The Diophantine Equation $\boldsymbol{x}^{2}+7=\mathbf{2}^{\boldsymbol{n}}$

By T. Nagell

In Vol. 30 of the Norsk Matematisk Tidsskrift, pp. 62-64, Oslo 1948, I published a proof of the following theorem: ${ }^{1}$

When x is a positive integer, the number $x^{2}+7$ is a power of 2 only in the following five cases: $x=1,3,5,11,181$.

Since prof. L. J. Mordell drew my attention to a paper by Chowla, Lewis and Skolem in the Proceedings of the American Mathematical Society, Vol. 10 (1959), p. 663-669, on the same subject, I consider it necessary to publish in English my proof of 1948 which is quite elementary.

The problem consists in determining all the positive integers x and y which satisfy the relation

$$
\begin{equation*}
\frac{1}{4}\left(x^{2}+7\right)=2^{y} . \tag{1}
\end{equation*}
$$

It is evident that the difference of two integral squares u^{2} and v^{2} is equal to 7 only for $u^{2}=16$ and $v^{2}=9$. Hence we conclude that the exponent y in (1) can be even only for $y=2$ and $x=3$. Thus we may suppose that y is odd and $\geqq 3$.

Passing to the quadratic field $K(\sqrt{-7})$, in which factorization is unique, we get from (1)

$$
\begin{equation*}
\frac{x \pm \sqrt{-7}}{2}=\left(\frac{1+\sqrt{-7}}{2}\right)^{y} \tag{2}
\end{equation*}
$$

whence

$$
\begin{equation*}
\left(\frac{1+\sqrt{-7}}{2}\right)^{y}-\left(\frac{1-\sqrt{-7}}{2}\right)^{y}= \pm \sqrt{-7} \tag{3}
\end{equation*}
$$

Considering this equation modulo

$$
\left(\frac{1-\sqrt{-7}}{2}\right)^{2}=\frac{-3-\sqrt{-7}}{2}
$$

we get, since y is odd and $\geqq 3$, and since

$$
\left(\frac{1+\sqrt{-7}}{2}\right)^{2}=\frac{-3+\sqrt{-7}}{2} \equiv 1\left(\bmod \frac{-3-\sqrt{-7}}{2}\right)
$$

[^0]T. nagell, The Diophantine Equation $x^{2}+7=2^{n}$
the congruence
$$
\frac{1+\sqrt{-7}}{2} \equiv \pm \sqrt{-7}\left(\bmod \frac{-3-\sqrt{-7}}{2}\right)
$$

But this congruence is possible only when the right-hand side is $-\sqrt{-7}$. Hence, we must take the lower sign in (3). Thus equation (3) may be written

$$
\begin{equation*}
-2^{y-1}=\binom{y}{1}-\binom{y}{3} \cdot 7+\binom{y}{5} \cdot 7^{2}-+\cdots \pm\binom{ y}{y} \cdot 7^{\frac{1}{2}(y-1} \tag{4}
\end{equation*}
$$

This equation implies the congruence

$$
-2^{y-1} \equiv y(\bmod 7)
$$

which has the solutions

$$
y \equiv 3,5,13(\bmod 42)
$$

Suppose first $y \equiv 3(\bmod 42)$ and put

$$
y-3=7^{z} \cdot 6 \cdot h
$$

where h is an integer not divisible by 7. The number

$$
\binom{y}{2 k+1} \cdot 7^{k}=\frac{y(y-1)(y-2)}{(2 k-2)(2 k-1) 2} \frac{(y-3)}{k(2 k+1)} \cdot\binom{y-4}{2 k-3} \cdot 7^{k}
$$

is divisible by 7^{z+1} for $k \geqq 2$, since $7^{k-1}>2 k+1$.
Hence we get from (4)

$$
-2^{y-1} \equiv y-\frac{7}{6} y(y-1)(y-2)\left(\bmod 7^{z+1}\right)
$$

and thus

$$
-2^{y-1} \equiv-4 \equiv y-7\left(\bmod 7^{z+1}\right)
$$

But this implies

$$
y-3 \equiv 0\left(\bmod 7^{z+1}\right)
$$

which is contrary to our hypothesis on y. Thus the only possibility is $y=3$ corresponding to $x=5$.

Suppose next that $y \equiv 5(\bmod 42)$ and put

$$
y-5=7^{z} \cdot 6 \cdot h
$$

where h is an integer not divisible by 7 . The number

$$
\binom{y}{2 k+1} \cdot 7^{k}=\frac{y(y-1) \ldots(y-5)}{(2 k-4)(2 k-3) \ldots(2 k+1)} \cdot\binom{y-6}{2 k-5} \cdot 7^{k}
$$

is divisible by 7^{z+1} for $k \geqq 3$, since $7^{k-1}>2 k+1$.

Hence we get from (4)

$$
-2^{y-1} \equiv-16 \equiv y-70+49\left(\bmod 7^{z+1}\right)
$$

But this implies

$$
y-5 \equiv 0\left(\bmod 7^{z+1}\right)
$$

which is contrary to our hypothesis on y. Thus the only possibility is $y=5$ corresponding to $x=11$.

Finally consider the case $y \equiv 13(\bmod 42)$ and put

$$
y-13=7^{2} \cdot 6 \cdot h
$$

where h is an integer not divisible by 7. The number

$$
\binom{y}{2 k+1} \cdot 7^{k}=\frac{y(y-1) \ldots(y-13)}{(2 k-12) \ldots(2 k+1)} \cdot\binom{y-14}{2 k-13} \cdot 7^{k}
$$

is divisible by 7^{z+1} for $k \geqq 7$, since $7^{k-2}>2 k+1$. Hence we get from (4)

$$
\begin{aligned}
-2^{12} \equiv-4096 \equiv y-\binom{y}{3} \cdot 7+\binom{y}{5} \cdot 7^{2}-\binom{y}{7} \cdot 7^{3}+ & \binom{y}{9} \cdot 7^{4}-\binom{y}{11} \cdot 7^{5}+ \\
& +\binom{y}{13} \cdot 7^{6}\left(\bmod 7^{z+1}\right)
\end{aligned}
$$

We may replace y by 13 in all the terms on the right-hand side which are divisible by 7 . Then we get the congruence

$$
-4096 \equiv y-4109\left(\bmod 7^{z+1}\right)
$$

Hence

$$
y-13 \equiv 0\left(\bmod 7^{z+1}\right)
$$

which is contrary to our hypothesis on y. Thus the only possibility is $y=13$, corresponding to $x=181$.

[^0]: ${ }^{1}$ The theorem is set as a problem in my Introduction to Number Theory, Stockholm and New York 1951 (Problem 165, p. 272).

