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Introduction

Like other branches of mathematics probability theory of tc-day is becoming
more general and abstract, one tries to extend the theory as far as possible
and through this process one hopes that the fundamental conceptual structure
will become clearer. The road to such a development was opened some 25 years
ago through Kolmogorov’s axiomatic approach to probability theory considered
as measure theory in a general reference space. This made is possible to create
a mathematically satisfactory theory for storhastic processes choosing the ref-
erence space as an appropriate function space or as a labeling of such a space.

More recently attention has been drawn to other extensions of classical pro-
bability theory. In the work of Mourier, Fortet, and others the reference space
is chosen, not as the real line, the plane or higher dimensional Euclidean spaces,
but as the mathematical structures that come next in the natural order of
generality, viz. the Hilbert and Banach spaces. Although this is not unrelated
to earlier work in stochastic processes it marks a new direction in research be-
cause of its emphasis on the abstract character of the reference space. It is
relevant to the subject of the present paper and we must discuss it at least
briefly below.

The addition defined in a Banach space is commutative just as in finite
dimensional vector spaces. One asks naturally what happens if this postulate
is not satisfied: what can be said about probability distributions on non-com-
mutative groups? It is interesting to observe that this question was raised and
to some extent answered as long ago as 1941 by Ito and Kawada. These authors
published their work in a Japanese journal during the war and their paper has
not been given the attention it deserves. Recently a number of authors, ap-
parently independent of each other, have rediscovered some of these results.
We must take a brief look at these things below, since they will be of great
vaiue indicating the direction for future work in this field.

In the literature one can find a few papers dealing with others structures,
e g. Riemannian manifolds, Boolean algebras, semi-groups and Lie groups. The
reason why we choose to deal mainly with groups and algebras in this paper
is that even with this limitation we will have such a formidable task before us
with so many open and perhaps difficult problems that the subject could not
possibly be treated in a definitive way in a single publication. This will be
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more evident as we go along. In the future we can expect a more sophisticated
and general approach, perhaps embracing some of the above structures in a
unified theory. Anyway, the time seems to be ripe now for a systematic dis-
cussion of stochastic groups which will be attempted in this study, of which this
paper contains the three first parts, and of which further parts are planned to
appear in this journal.

The main stimulus for the author to study the stochastic groups has been
certain problems in applied probability, some of which will be sketched in
Part 1. Some have been found in the applied literature, especially in the phys-
ics journals. Others have been mentioned to the author in discussions or have
appeared in his consultation work. Examination of such problems will help us
with the preliminary work that has to be done, when trying to build a theory
for stochastic groups. It will guide us to the essential problems and concepts
of such a theory, how to choose the terminology and how to avoid trivial or
inadequate generalizations.

After this examination Part 2 will contain definitions and a fairly general
discussion while later parts will be denoted to a more detalled study of sto-
chastic groups, algebras and similar structures.

Some of the topics of this paper were mentioned in an earlier paper, Gre-
nander (1959), but only in a discursive way.

Part 1. Background

1.1. Let us start with the simplest case, the real line B, on which prob-
ability distributions are given, corresponding to independent stochastic variables
x,, %3, ... . Considering R; as a group, with addition as the group operation,
we can form the sum z, +x, which is a new stochastic variable, whose distri-
bution is the convolution of the ones associated with x, and z,. Similarly, the
sum §,=w, +7,+ -+, has a distributior that is frily kaown te us, a% least
in principle. ’\hch of modern probability theory tvelis us how S, or its distri-
bution behaves when » becomes large.

We know e.g. that the average S,/n tends to the mean value m if all =,
have the same distribution with an existing expected value m. Here ‘“‘tends to”
can be understood as convergence in probability (the weak law of large numbers)
or as almost certain convergence (the strong law).

Under certain conditions we know that the sum, appropriately normed

Sn_ 2

converges distributionwise to the normal distribution. More generally, if we con-
sider a double array of independent stochastic variables

P

(2)

2§ (2>

s X3
@ P 3
xi, 1’2), xg’
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and put S,=2{"+ 2"+ - +25°, then z,, with some norming, behaves asymp-
totically in a way that is fairly well known to us to-day. This leads us to the
infinitely divisible distributions, which are, vaguely speaking, the distributions
that can be represented as a sum of independent and arbitrarily small (in prob-
ability) stochastic variables.

To obtain these results many mathematical techniques have been used, the
most important of which is probably the Fourier transform, the characteristic
function ¢ (2)=1FE exp izz. The importance of the characteristic function is due
to its three fundamental properties

1: the correspondence between distribution and characteristic function is 1 — 1.

2: the correspondence is continuous with respect to simple and natural to-
pologies.

3: to the group operation ®,+a, corresponds simply multiplication ¢, - @,.

1.2. Passing to n-space we have very much the same situation although of
course the higher dimension makes the derivations more cumbersome, and the
subject has not been covered quite as thoroughly as for n=1. The characteristic
function is now defined as @ (z)=E exp i (x, z), where (z, z) stands for the inner
product of the stochastic vector x and the argument vector z. The three funda-
mental properties of the last section still apply, and the reason why is as ob-
vious for arbitrary » as for n=1. Indeed, the reference space here is a commu-
tative, locally compact group with certain characters % (z), and ¢ (z) = exp X (2).
The defining property of the characters together with their completeness is, in
the last analysis, what makes the characteristic function such a helpful in-
strument.

For related and more general questions of this type the reader is referred
to Bochner’s recent book, see list of references.

4. In 1834 Khinchin showed in his now classical research memoir “Asymp-
totische Gesetze der Wahrscheinlichkeitsrechnung” that the limit theorems of
probability theory are in close logical relation to certain stochastic processes.
A typical example is the following. Consider a sum S, as before with

Exz,=0
Ezl=V,
Vit Vot -+ V,=1

If n is large and the V, small then S, must behave almost as the value W (1)
of the Wiener process:

W (t) has independent increments
W (')~ W (') is normal with mean zero and standard deviation |t —¢'|
W (0)=0.

In other words the distribution function of S, is close to the normed, normal
distribution function ¢ (x). We will not go into any details here on how this
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statement has to be supplemented to become complete, nor will we describe
Khinchin's proof except remarking that it is built on the observation that the

distribution function (I){T}L—_) satisfies the Feat equation
-t

More generally one has to consider the stochastic process with independent
and time homogeneons increments: the increments z (t”’) — z (£') should have dis-
tributions depending on + and ¢ only through their difference ¢ —t'. The
only possible form of these distributions are the infinitely divisible ones, which
brings us back to the topic of the last section.

1.4. The next logical step is clearly to consider probability distributions in
infinite dimensional vector spaces. Recently Mourier has shown how this can
be done in a Banach, or more specially in a Hilbert space. As can be expected
the measure theoretic set-up becomes more complicated than in R,, but a good
deal of the finite dimensional theory seems to hold with appropriate modifica-
tions in this more general setting.

To get a mean value operation defined on the Banach space X it is neces-
sary to introduce integration and in Mourier’s approach this is done by using
the Pettis integral assuming that every linear functional z* (x) is measurable
(if this holds we speak of an L-space) and integrable, one studies the integral
equation

¥ (m) = Ea* (2).

If this equation has a solution m valid for all z*, then it is unique and m is
called the mean value; this mean value operation has properties that should
be demanded of it, such as additivity and monotonicity.—To actually introduce
a concrete probability measure on the Banach space In question one will prob-
ably usually do this indirectly by preseribing the probability distributions of
all the (nmmerically-valued) linear functionals z* (z). Again this makes it nec-
essary to assume X to be an L-space. The fact that the probability distribu-
tion over X is uniquely determined in this way is a direct generalization of a
thearem of Cramér and Wold to the effect that the knowledge of the prob-
ability masses in every half-space of R, determines the whole distribution.

This definition of mean value makes it possible to prove laws of large numbers
in different versions, e.g. the following. If the dual X* of X is separable, if =,
Z,, ... have the same distribution over X and are independent, if F || X;||< oo
and ¥ X,=m exists then

weakly with probability one. This theorem is due tc Mourier as is this central
limit theorem: 1f x,, x,. ... are identically and independently distributed over
a separable Hilbert space X with
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Ex,=m

Ela|f=o

;N

PR

then

al¥n

is asymptotically normal over X distributionwise. Here a distribution over X
is said to be normal if this is true for every linear functional x* (x).

This theory is only a few years old but it is already clear that it is an
essential extension of the classical results. Among the many possible applica-
tions one notes the case when the stochastic elements x are the realizations of
a stochastic process. One could also mention stochastic Schwartz distributions
as a related topic.

1.5. Considered as a group the Banach space is commutative. To get an
idea of what can happen for non-commutative groups let us consider k objects
numbered 1,2, ..., k. We can permute them in %! different ways and we
will denote this set of permutations by P and by p an arbitrary element of P.
Suppose the k objects are mixed in a random way, i.e. we have probabilities
associated with each p. Instead of the original configuration we now have a
new one that can be denoted p, (1, 2, ..., k). Repeating the mixing n times,
each time independent of the others, we get p, pn_1... 2P, (1, 2, ..., k) and we
may ask how this stochastic permutation behaves for large values of =.

Assuming for simplicity that all the p’s have positive probabilities it is easy
to show (e.g. considering the mixing as a Markov chain) that the distribution
after many mixings converges to the uniform distribution attributing the prob-
abilit; 1/k! to every p.

In this example P forms a g ap, and it matters in which order the suc-
cessive permutation: are performed, P i non-commutative. It is remarkable
that one can state a general result, very similar to the above example, for an
important class of groups, commutative or not, the compact ones. This is duc
to Ito and Kawada, who yroved this by usig a beautiful extension of Fourier
analysis. Sinc. the group o, erations 11ay . i commute, the numerically valued
representations, the craracters, are no. su - .ent, but we must use instead the
unitary represntation. U (g) of the group @, ¢g€G, where U7 (g) is a unitary
matrix and

U@yUr)=Ulgh); ¢, heqd.

The set of irreducivle non-equivalent representations can be enumerated, U,=1,,
U, U,, ... and *Fss. will now re slace the characters. Instead of the characteristic
function we now Fave the ma rix valued quantity EU (g). After n successive
operations we gt the quantity [# U (9)T% here we have just used the above
relation together with the independence of the operations. But the behaviour
of a high matrix power A" depends upon the largest eigenvalues of 4. Under
the present circurmstances it can be shown for a case, which is not quite general
but typical, that ti:e matrix EU (g) has eigen-values of modulus less than one

-
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except for the identity representation U,=I. Hence

lim E[U(g)])" =

n—>0

{I if U=1

0 otherwise,

and one can now appeal to the Peter-Weyl theorem, guaranteeing the com-
pleteness of the set of representations, to show that the limit distribution over
G must satisfy

1 it U=1I

EU(y)= { .

0 otherwise.
With the conditions that we have in mind here this leads to the invariant
(Haar) measure over G normed so that P(@)=1. This completes the sketch of
the proof.

Recently it has been shown by Rosenblatt that one can deal successfully
also with the case when G is only a semi-group.

It would be natural to ask how this limit theorem is connected with sto-
chastic processes taking values from a compact group. This does no seem to
have been done and we will return to this question in a forthcoming part of
this study.

1.6. Let us consider a system consisting of a large number of links in series.
The links could be of a mechanical or electrical nature or they may represent
industrial operations performed in a certain order. Say for simplicity that the
state of a link, the nth one, can be represented by a vector s, in R, and that
the operations are linearly related s,,;=M,s,. Then M, is an nxn matrix and

So=M, ... M, M, s,.

If the transfer matrizx M, takes different values according to some probability
distribution we have a problem resembling the one of last section. We will
have to see what group G is spanned by the possible values of M; if @ is
compact the result of Ito and Kawada applies immediately. E.g. if the M,
mean rotations in n-space the limit distribution would typically be Haar meas-
ure over the orthogonal group or over one of its subgroups. If G turns out
not to be compact (nor commutative making Fourier analysis possible) we have
a new difficulty in front of us. One might think of using the theory of group
representations for non-compact groups but, since this theory is both complicated
and incomplete, this does not look too hopeful. We will see in later parts, how-
ever, that for many important concrete groups we can make use of the more
detailed structure of the group implied by the problem.

In the above example the @ was a group with matrices as elements. A more
general—and more difficult—assumption would be to let G consist of trans-
formations defined on a function space. This occurs naturally in the study of
non-linear stochastic difference equations. Let z,, t=0, 1, ..., be (numerically val-
ued) stochastic variables, joined to each other through the relations

Zeo1 = fo (),
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where for given t and z the value of f,{x) is a stochastic variable. For fixed
%y, Ty, ... We also assume that f, (z;), f,(z,), ... are stochastically independent.
—Note that this simplifies to the well-known autoregressive model if f,(x)=
=ax+ &, where £, are independent and identically distributed stochastic variables.

Often the introduction of non-linearity into a stochastic problem gives rise
to non-commutative difficulties. It is gratifying though that the process is Mar-
kovian, so that techniques exist that may be of use in this context.

1.7. We will arrive at a different but similar problem starting from differ-
ential equations with stochastic coefficients, as is clear from the analogy with the
stochastic difference equations. Consider e.g. the equation

P (@) +a, Q) 2P V@) + -+ a2 () +a, (t) 2 (H) =0

in the interval I, 0<t<7T. The coefficients a,() are stochastic and, for the
moment, let us assume that they are “independent at different time points”;
these things will be made rigorous in a later part. Anyway, if we divide our

vol T, 4 T), it is clear that
n

interval into » equal parts I=4, +iy+ -+ +4p, 6=
n

specifying the values of the vector y(f)=(x(t), ' (2), ... 2 P (#)) at the left end-
point of 4, will determine y(f) at the right endpoint if the coefficients are
treated as constants throughout the short interval 4, These two values of y(f)
are related linearly through a matrix M and the M{ should be considered
as independent for different »’s. Hence

y(T)= lim M ... M§® M{® y(0),

n—»00

which should be campared to the corresponding finite relation of last section.
Just as in the classical cases we hope, so far without any real justification,
that the limit theorems on stochastic groups will be connected with stochastic
processes taking values in these same groups.

One task of ours will be to give a mathematical meaning to differential
equations of the type mentioned above and to study their solutions. This will
perhaps be of special interest for eertain partial equations with physical inter-
pretation, e.g. the equation governing stockastic waves in one dimension with
random propagation coefficient a(z)

aw v
oxt ot
The wawes will be superpositions of components whose frequencies will depend
upon the eigen values A defined by the equation
d2
a(x)l+){v=0
dx

with appropriate boundary conditions. Therefore we have to study such sfo-
chastic spectra, and of course we should do this for difference equations also.
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In the latter case there are already some preliminary but suggestive results
due to Dyson and Wigner.

In this connection we should mention problems of the following type. In
some n-space we are given a differential equation E, whose coefficients may be
random or certain functions. The equation should be valid in some region D,
which is likely to be multiply connected in some applications to electrical con-
ductivity and simply connected in others. However that may be, the charac-
teristic thing about D is that it is not fixed but given in probability terms
only. If the solution of E should satisfy certain conditions on the boundary
of D we will again be led to study certain stochastic eigen value problems. At
present it is not clear if these later important problems can be phrased con-
veniently within the framework of stochastic groups, or if they require some
other thechnique for their solution.

1.8. Let us sum wup this discussion. We have to introduce probability meas-
ures on groups and see what general relations we can get. These relations
will of course be more informative the more detailed structure we are given
for the group. At present the most challenging case seems to be groups which
are neither commutative nor compact. For some of the cases that we have men-
tioned (or will arrive at later on) it is striking that they possess two funda-
mental operations, say addition and multiplication, and form algebras. Actually
in many important situations they are Banach algebras, and this will be useful
to us. This is still a very general concept and we will have to specialize more
in various directions.

On the group, of whatever type it happens to be, we will study stochastic
processes of independent increments. Only the time homogeneous ones will be
dealt with. In the classical cases this would give a good picture of what hap-
pens in general; in the present one the lack of commutativity could possibly
make this assumption of homogeneity in time too narrow, but this is not known
at present and should be investigated.

With the help of the knowledge we can get for such stochastic processes we
hope to be able to state and prove limit theorems for “‘sums” or “‘products”
of independent stochastic group elements. Again this will require some spe-
cialization of the groups. We will try to obtain laws of large numbers, ana-
logues of the central limit theorem and results on infinitely divisible distribu-
tions on the groups. As far as infinitely divisible laws on Lie groups are con-
cerned the interested reader should study the important work of Hunt.

Often the groups are presented as transformation groups already in the orig-
inal form of the practical problem: g transforms some space S (with elements
8) into itself, g 8= 8. Instead of working with the probability distribution of g
over G it may be more convenient to work with the distribution of gs, over
8§ for an arbitrary but fixed element s, of S.

Part 2. General discussion

2.1. The object of our investigation will usually have three structures super-
imposed: an algcbraic, a topological, and a probabilistic structure. These three
cannot be chosen independently of each other. The topology must be chosen
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to make the fundamental operations of the group, ring, field, or whatever it is,
continuous functions of the arguments. But in the same way we must demand
that the same functions be measurable so that they can be subjected to prob-
ability statements. This leads us naturally to the definition

By a stochastic group we mean a topological group G forming a probability
space (G, G, P), where the o-algebra G of subsets of G has the property that
STEeG, S 'eq, for any S, T € Q. Open sets should belong to G.

At present we will write the group operation as multiplication, and ST
means the group operation product and not the set theoretic product, which
will be denoted by Sn7T.

Considering stochastic groups @, G,, ..., G, they are said to be independent
if the probability measure over the Cartesian product @, x@, x ... x @ is simply
the product of the measures over the individual eomponents.

The topology defined on @ induces a topology in the set of probability dis-
tributions on ¢, and this gives us the notion of convergence in probability on a
stochastic group. Given a sequence of probability distributions P, (g,, g) defined
on GXxG we shall say that g, converges to g in probability if for every neigh-
bourhood N of the unit element e of the group we have

lim P, {g,g ' €N}=1.

Given two probability distributions P, and P, on @ we define their convolu-
tion as

Py Py(8)= [ dP(g,)dP,(g,)=

g,9:€8

= [ dP,(g) Po(g™"S).

geG

The convolution operation will in general not be commutative. Here, as in the
followmg, the choice between right and left multlphcamon will give rise to a
duality in definitions and relations.

The convolution corresponds of course to multiplication of mdependent groups.
For several independent groups @, G,, ... we define their partial product
Yn=010s ... §n With its probability measure m,= P; % P, %---%P,. The study of
this measure for large values of n is one of the major problems in the theory
of stochastic groups.

Sometimes we ecan introduce a numerical gquantity measuring the spread of
a distribution over a group. More generally we will define a partial ordering,
saying that P, is more concenirated than P, if there is a non degenerate distri-
bution P, such that P,= P, x P,.

Consider a family of probability measures P,(g) over g, indexed by a posi-
tive argument ¢ and such that

Py =P, % P; for every s, £>0.
This - will be called a homogeneous stochastic process with values in G. Usually
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we will assume that the process has some continuity property, e.g. that it is
continuous tn probability so that

lim P,(geN)=1
ty0

for every neighbourhood N of the identity e.

Another important concept is that of an infinitely divisible distribution. We
shall say that a distribution P over the stochastic group @ is infinitely divis-
ible if for every positive integer n there is a distribution @ such that P=Q"*.

We shall say that a probability distribution P over G is symmetric if
P(E'y=P(E) for every E€Q.

2.2, Given a stochastic group G with a distribution P, what can we say
about the behaviour of z,=P"* when #» increases indefinitely ? We have already
mentioned in 1.5 that Ito and Kawada have shown essentially, that if & is com-
pact, then 7, converges (weakly) to the invariant normed measure on some sub-
group of G. Actually there is also one other possibility which is however of
little concern to us at present.

If we deal with a stochastic group for which z, — = then it follows that
weskly

the limit measure n must satisfy mw % =z ; it must be idempotent. However if
this is the case one can show that G is compact.

At first glance it may appear surprising that the seemingly innocent assump-
tion on compactness should (essentially) guarantee convergence of s,. A mo-
ments reflection makes this plausible. Indeed, if G is compact, then the set of
probability distributions over G is also compact, and any sequence of probability
distributions on @, say =, 7,, 7, ..., Must at least contain a convergent sub-
sequence ; the limit of this will be the invariant measure.

Leaving the compact groups it is clear that we cannot expect limit theorems
of the simple type that we have just discussed. To get results analogue to the
classical limit theorems, say the law of large numbers, we have to norm or
transform the partial products ¢, ¢, ... g» in a suitable manner. The probability
space may be given a linear structure, and this can be done in many ways.
In the next section we will describe one way that we have chosen mainly be-
cause it seems to correspond naturally to the practical problems of Part 1
that bave motivated the present study.

Before we do this, let us remark that it is possible to obtain asympiotic ex-
pressions for s, in a general context. We will return to this important problem
in a later part of this publication.

2.3. We need an algebraic-topological concept that is general enough to in-
clude most of the applied situations, but at the same time it should have a
sufficiently detailed structure to make possible the statement of limit theorems
of the sort we have in mind. Such a concept seems to be the Banach algebra.

We shall say that X is a stochastic Banach algebra if it is a Banach algebra
and forms a probability space (X, X, P), where the o-ring X includes the neigh-
bourhoods of the space and is invariant with respect to the algebraic operations of
the algebra.

In this paper we shall always assume 1) that X is separable and 2) that it
has a unit element e.
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Within the framework it is easy to formulate and prove a natural extension
of the law of large numbers. If z,, #,, ... are independent and identically dis-
tributed stochastic elements in a Banach algebra, we should norm the product
T =% %, ... T, or its factors so that s, converges in probability to a constant
element of X. One way of doing this is the following.

Let y, be independent and identically distributed stochastic elements of X

1
such that | y|| exists and is finite. Let z,=e+—y, so that

1 1 1
Ty = (6 +ﬁy1) (e +%y2) pee (6 +ﬁy”’) =e+S:(Ln)+S§n)+ .. +S$zn),
where

1.
S""’:— A
. ’”f%y

I |
S5 )=; Z Yo Yu

Y<H

ete.

Applying a theorem of Mourier to the sum S{® we know that it converges
almost certainly strongly to an element m €X. This limit element m is the

expeclted value of y, m= fydP (y), where this integral is interpreted in the sense
X
of Pettis. Under the given conditions the expected value exists.
Similarly
n

Sou—1 1 ! 1 -1
Zlﬂn Si”)?/yz;ll leu,n m?/uJ";; Zl'u EulYu
u= u=

S =

RN

where S{¥=m+¢,. Hence, with probability one,

2
m
Sé"’ =§ + &,

with [[el[=0 as n—>oco.

This means that 8§ converges almost certainly strongly to m?/2. In this way
we can prove that S™ converges almost certainly to m’/»!.

Now we just have to complement this reasoning with a simple uniformity
argument. We have of course

1
(n) gl
“S" ” gnv

2 lweli-Ngedi- vl

n 1 v
so that E”Si)ugv—!(E"?/I|)~
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Combining this with the above we have shown that the normed partial products
7, converge strongly in probability to the constant element

em:e+m+7—;+'-- €X.

2.4, Let y(t), 0<t<oco, be a homogeneous process with values in X and
continuous in probability. The word homogeneous should here refer to addition,
which is a commutative operation on X. In practical applications y () will
usually be something wellknown to us, a Wiener- or Poisson-process, a process
of independent increments on R, or on something else, of this nature. From
y(t) we would like to form a process x(f) homogeneous with respect to multi-
plication. We could do something Like this: let us divide the interval (0, ¢) into
n disjoint intervals (0, t;), (¢, ), ... (tn_1, £) with the corresponding increments
Avy=vy(t)—y(t,-1). Form the product

T, () =(e+A ) e+ Ay) ... (e+ AL y).

As we make n large the products s, (f) could perhaps be proved to converge
in probability to some x () and this would be our homogeneous (multiplicative)
process.

We will do this in the following way resembling the expansion of z, of last
section. Let us define

4

x(t)=e+fdy(s)+ f dy(s))dy (s) + f dy (s,)dy (sy)dy (s5)+ .

0 O<s, <s,<t 0<sy<S, <5<t

and we will call x(t) the maultiplicative homogeneous process generated by y (t).
We must of course give a precise meaning to the terms of this expansion and
show that it converges.

The integrals will be defined as the limit of Riemann-Stieltjes sums in the
L,-topology over G. Let us consider the double integral only; the higher ones
are dealt with in the same manner. Divide the interval (0, ¢) into (0, £;),

(ts ty)s +.v s (tn_1, t) and form the Riemann-Stieltjes sum
8= ”Z“ [:l/ (tv) -Y (tv-l)] [?/ (tu) -y (tu—l)]~

As the division is made finer these sums will converge to a limit which does
not depend upon what sequence of divisions we have chosen. To see this let
us take another division (0, &), (t1, &), ..., (tm—1, t) and denote the corresponding
sum by &. The combined division (0, t;’), (1, 82 ), .., (fnsm—1, £) gives rise to
to a sum S”.

As an illustration consider the figure below. To each rectangle of the figure
corresponds one term in the respective sum. In the difference §"—S only the
shaded rectangles of the last figure occur, which follows from (z-+y) (2+u)=
=xz+zu+yz+yu. It is now clear what happens in general: the difference
8" —8 consists only of rectangles close to the diagonal and its norm is domi-
nated by
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0 t t t, t, ot ot
0 t, t, t 0 ¢ t, t, t
Fig. 1.

18" ~8 <2l &)~y G 01y @i —y @1 <
<zl@) -y @Dl ly @l -y @)L (1)

Using the independence of the increments of the y-process the L;-norm is
bounded by

B8 =Sl<3Blly )~y Go|- Elly € —y €]
We will assume that E ||y (s + k) — y (s) || exists, is continuous and that the sums
ZE“y(tu)“y(t,._l)||<M (2)

are uniformly bounded for arbitrary divisions of the fixed interval (0, ). Then,
if the division is sufficiently fine, S differs arbitrarily little from 8" and hence
also from 8 which completes the proof.
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The reasoning also gives us a bound for the norm of the integrals

Mlc

B <7€_’—7

dy(8,)dy (S,) ... dy (Sk)

0< S <. <8<t

which shows that the sum defining z (t) converges in the L;-norm. We have
then proved that if y(t) is an additive homogencous process continuous on (0, t)
in the Ly-norm and if the sums (1) are uniformly bounded then the expansion (2)
converges in the same norm to a multiplicative process x(f). Only the last state-
ments remains to be verified which is very simple. Indeed putting

t+h

z(t, t+h)=e+ f dy(s)+ jf dy(s;)dy(sg+ -

t t<s <Sy<t+h

it follows that z(t+h)==z()-z(t, t+Ah) which can be seen by going back to
the Riemann-Stieltjes sums. Clearly z (¢, £+ %) is independent of x(f) and has
the same distribution as (k). The same holds for the increments over several
intervals.
The relation between x(f) and y(f) can also be given the form of a func-
ional equation
¢

z({t)=e+ Jx(s)dy(s),

]
which can conveniently be written symbolically as
dzx(t)=2x()dy(t).
The functional equation also shows that z () is continuous in the L,-norm.

In one particular case the relation between the z- and y-process is especially
simple. This is when the values of y(f) commute so that we can write.

s=c+ [ayo)+3 [ [aveavie+
0 o0

t t t
1
+EJJ‘fdy(sl)dy(SZ)dy(83)+...=
0 0 ©
t

= exp fdy(s)= exp ¥ (£).

0

The reader may have noted that the construction of x(f) from z (f) resembles
that of multiplicative integrals.

176



ARKIV FOR MATEMATIK. Bd 4 nr 12

2.5. Let us now derive an approximation theorem useful when studying the
asymptotic probability distribution of the product of a large number of sto-
chastic factors, each of which does not deviate too much from the unit element.
First we must define what should be meant by convergence distributionwise
on X. Let P, P,, ... be a sequence of distributions on X with the same do-
main of definition. We will say that P, converges distributionwise to a distri-
bution P if the distribution functions f(x,) converges to the distribution func-
tion of f(x) in the usual sense. Here z,, ®,, ... and x are stochastic group
elements with the distributions P, P,, ... and P respectively, and f(x) is an
arbitrary real valued and uniformly continuous function defined on X.

We will consider a double array of stochastic group elements

Yn

Yo15 Yoo
Y310 Y32> Yas

where the elements in each row are independent and have the same distribu-
tion. Further we shall assume that their norm is integrable and that the sum

n
S Ellyml| <M<

is uniformly bounded.

Let y(t) be an additive homogeneous process defined on X with the prop-
erties described in the last section and with the associated multiplicative homo-
geneous process z (). Assume that for every proportion ¢ between 0 and 1
we have

ten]

Z Yny

v=1

y (o).

distributionwiso
We are going to show that

Tn=(e+Yn1) (€ +Yn2) ... (€+ Ynn)
converges distributionwise to z (1).

Indeed we have

Tp=e+ 8"+ 8+ .- + 857
x(l)=e+8;+8,+ -,

n

Sin) = z Yny
1
where
Sén) = Z Yny Ynu
v<p
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1
8,=[dy )=y (1)
0

d
" So= [ dy(s)dys,)

Q<8 <8<1

|

Working in the L,-topology over X we know that if the expression for z (1)
is replaced by a partial sum, little is changed if the truncation point m of the
sum is chosen sufficiently far out. We also know that if we use a fine divi-
sion 0<y <t,<---<t,=1 of the unit intervals and replace the integrals S,,
8,, ..., S by the Riemann-Stieltjes sums the effect is small. Now we can do
exactly the same thing with the expression for m,: truncate the sum and re-
place the terms by sums which are summed over blocks (rectangles) of the in-
dices. But each such sum over a block converges distributionwise to the analog
quantity expressed in terms of increments of the y-process. Using the inde-
pendence of the y,’s and increments of y(f) respectively the stated results
follows. _

The importance of this result lies in the fact that it enables us to pass from
additive to multiplicative limit theorems. Additive limit theorems are available
both from the classical theory and from its extension to linear spaces due to
Mourier and Fortet.

However, the result is limited by the assumption that the individual factors con-
tribute little to the product. Also we may want to examine problems having group
structure instead of being an algebra. For this other methods will be used. It
should also be noted that there are important situations where the sums (2)
do not stay bounded. It will then be eonvenient to use an L,-argument instead,
and this will be done in Part 5 of this study.

Part III. Remarks on limit theorems

3.1. In this part we will return to the fairly general situation of stochastic
groups with no other structure superimposed. One important task here is to
study the asymptotic behaviour of convolutions P"* for a given probability
distribution P over G. We will assume throughout that G is locally compact
although a part of what follows does not depend upon this condition.

If the support S of the measure P on G does not coincide with G it is clear
that we loose nothing in generality by confining us to the group S<G. Here
S is the algebraic-topological closure of §. This will always be assumed done.

Let us assume that there exists a g-finite right invariant measure y, u(Ex)=
(B} for every x €G, E € G and that P is absolutely continuous with respect to u

P(E)= [ p)dpu(2).
E

Here p(x) has the properties of a generalized frequency function.

We will also assume that P is a symmetric distribution (see 2.1) which makes
simpler the use of the Hilbert space method below. It seems desirable to get
rid of this restriction, which is not inherent in the original formulation of the
problem.
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As a tool for the examination of P"* we will use the transformation

TH@) = [fay)dP(y)

veG

which is well defined at least for functions f(x) taking a finite number of values

, if ®€F,, u(k,) <o, B, disjoint
i

fe)= 0 if ¢ CJEV,
1

Tf(x)= ;fvp(x*E,).
But using the L,-metric
lglF= [lg@)[Fdp@),
G

n

we have 1T f (@)= [ %fvP(x‘lEv) 2d/,¢(x)=

g

where ¢, (u) is the indicator function of E,. Hence

171 (@)=

2
dp(x),

?fvf%(xy)p(y)du(y)

G

=fffZﬁ%@th%W@PWW@W#WWM@dM@<

G G @G

< ( J Vlefu%(xy)lzd/&(x) VJ‘|Zf”%(m)Izdu(x)p(y)p(z)d/t(y)du(Z)=
G

YEG 266G G

-ie [ [arwar@-ise

yeG zeG

For the last equality we have used

[1Zte@nPdu@ =[5 o) Pdpy )=
G G

= [IZfp P du =1
But since ||7'f||<||f|| for finite valued functions f(x) the transformation can be
extended uniquely to functions f(x) belonging to the space of quadratically

functions L, (@) (with respect to the invariant measure).
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The bounded linear operator T defined in L,(G) will actually have exactly
the norm ||7||=1 under mild conditions. Suppose that it is possible to find an
increasing sequence of sets E,, E,, ... such that

u(B,) < oo
E G

=1, 2z€4.
7> 00 y(E,)

The last condition means that the effect of any finite translation z€@ has a
small effect measured relative to u(E,).
Under this condition let ¢, (x) be the indicator function of E,. Then

Tq),(x):qu),(xy)p(y)d#(y)
and |7 g, (z)]|2= Gfaffqz @) @, (@2) p(y) p () du (@) duly) du(z) =

= [[pp@ ey 2duy)duk),
GG

with 5w.2= [ gy g @) dp@)=uEy nEz
zTeG
gv(y, ?)
and ((E) 2
. gy, 2)

this implies bounded convergence of the integrals

""°° ”‘Pn ”
proving the assertion.
The operator T' is self adjoint since

szf(u)g(u—”)dP(v‘l)d‘u(u)=
Gé

= fjf g(uv)dP(v)duw)=(f, Tg).

GG

The spectrum of 7T is hence situated in the interval (—1,1) and one asks
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whether the endpoints +1 can be discrete eigen values. If such is the case
we have

if(x)=Tf(x)=£f(xy)dP(y)
for some f(x) € L,(®), and according to Schwarz’ inequality
IHE= [f[ 1@y ez dp (@) dP @) dP ()<
< [[lIitFdP @ dPE =]

where we have used the right invariance of u. But equality is possible only if

fay)=cf(x2), [¢|=1,

almost everywhere with respect to du(z), d P(y), d P(z). We now make use of
the restriction of G to the closure of P and deduce that |f(z)|= constant almost
everywhere with respect to du(x). Such a function belongs to L,(G) if and
only if u(Q) is finite, which implies that G is compact. Conversely if G is com-
pact the function f(z)=constant belongs to L,(G) and is an eigenfunction as-
sociated with the eigen value 1=1.

It is possible to give a sufficient and not very strong condition ensuring that
the spectrum of T is bounded away from A='—1 and situated in an interval
(c,1) with —l<c<]l.

3.2, The iterates T" of T have a simple probabilistic meaning. Consider n =2

T f(z)= [ [f(xyz)dP(y)dP(2) = [ f(wu) dP?*(u),
G G G

and generally T"f is the transform of f with respect to the m-th convolution.
Thus we can get a convenient representation of the probability P**(x ' E) of
any set B of finite y-measure. If ¢ (x) is the indicator function of £ we have
T"@(x)=P"* (x ' E), so that eg. P"*(E)=T"¢ (e).

Using the self-adjoint nature of 7' we can represent ‘the operator in terms of
a resolution E (1) of the identity

1
T= [1dEQ)
-1

1
so that P* @ 'B)=T"g(x)= [A"dE})¢p@).

~1

This relation also holds pointwise in z. To make this rigorous we note that
P"*(z7* E) is a continuous function of z.
We are interested in what happens to P"*(z ' E) for large values of n. One

thing we can say immediately; the probability tends to zero in the mean. In-
deed
1

| P* @ B)|P= [ d||EM) |
-1
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and the funation of bounded variation || E(A)¢||* is continuous at A= + ; the
opposite case was excluded by us in the last section. But then we can apply
Lebesgue’s theorem on bounded convergence to the above integral showing that
it converges to zero.

To get a sharper statement on the asymptotic decrease of P"*(z ' E) we
must of course start from more detailed assumptions, e.g. as follows. Assume
that the derivative

d

di

D p@)=a(d, x)

exists, is continuous in (-1, 1) and behaves asymptotically as a (1 —4)*, a> —1,
at the point A=1. Then
1
P*a ' Ey~a | A"(1—-A)*dA=a

o

[

F(n-l-l)f‘(a+1)~aF(oc+ 1)
T(n+at+2) n*tl

“Local” limit results of this type could be extended to cover the more general
situation, where we let x move out as n increases, as soon as we have con-
structed the family E (1) of projection operators. In specific situations this may
be difficult to achieve and we will see later that more direct methods are
available in specific situations.

3.3. In the present context our main interest is concentrated on the non-
commutative case, but it may prove instructive to see how the above simpli-
fies considerably on a commutative group.

Consider for a fixed but arbitrary y € @ the operator

Sy (@)=} [f (wy)+fzy™
It has most of the properties that 7 has. It is certainly bounded, || 8, (<1,
and self-adjoint; the proof of this is left to the reader. For any y, z € G we have
48, 8,f (@)= flwya)+f(zyz ) +fley T 2)+f @y 2=
=f zzy)+f(zzy )+ y) + ey =
=4 Sy Sz f (z)
The set of operators {S,; y € G} is then a family of bounded, self-adjoint and
commuting operators. It is then known that they can all be represented as

“functions” of one single operator associated with the operator family of pro-
jections F (1),

8,= [, () dF (),

so that T — js dP(y)= [y (A)dF(4)
with py(A)= [y, (VAP @)

G
Hence T"f= [y"(A)dF (3),
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which, after a change of variable, is the same representation as before. Once
we have found the spectral representation for 8, it can be used to construct
the resolution of the identity for T, and this holds whatever p is. The existence
of such a universal (on @) spectral representation makes the commutative case
especially simple. At present we do not know if something like this holds for
the non-cummutative groups, but it seems unlikely.

The reader may have observed that for a commutative G the differential
solutions of §, can be expressed in terms of the group characters.

For a general group let us study the transformation S=., with y fixed.
This leads us to the cyclic group %*; suppose it is of infinite order. Starting
from its characters we can immediately write down the spectral representation
of § and the value of P"*(E). The simple form of the expression obtained
indicates that we should be able to derive it using less brutal methods.

Indeed, taking for example E to consist of the unit element e only, we have

P"™ (E)y=P@y*y* ... y** €R)

where the -+ and — signs are independent and have the probability 1/2 each.
Hence we get the binomial probability
'

P E)=["\2"
’IJ
2,

if n is even and the probability zero if n is odd.

The approach of the present part may be of some use for the general dis-
cussion, but for the actual detailed study of particular stochastic groups more
direct algorithms may be found.
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