left  mul t ip l ica t ion  will give rise to a 
dua l i t y  in defini t ions and  relat ions.  

The convolut ion corresponds of course to  multiplication o/ independent groups. 
F o r  several  independen t  groups G I, G~ . . . .  we define thei r  partial product 
~n = 91 g2 ... gn with i ts  p robab i l i t y  measure  ~ ,  = PI  ~ P~ ~-"" ~-Pn. The s t u d y  of 
this  measure  for large values  of n is one of the  major  problems in the  theo ry  
of s tochast ic  groups. 

Somet imes we can in t roduce  a numerical  q u a n t i t y  measuring the  spread of 
a d i s t r ibu t ion  over a group.  More genera l ly  we will define a pa r t i a l  ordering,  
saying t h a t  P I  is more concentrated t han  P2 if there  is a non degenera te  dis tr i -  
but ion Pa such t h a t  P2 = PI  ~ P3. 

Consider a family  of p robab i l i t y  measures  Pt (g) over g, indexed by  a posi- 
t ive  a rgumen t  t and  such t h a t  

P t ~ s = P t ~ P ~  for every  s, t > O. 

T h i s  will be called a homogeneous stochastic process with  values  in G. Usual ly  
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we will assume tha t  the  process has some con t inu i ty  p roper ty ,  e.g. t h a t  i t  is 
continuous in probability so t ha t  

lira Pt (g C N)  = 1 
t ~ 0  

for every  neighbourhood N of the  i den t i t y  e. 
Another  i m p o r t a n t  concept  is t h a t  of an inf in i te ly  divisible  d is t r ibut ion .  We 

shall  say  t ha t  a d i s t r ibu t ion  P over  the  s tochast ic  group G is infinitely divis- 
ible if for every  posi t ive  integer  n there  is a d i s t r ibu t ion  Q such t h a t  P =  Q" * 

We shall say  t h a t  a p robab i l i t y  d i s t r ibu t ion  P over G is symmetr ic  if 
P ( E  -1) = P(E)  for every  E E ~.  

2.2. Given a s tochast ic  group G with  a d i s t r ibu t ion  P ,  wha t  can we say  
abou t  the  behaviour  of zn = Pn* when n increases indef in i te ly  ? We have  a l r eady  
ment ioned  in 1.5 t h a t  I to  and  K a w a d a  have shown essential ly,  t h a t  if G is com- 
pact ,  then  z~ converges (weakly) to the  inva r i an t  normed measure  on some sub- 
group of G. Ac tua l ly  there  is also one other  poss ib i l i ty  which is however of 
l i t t le  concern to us a t  present .  

I f  we deal  with a s tochast ic  group for which ~rn -+ ~r then  i t  follows t h a t  
we~kly 

the  l imi t  measure  z mus t  sa t i s fy  z~ ~e ~ = z ;  i t  mus t  be idempotent. However  if 
this  is the  case one can show t h a t  G is compact .  

A t  first  glance i t  m a y  appea r  surpris ing t h a t  the  seemingly innocent  assump- 
t ion on compactness  should (essentially) guarantee  convergence of ~ .  A mo- 
ments  reflection makes  th is  plausible.  Indeed,  if G is compact ,  then  the  set of 
p robab i l i ty  d is t r ibut ions  over  G is also compact ,  and  a n y  sequence of p robab i l i t y  
d is t r ibut ions  on G, say  ~1, z~, z3 . . . . .  mus t  a t  least  contain  a convergent  sub- 
sequence;  the l imit  of this  will be the  inva r i an t  measure,  

Leaving the compac t  groups i t  is clear t h a t  we cannot  expect  l imi t  theorems 
of the  simple type  t ha t  we have  jus t  discussed. To get  results  analogue to the  
classical l imit  theorems,  say  the  law of large numbers ,  we have to  norm or 
t ransform the pa r t i a l  p roduc ts  gl g2. . .  gn in a sui table  manner .  The p robab i l i t y  
space m a y  be given a l inear  s t ructure ,  and  this can be done in m a n y  ways.  
I n  the  nex t  sect ion we will describe one way  t h a t  we have chosen main ly  be- 
cause i t  seems to correspond na tu ra l ly  to the  prac t ica l  problems of P a r t  1 
t h a t  have m o t i v a t e d  the  presen t  s tudy .  

Before we do this,  let  us r emark  t h a t  i t  is possible to ob ta in  asymptotic ex- 
pressions for ~ in a general  context .  We  will r e tu rn  to  this  i m p o r t a n t  p roblem 
in a la te r  pa r t  of this  publ icat ion.  

2.3, We  need an  a lgebraic- topological  concept  t h a t  is general  enough to in- 
clude most  of the  appl ied  si tuat ions,  bu t  a t  the  same t ime i t  should have a 
suff iciently de ta i led  s t ructure  to  make  possible the  s t a t emen t  of l imi t  theorems 
of the  sort  we have in mind.  Such a concept  seems to be the Banach algebra. 

We shall say  t h a t  X is a stochaztic Banach algebra i] it is a Banach algebra 
and ]orms a probability space (X, 3C, P),  where the a-ring 3C includes the neigh- 
bourhoods of the space and is invariant with respect to the algebraic operations o] 
the algebra. 

I n  this  paper  we shall  a lways  assume 1) t h a t  X is separable  and  2) t h a t  i t  
has a uni t  e lement  e. 
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With in  the  f ramework  i t  is easy  to  formula te  and  prove a na tu ra l  extension 
of the  law of large numbers .  I f  Xl, x I . . . .  are independent  and  ident ica l ly  dis- 
t r i bu ted  s tochast ic  e lements  in a Banach  algebra,  we should norm the p roduc t  
~,~ = x ~  x~ . . .  x,~ or i ts  factors  so t h a t  z~ converges in p robab i l i t y  to  a cons tant  
e lement  of X. One way  of doing this  is the  following. 

Le t  y,  be independent  and  ident ica l ly  d i s t r ibu ted  stochast ic  elements of X 
1 

such t h a t  EIIYI[ exists and  is finite. Le t  x ~ = e + n Y ~  so t h a t  

where 

?b ~</z 

etc. 

Apply ing  a theorem of l~Iourier to  the  sum $1 (') we know t h a t  i t  converges 
a lmost  cer ta in ly  s t rongly  to  an e lement  m 6 X .  This l imi t  e lement  m is the  

expected value of y, m =  f y d P  (y), where this  in tegra l  is in te rpre ted  in the  sense 
x 

of Pet t i s .  Under  the  given condit ions the  expected  value exists.  
S imi lar ly  

~ # - 1  S(,~ ) = 1 ~ /~ - 1 S({,)y _ 1 /z - I 1 ~ 

where S~ ~) = m + e.. Hence,  wi th  p robab i l i t y  one, 

S(2n} m 2 
= T + e ,  

with II ~ I1+0 as n - - >  o o .  

This means t h a t  S(2 ) converges a lmos t  cer ta in ly  s t rongly  to  m 2 / 2 .  In  this  way  
we can prove t h a t  S (") converges a lmos t  cer ta in ly  to  m ' / u ! .  

:Now we jus t  have  to complement  this  reasoning with  a simple un i formi ty  
argument .  We  have of course 

IIs~n'll<~ 5 IlYk, ll'llYk, l l . . . l l~ l l  
kl<k=<- . .<k  

so t h a t  E It s,,-)II < ~ (E II y II;. 
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Combining this with the above we have shown tha t  the normed partial products 
,'~ converge strongly in probability to the constant element 

m 
e m = e + m + ~ +  ... EX.  

2.4. Let  y(t),  O < t <  c~, be a homogeneous process with values in X and 
continuous in probability. The word homogeneous should here refer to addition, 
which is a commutat ive  operation on X. In  practical applications y (t) will 
usually be something wellknown to us, a Wiener- or Poisson-process, a process 
of independent increments on R,  or on something else, of this nature.  From 
y (t) we would like to  form a process x (t) homogeneous with respect to multi- 
plication. We could do something like this: let us divide the interval (0, t ) in to  
n disjoint intervals (0, tl), (t 1, t2) . . . .  (tn-1, t) with the corresponding increments 
Av y = y (t,) - y (t,-a). Form the product  

:z.  (t) = (e + A a y) (e + A 2 y) ... (e + A n y). 

As we make n large the products  ~n (t) could perhaps be proved to converge 
in probabili ty to some ~ (t) and this would be our homogeneous (multiplicative) 
process. 

We will do this in the following way resembling the expansion o f ~ n  of last 
section. Let  us define 

x (t) = e + f d y (s) + f d y (s 0 d y (s~) + f 
0 O<sl<S2<~ O<Sl<S=<S=<~ 

dy  (sl) dy  (82) d y  ( sa)+. . . .  

and we will call x(t)  the multiplicative homogeneous process generated by y (t). 
We must  of course give a precise meaning to the terms of this expansion and 
show tha t  it converges. 

The integrals will be defined as the limit of Riemann-Stielt jes sums in the 
Ll- topology over G. LeG us consider the double integral only; the higher ones 
are dealt with in the same manner.  Divide the interval (0, t) into (0, tl), 
(tl, t2) . . . . .  (tn-1, t) and form the Riemann-Stieltjes sum 

S= ~ [y(t.)-y(t,_l)] [y(tg)-y(tu_l)]. 
~<~  

As the division is made finer these sums will converge to a limit which does 
not  depend upon what  sequence of divisions we have chosen. To see this let 
us take another division (0, t~), ((1, t~) . . . . .  (tin-a, t) and denote the  corresponding 
sum by  S'. The combined division (0, ' . . . . . .  , " t) rise tl ), (tl , t~ ) . . . .  (tn+m-1, gives to 
to a sum S".  

As an illustration consider the figure below. To each rectangle of the figure 
corresponds one term in the respective sum. In  the difference S " - S  only the 
shaded rectangles of the last figure occur, which follows from (x + y) (z + u ) =  
= x z + x u + y z + y u .  I t  is now clear what  happens in general: the difference 
S " - S  consists only of rectangles close to the diagonal and its norm is domi- 
nated by  
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o ti" t'," t;" t: t: t 

Y 

0 tl t2 0 t~ t2 

Fig. 1. 

/ 

II s "  - z II ~< ~ II [y (t:') - y (t;'_l)] [~ (t ': l  - y (t:')] II ~< 

< 5 II (t:') - y (t;'_~)11-. II y (t : : l)  - y (t:')If. (x) 

Using the independence of the increments of the y-process the Ll-norm is 
bounded by 

E II S" - S II < Z E I] Y (t:') - y (t:'l)I1" E II Y (t;+l) - -  Y (t;')I1" 

W e  will  a s s u m e  t h a t  E II Y (8 + h ) - y  (8)II exists ,  is c o n t i n u o u s  and  tha t  the  s u m s  

E II y (t~) - y (tv_l)II ~< M (2) 

are uniformly bounded for arbitrary divisions of the fixed interval (0, t). Then, 
if the division is sufficiently fine, S differs arbitrarily little from S" and hence 
also from S' which completes the proof. 
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The reasoning also gives us a bound  for the  norm of the  in tegrals  

f Mk E d y ( S O d y ( S 2 ) . . . d y ( S k )  < ~ . ,  
0<S~< - - . < S k < t  

which shows t h a t  the  sum defining x (t) converges in the  Ll -norm.  We have  
then  proved t ha t  i/ y (t) is an additive homogeneous process continuous on (0, t) 
in the Ll-norm and i/ the sums (1) are uni/ormly bounded then the expansion (2) 
converges in the same norm to a multiplicative process x (t). Only the  last  s ta te-  
ments  remains  to  be verif ied which is ve ry  simple. Indeed  pu t t ing  

t+h 

z(t,t+h)=e+fdy(s)+ ff  dy(sOdy(s2+.. .  
t t<Sx<S~<t+h 

i t  follows t h a t  x ( t + h ) = x ( t ) - z ( t , t + h )  which can be seen b y  going back  to  
the  Riemann-St ie l t jes  sums. Clearly z (t, t + h) is independen t  of x (t) and  has 
the  same d is t r ibu t ion  as x (h). The same holds for the  increments  over  several  
intervals .  

The re la t ion between x (t) and  y (t) can also be given the form of a /unc- 
ional equation 

t 

x ( t ) = e +  f x(s)dy(s), 
o 

which can convenient ly  be wr i t t en  symbol ica l ly  as 

d x ( t ) = x ( t ) d y ( t ) .  

The funct ional  equat ion also shows t h a t  x (t) is cont inuous  in the  Ll -norm.  
In  one par t i cu la r  case the  relat ion between the  x- and  y-process is especial ly 

simple. This is when the  values  of y (t) commute  so t h a t  we can write.  

t t t 

1 

o 0 0 

t t t 

0 0 0 

= exp f dy (s) = exp y (t). 
o 

The reader  m a y  have no ted  t h a t  the  construct ion of x ( t ) f r om x (t) resembles 
t h a t  of mul t ip l ica t ive  integrals .  
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2.5. Le t  us now der ive  an approximation theorem useful when s tudy ing  t h e  
a s y m p t o t i c  p robab i l i t y  d i s t r ibu t ion  of the  p roduc t  of a large number  of sto- 
chast ic  factors,  each of which does no t  dev ia te  too  much  from the  uni t  e lement .  
F i r s t  we mus t  define wha t  should be m e a n t  b y  convergence d is t r ibut ionwise  
on X. Le t  P1, P2 . . . .  be a sequence of d i s t r ibu t ions  on X with  the  same do- 
ma in  of defini t ion.  We will say  t h a t  P~ converges distributionwise to  a distr i-  
bu t ion  P if the  d i s t r ibu t ion  funct ions  ] (x~) converges to  the  d i s t r ibu t ion  func- 
t ion  of / (x )  in the  usual  sense. Here  x D x2 . . . .  and  x are  s tochast ic  group 
e lements  wi th  the  d i s t r ibu t ions  P1, P~ . . . .  and  P respect ively ,  and  / (x )  is an  
a r b i t r a r y  real  va lued  and  un i formly  cont inuous  funct ion def ined on X.  

We will consider a double  a r r a y  of s tochast ic  group e lements  

Y l l  

Y21, Y22 

Y31, Y32, Y33 

where the  e lements  in each row are  independen t  and  have  the  same dis t r ibu-  
t ion.  F u r t h e r  we shall  assume t h a t  the i r  norm is in tegrable  and  t h a t  the  sum 

v = l  

is un i fo rmly  bounded.  
Le t  y (t) be an  add i t i ve  homogeneous  process defined on X wi th  the  prop-  

er t ies  descr ibed  in the  las t  sect ion and  wi th  the  associa ted  mul t ip l i ca t ive  homo- 
geneous process x(t) .  Assume t h a t  for every  p ropor t ion  c be tween 0 and  1 
we have 

[ c n ]  

yn, .y(c).  
~ 1 d i s t r i b u t i o n w i s e  

We are going to  show that 

gn = (e + Ynl) (e + y ~ )  ... (e + Yn~) 

converges distributionwise to x(1) .  

Indeed  we have  

{ ~ n  = e + S(~ n) + S i  n) + . - .  + S(~ n) 

x ( 1 ) = e + S l  + S 2 + . . . ,  

where 

n 

s i  n) = Z yn~ 
1 

si  n)= Zyn, yn. 

�9 , . . . .  , 
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1 

S 1= f dy (t)=y(1) 
0 

and 
s2- ff dy(81) dy(82) 

0 < s ~ < s a < l  

Working  in the  Ll - topology  over X we know t h a t  if the  expression for x (1) 
is replaced by  a pa r t i a l  sum, l i t t le  is changed if the  t runca t ion  po in t  m of the  
sum is chosen sufficiently far  out.  We  also know t h a t  if we use a fine divi-  
sion 0 < t 1 < t 2 < --. < t k = 1 of the  uni t  in tervals  and  replace the  integrals  $1, 
$2 . . . . .  Sm by  the  Riemann-St ie l t j es  sums the  effect is small.  Now we can do 
exac t ly  the  same th ing  with  the  expression for ~tn: t runca te  the  sum and  re- 
place the  te rms by  sums which are summed over blocks (rectangles) of the  in- 
dices. Bu t  each such sum over a block converges d is t r ibut ionwise  to  the  analog 
q u a n t i t y  expressed in te rms of increments  of the  y-process. Using the inde- 
pendence of the  ynv's and  increments  of y(t) respect ively  the  s t a ted  resul ts  
follows. 

The impor tance  of this  resul t  lies in the  fact  t h a t  it enables us to pass/rom 
additive to multiplicative limit theorems. Addi t ive  l imi t  theorems are avai lable  
both  from the classical theory  and  from i ts  extension to  l inear  spaces due to  
Mourier  and  For t e t .  

However ,  the  resul t  is l imi ted  by  the assumpt ion  t h a t  the  ind iv idua l  factors con- 
t r ibu te  l i t t le  to the  product .  Also we m a y  want  to  examine  problems having group 
s t ructure  ins tead  of being an algebra.  F o r  this  o ther  methods  will be used. I t  
should also be no ted  t h a t  there  are impor t an t  s i tuat ions  where the  sums (2) 
do not  s tay  bounded.  I t  will t hen  be convenient  to use an L2-argument  instead,  
and  this  will be done in P a r t  5 of this  s tudy.  

Part III .  Remarks  on limit theorems 

3.1. In  this  pa r t  we will r e tu rn  to  the  fa i r ly  general  s i tua t ion  of s tochast ic  
groups wi th  no other  s t ructure  superimposed.  One i m p o r t a n t  t a sk  here is to 
s tudy  the a sympto t i c  behaviour  of convolut ions p n .  for a given p robab i l i t y  
d i s t r ibu t ion  P over  G. We will assume th roughout  t h a t  G is local ly compact  
a l though a pa r t  of wha t  follows does no t  depend  upon  this  condit ion.  

If  the  suppor t  S of the  measure  P on G does not  coincide with G i t  is clear 
t ha t  we loose nothing in genera l i ty  b y  confining us to  the  group S c G. Here  

is the  a lgebraic- topological  closure of S. This will a lways  be assumed done. 
Let  us assume t h a t  there  exists  a a-f ini te  right invariant measure ~, ~ ( E x ) =  

# (E) for every x E G, E E ~ and  t h a t  P is abso lu te ly  .continuous with  respect  to  ~t 

P (E) = f p (x) d/x (x). 
E 

Here p (x) has the  proper t ies  of a general ized f requency funct ion.  
We will also assume t h a t  P is a symmetric distributio~ (see 2 .1 )which  makes  

s impler  the  use of the  Hi lbe r t  space me thod  below. I t  seems desirable to  get  
r id  of this  restr ict ion,  which is no t  inherent  in the  original  formula t ion  of the  
problem.  
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As a tool for the examination of P ' *  we will use the transformation 

Tt(x) = f / ( x y ) d P ( y )  
y e G  

which is well defined at least for functions [ (x) taking a finite number of values 

/i~ if x C E~,/~ (E~) < oo, E~ disjoint 

/ (x )=  if x~i b E .  
1 

n 

Tl(x)= ~/~P(x 1E~). 
1 

But using the L2-metric 

Ilgll == flg(x)l~d/~(~), 
G 

we have 

G 

= f l~/, f ~(xY)p(Y)d~(y) ~dtt(x), 
G G 

where ~ ( u )  is the indicator function of E~. Hence 

IITl(x)ll ~= 

G G G  

y e G  z e G  G G 

=11/115 f f ~P(y)dP(=)=llllr. 
yEG zEG 

For the last equality we have used 

f lSl~vv(xy)l~d#(x)= fl~l~(u)l~dz(~y 1)= 
G G 

= fiz/v~(u)12d~(u):li/]5 
But since [[ T/[[ ~< [[ ] [[ for finite valued functions / (x) the transformation can be 
extended uniquely to functions /(x) belonging to the space of quadratically 
functions L. z (G) (with respect to the invariant measure). 
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The bounded linear opera tor  T defined in L2(G) will ac tual ly  have  exac t ly  
the norm ]ITII = 1 under  mild conditions. Suppose t h a t  it is possible to  find an 
increasing sequence of sets E~, E~ . . . .  such t h a t  

(E~) < ~ | 

E ~ G  

lim # (E~ N E~ z) _ 1, z E G. 
:++ # (E,) 

The last  condition means  t h a t  the  effect of  any  finite t ransla t ion z E G has a 
small effect measured  relat ive to # (E,). 

Under  this condition let ~,(x)  be the indicator  funct ion of E~. Then  

T ~ , ( x )  = fq~(xy )p(y )d#(y )  
G 

and II T cf~ (x) ll 2 = f / f of,, (x y) cf, (x z )p  (y)p  (z) d/u (x) d/~ (y) d # (z) = 
G G G  

= f f p (y) p (z) g~ (y, z) d # (y) d # (z), 
G G  

with gv(Y, z) = f cfv(xy) q~(xz) d/~(x) =/u(Ey -1 N Ez  -1) 
x E G  

o_<g~(Y , Z)< 1 } 
and ~ # (E~-~)- ; 

lira gv (y' z) _ 1 

this implies bounded convergence of the integrals 

l im II T q)" (x) ll 1 

proving the  assertion. 
The opera tor  T is sell adjoint since 

(T/, g ) =  f f / ( x y )g ( x )dP(y ) d# ( x ) =  
G G  

= f f / (u) g (uv) dP  @-1) d# (u) = 
G G  

= f f /(u) g (uv) dP  (v) d# (u) = (/, Tg). 
G G  

The spect rum of T is hence s i tuated in the interval  ( - 1 ,  1) and one asks 
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whether the endpoints • 1 can be discrete eigen values. If  such is the case 
we have 

_+__/(x) = T / ( x ) =  / / ( x y ) d R ( y )  
G 

for some / (x)E L~(G), and according to  Schwarz'  inequali ty 

I I/11 * = f f f  / (x y) / (x z) d/~ (x) d P (y) d P (z) < 

< f f  ll/ll2dP(y)dP(z)=l]/Ir - 

where we have used the right invarianee of /~. But  equali ty is possible only if 

/ (zy)=c/(xz) ,  ]~]=1, 

almost  everywhere with respect to d# (x ) ,  d P(y), alP(z). We now make use of 
the restriction of G to the closure of P and deduce tha t  I/(x) ] = constant  almost  
everywhere with respect to di~(x). Such a function belongs to L2(G) if and 
only if ju (G) is finite, which implies t ha t  G is compact.  Conversely if G is com- 
pac t  the function ] ( x ) ~ e o n s t a n t  belongs to LI(G ) and is an eigenfunction as- 
sociated with the eigen va lue  2 = I. 

I t  is possible to give a sufficient and not  very  strong condition ensuring tha t  
the spectrum of T is bounded away  from 2 = -  1 and si tuated in an interval  
(c, 1) with - l < c < l .  

3.2. The iterates T n of T have a simple probabilistic meaning. Consider n = 2 

T 2 ! (x) = f f / (xy z) d P (y) d P (z) = f / (x u) d p 2 ,  (u), 
G G G 

and  generally T n! is the t ransform of ! with respect to the n-th convolution. 
Thus we can get  a convenient representat ion of the probabil i ty P~* (x- lE)  of 
any  set E of finite #-measure.  I f  ~ (x) is the indicator function of E we have 
T ~ qJ (x) = pn* (x-1E), so tha t  e.g. P~* (E) = T" ~ (e). 

Using the self-adjoint nature of T we can represent t h e  operator in terms of 
a resolution E(2)  of the ident i ty  

1 

T =  ! 2 d E ( 2 )  
- 1  

] 

so t h a t  Pn* (x-l E) = T'~ cf (x) = f ~'~ d E (2) cf (x). 
- I  

This relation also holds pointwise in x. To make this rigorous we note t ha t  
pn ,  (x- lE) is a continuous function of x. 

We are interested in what  happens to Pn*(x- lE)  for large values of n. One 
thing we can say immediate ly;  the probabil i ty tends to zero in the mean. In- 
deed 

1 

[]Pn*(x-iE)[]2= f ]t2ndHE(~)VH 2 
- 1  
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and  the  funat ion of bounded var ia t ion  t lE (2 )~ l l  2 is cont inuous a t  )~= _+; the  
opposi te  case was excluded by  us in the  last  section. But  then we can a p p l y  
Lebesgue 's  theorem on bounded  convergence to  the  above  integral  showing t h a t  
i t  converges to  zero. 

To get  a sharper  s t a t emen t  on the a sympto t i c  decrease of P n * ( x - l E ) w e  
mus t  of course start, from more deta i led  assumptions,  e.g. as follows. Assume 
tha t  the  der iva t ive  

d 
d~ E (2) ~ (x) = a (2, x) 

exists,  is continuous in ( - 1 ,  1) and  behaves  a sympto t i ca l ly  as a ( 1 - 2 )  ~, ~ >  - l ,  
a t  the poin t  2 =  1. Then 

1 

i 
n P ( n +  1) F ( ~ +  I) a F ( ~ +  1) 

P n * ( x - l E ) ~ a  )"~(1-2)~d2=a F ( n +  a~+2) ~ n ~+1 
5 

"Loca l"  l imit  resul ts  of this  t ype  could be ex tended  to cover the  more general 
s i tuat ion,  where we let  x move out  as n increases, as soon as we have con- 
s t ruc ted  the  fami ly  E (2) of pro jec t ion  operators .  I n  specific s i tuat ions  this  m a y  
be difficult  to achieve and we will see la ter  t ha t  more di rec t  methods  are 
avai lable  in specific s i tuat ions.  

3.3. In  the  present  context  our main  interes t  is concent ra ted  on the  non- 
commuta t ive  case, bu t  i t  m a y  prove ins t ruct ive  to see how the  above  simpli- 
fies considerably on a commuta t ive  group. 

Consider for a f ixed bu t  a rb i t r a ry  y E G the opera tor  

Sy f (x) = �89 [1 (xy) + / (xy-1)]. 

I t  has most  of the  proper t ies  t h a t  T has. I t  is cer ta in ly  bounded,  [IS~II ~< 1, 
and  setf-adjoint  ; the  proof of this  is left  to the  reader.  Fo r  any  y, z E G we have 

4S~S~/(x)= / (xyz)  + / (xyz-1) + / ( xy - l  z) + /(xy--lz-1) = 

= / (xz y) + f (xz y-1) + / (xz-l y) + / (xz-l y-1) = 

=4SySz/(x) .  

The set of opera tors  {S~;y E G} is then  a fami ly  of bounded,  self -adjoint  and  
commut ing  operators .  I t  is then  known t h a t  t hey  can all be represented  as 
" funct ions"  of one single opera to r  associated with the  opera tor  f ami ly  of pro- 
jections F (2), 

Sy= f ~f~(2)df(2), 

so t h a t  T = f Sy d P (y) = f yJ (2) d F (2) 
G 

with ~0 (2)= f ~y (2) dP(y)  
G 

Hence Tn/= f~"(A)dF(2) ,  

182 



ARKIV FOR MATEMATIK. Bd 4 nr 12 

which, after a change of variable,  is the same representat ion as before. Once 
we have found the spectral  representat ion for S~ it  can be used to construct  
the resolution of the ident i ty  for T, and tl~is holds wltatever p is. The existence 
of such a universal  (on G) spectral  representat ion makes the commuta t ive  case 
especially simple. At  present we do not know if something like this holds for 
the non-cummuta t ive  groups, but  i t  seems unlikely. 

The reader may  have observed tha t  for a commuta t ive  G the differential 
solutions of S~ can be expressed in terms of the group characters. 

For  a general group let us s tudy the t ransformat ion S = S y  with y fixed. 
This leads us to the cyclic group y~; suppose it  is of infinite order. Star t ing 
from its characters we can immedia te ly  write down the spectral representat ion 
of S and the value of P~*(E) .  The simple form of the expression obtained 
indicates t ha t  we should be able to derive it using less bruta l  methods.  

Indeed, taking for example E to consist of the uni t  element  e only, we have 

pn* (E) = P ( y •  y• ... y• E E) 

where the + and - signs are independent  and have the probabi l i ty  1/2 each. 
Hence we get  the binomial probabi l i ty  

if n is even and the probabi l i ty  zero if n is odd. 
The approach of the present pa r t  may  be of some use for the general dis- 

cussion, but  for the actual  detailed s tudy of par t icular  stochastic groups more 
direct  a lgori thms may  be found. 
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