On linear dependence in closed sets

By Ingemar Wik

1. Kronecker's theorem can be formulated as follows: A necessary and sufficient condition for $\lambda_{2}-\lambda_{1}, \lambda_{3}-\lambda_{1}, \ldots, \lambda_{k}-\lambda_{1}$ to be linearly independent $(\bmod 2 \pi)$ is

$$
\inf _{a_{y}} \sup _{n \geqslant 0}\left|\sum_{1}^{k} a_{v} e^{i n \lambda_{v}}\right|=\sum_{1}^{k}\left|a_{v}\right| .
$$

Throughout the paper n represents integers and t arbitrary real numbers.
For an arbitrary closed set on $(0,2 \pi)$ we define the following indices of linear independence:
(a) $P_{C}(E)=\inf _{\mu \in \Gamma^{\circ}} \sup _{n \geqslant 0}\left|\int_{E} e^{i n x} d \mu(x)\right|$
(b) $P_{C}^{*}(E)=\inf _{\mu \in \Gamma^{*}} \sup _{t \geqslant 0}\left|\int_{E} e^{i t x} d \mu(x)\right|$
(c) $P_{H}(E)=\inf _{\mu \in \Gamma^{\circ}} \sup _{n}\left|\int_{E} e^{i n x} d \mu(x)\right|$
(d) $P_{H}^{*}(E)=\inf _{\mu \in \Gamma^{\circ}} \sup _{t}\left|\int_{E} e^{i t x} d \mu(x)\right|$,
where Γ° is the class of functions μ which are constant outside E and satisfy

$$
\int_{E}|d \mu|=1 .
$$

An immediate consequence of the definitions is:

$$
0 \leqslant P_{C} \leqslant\left\{\begin{array}{l}
P_{C}^{*} \\
P_{H}
\end{array} \leqslant P_{H}^{*} \leqslant 1 .\right.
$$

In Kronecker's theorem the condition $n \geqslant 0$ can be changed to $t \geqslant 0,-\infty<$ $<n<\infty$ or $-\infty<t<\infty$.
If E consists of a finite number of linearly independent points we thus have $P_{C}=P_{C}^{*}=P_{H}=P_{H}^{*}=1$. We shall prove that this property holds for all sets E for which $P_{H}^{*}(E)=1$ (Theorem 1) and that $P_{H}^{*}(E)>0$ implies $P_{C}(E)>0$ (Theorem 2).

A set E is called a Kronecker set if $P_{C}(E)=1$ and a weak Kronecker set if $P_{C}(E)>0$.

An example of a perfect Kronecker set of the Cantor type was given in Rudin [4]. Theorem 2 provides a positive answer to the question, raised by Kahane-Salem in [3], concerning the equivalence of Carleson-sets and Helson-sets. Both notions are equivalent to weak Kronecker sets.

The following theorem by Carleson [1] is fundamental for the proof of Theorem 2:

Theorem A. A necessary and sufficient condition that $P_{H}(E)>0$ is that for each $\delta>0$ every continuous function $\varphi(x)$ has a representaticn
where

$$
\varphi(x)=\sum_{-\infty}^{\infty} a_{v} e^{\mathrm{l}_{\nu x},}, x \in E
$$

$$
\sum_{-\infty}^{\infty}\left|a_{v}\right| \leqslant \frac{1}{P_{H}}+\delta
$$

2. To prove Theorem 1 below we use

Lemma 1. If $P_{H}^{*}(E)=1$ we have for all $\mu \in \Gamma^{\circ}$

$$
\varlimsup_{|t| \rightarrow \infty}\left|\int_{E} e^{i t x} d \mu(x)\right|=1
$$

Proof. Suppose that the lemma is false. Then there exists a function $\mu \in \Gamma^{\circ}$ so that for $t=t_{0}$ we have

$$
\int_{E} e^{i t_{0} x} d \mu(x)=e^{i r_{0}} .
$$

μ cannot be a step function. In that case the lemma follows immediately from Kronecker's theorem. Without loss of generality we put $\varphi_{0}=0$ and we have $d \mu=e^{-i t_{0} T} d p(x), d p(x) \geqslant 0$.

Choose $\xi \in E$, a point of continuity of μ, so that $e^{i t_{0} \xi} \neq 1$ and form

$$
d \mu_{1}=e^{-t t_{1} x} d p(x)+d \delta(x-\xi) .[\delta(x)=0 \text { for } x<0,=1 \text { for } x \geqslant 0] .
$$

There is no τ satisfying $\left|\int_{E} e^{i \tau x} d \mu_{1}\right|=2$.
Thus $\varlimsup_{|t| \rightarrow \infty}\left|\int_{E} e^{i t x} d \mu_{1}(x)\right|=2$ and $\varlimsup_{|t| \rightarrow \infty}\left|\int_{E} e^{i t x} d \mu(x)\right|=1$ which is a contradiction that proves Lemma 1.

Lemma 2. If $P_{H}^{*}(E)=1$ ue have for all $\mu \in \Gamma^{\circ}$

$$
\varlimsup_{|n| \rightarrow \infty}\left|\int e^{i n x} d \mu(x)\right|=1
$$

Proof. The same as for Lemma 1 if t is changed to n.
Cor. 1. If $P_{H}^{*}(E)=1$ we have for all $\mu \in \Gamma^{\circ}$

$$
\lim _{t \rightarrow \infty} \int_{E}\left|e^{i t x}-1\right||d \mu|=0
$$

Proof. Choose an arbitrary $\varepsilon>0$. By Lemma 1 there is a sequence $\left\{t_{v}\right\}, 1$ that

$$
\left|\int_{E} e^{i t_{\nu} x+i \varphi} d \mu-1\right|<\frac{\varepsilon^{2}}{6}, \nu \geqslant v_{0} .
$$

Put

$$
d \mu_{2}=e^{i \nu_{\nu_{0}} x+i \varphi} d \mu=d \mu_{2}^{\prime}+i d \mu_{2}^{\prime \prime}
$$

Then we have

$$
\int_{E}\left(|d \mu|-d \mu_{2}^{\prime}\right)<\frac{\varepsilon^{2}}{6} \text { and } \int_{E}\left|d \mu_{2}^{\prime \prime}\right|<\frac{\varepsilon^{2}}{6}
$$

By the triangle inequality we obtain for $\nu \geqslant v_{0}$

$$
\begin{gathered}
\frac{\varepsilon^{2}}{6}>\left|1-\int_{E} e^{i t_{\nu} x+i \varphi} d \mu\right|=\left|1-\int_{E} e^{i\left(t_{\nu}-t_{v_{0}}\right) x} d \mu_{2}\right| \geqslant \\
\geqslant\left|\int_{E} 1-e^{i\left(t_{v}-t_{v_{0}}\right) x}\right| d \mu| |-\int_{E}\left|e^{i\left(t_{v}-t_{v_{0}}\right) x}\left(|d \mu|-d \mu_{2}^{\prime}\right)-\int_{E}\right| e^{i\left(t_{\nu}-i_{v_{0}}\right) x} d \mu_{2}^{\prime \prime} \mid
\end{gathered}
$$

whence

$$
\int_{E} 1-\cos \left(t_{p}-t_{r_{0}}\right) x|d \mu|<\frac{\varepsilon^{2}}{6}+\frac{\varepsilon^{2}}{6}+\frac{\varepsilon^{2}}{6}=\frac{\varepsilon^{2}}{2}
$$

and by Schwarz's inequality

$$
\begin{gathered}
\int_{E}\left|e^{i\left(t_{\nu}-t_{v_{0}}\right) x}-1\right||d \mu|=2 \int_{E}\left|\sin \frac{\left(t_{\nu}-t_{v_{0}}\right) x}{2}\right||d \mu| \leqslant 2 \sqrt{\int_{E} \sin ^{2} \frac{\left(t_{\nu}-t_{v_{0}}\right) x}{2}|d \mu|} \\
\int\left|e^{i\left(t_{\nu}-t_{v_{0}}\right) x}-1\right||d \mu|<\varepsilon \text { for } v \geqslant v_{0}
\end{gathered}
$$

and Cor. 1 is shown.
Cor. 2. If $P_{H}(E)=1$ we have for all $\mu \in \Gamma^{\circ}$

$$
\lim _{n \rightarrow \infty} \int_{E}\left|e^{i n x}-1\right||d \mu|=0 .
$$

Proof. The same as for Cor. 1 if t is changed to n and Lemma 2 is used instead of Lemma 1.

Cor. 3. $P_{H}(E)=1$ implies $P_{C}(E)=1$
Proof. Suppose that $P_{C}(E)<1$. Then there exists a function $\mu \in \Gamma^{\circ}$ with $\left|\int_{E} e^{i n x} d \mu(x)\right|<r<1, n \geqslant 0$. According to Lemma 2 we choose n_{0} so that

$$
\left|\int_{E} e^{i n_{0} x} d \mu(x)\right|>\frac{1+r}{2}
$$

and by Cor. 2 there exists n_{1} with the properties: $n_{1}+n_{0}>0$ and

$$
\int_{E}\left|e^{i n_{2} x}-1\right||d \mu|<\frac{1-r}{2}
$$

1. wik, On linear dependence in closed sets

The triangle inequality gives
$r>\left|\int_{E} e^{i\left(n_{0}+n_{\nu}\right) x} d \mu(x)\right| \geqslant\left|\int_{E} e^{i n_{0} x} d \mu(x)\right|-\int_{E}\left|e^{i\left(n_{0}+n_{\perp}\right) x}-e^{i n_{0} x}\right||d \mu(x)|>\frac{1+r}{2}-\frac{1-r}{2}=r$.
This contradiction proves Cor. 3.
Lemma 3. From a set of rational numbers with denominator m, it is sufficient to remove $m-1$ to get an integer as the sum of the others.

Proof. Enumerate the numbers $\left\{\frac{P_{v}}{m}\right\}_{1}^{N}$ and from the sums

$$
\sum_{1}^{k} \frac{P_{v}}{m}=n_{k}+\frac{\alpha_{k}}{m} \quad k=1,2, \ldots, m
$$

At least two of the $\alpha_{k}: s$ are identical, e.g. $\alpha_{k_{1}}$ and $\alpha_{k_{2}}$. Thus

$$
\sum_{k_{2}+1}^{k_{1}} \frac{P_{v}}{m}=n_{1}
$$

These P_{v} are removed and the others are enumerated again from 1 to $N-\left(k_{1}-k_{2}\right)$. We obtain a similar sum:

$$
\sum_{k_{2}+1}^{k_{1}^{\prime}} \frac{P_{v}^{\prime}}{m}=n_{2}
$$

Analogously we can continue until the number of terms is less than $m-1$. The sum of the others is then an integer, which was to be proved.

Theorem 1. If $P_{H}^{*}(E)=1$, then E is a Kronecker set.
Proof: Suppose that $P_{H}^{*}(E)=1$ and $P_{H}(E)<1$. Then there exists a function $\mu \in \Gamma^{\circ}$ satisfying

$$
\begin{equation*}
\left|\int_{E} e^{i n x} d \mu(x)\right|<P_{1}, \text { all } n, P_{1}<1 \tag{1}
\end{equation*}
$$

By Lemma 1 there is a sequence $\left\{t_{j}\right\}_{1}^{\infty}$ with the properties:

$$
\left|\int_{E} \mathrm{e}^{t f^{x} x} d \mu(x)\right| \rightarrow 1
$$

and

$$
t_{j}-\left[t_{j}\right] \rightarrow \alpha, \quad\left[t_{j}\right]=n_{j} .
$$

Put

$$
\delta=\frac{1-P_{1}}{8} \text { and } m=\left[\frac{8 \pi}{1-P_{1}}\right]+1
$$

For $j \geqslant j_{0}$ we have

$$
\begin{equation*}
1-\left|\int e^{i n f^{x}} e^{i \alpha x} d \mu(x)\right|<\delta \tag{2}
\end{equation*}
$$

μ is continuous on E^{C} and discontinuous on $E^{S} . E=E^{C} \cup E^{S}$ and $\int_{E}|d \mu|=a$. $a \neq 0$ for otherwise the theorem follows directly from Kronecker's theorem.

Before proving the theorem we make the following statement: To each number β and each ψ there exist an integer N_{β} and a constant ψ_{β} with the properties
and

$$
\int_{E^{C}}\left|e^{i N_{\beta^{x+i}} i_{\beta}}-e^{i \beta x+i \psi}\right||d \mu|<2 \delta
$$

$$
\int_{E^{S}}\left|e^{i N_{\beta^{x}} x i \varphi_{\beta}}-1\right||d \mu|<\delta .
$$

To show this we divide E^{C} into disjoint subsets $E_{v}, \cup E_{v}=E^{C}$, restricted by the condition

$$
\frac{a \delta}{2 m!} \leqslant \int_{E_{v}}|d \mu| ₹ \frac{a \delta}{m!} .
$$

We construct new functions μ_{v} of bounded variation on E by choosing

$$
\left\{\begin{array}{l}
d \mu_{\nu}=e^{-i \beta x-i v}|d \mu(x)| \text { on } E_{\nu} \\
d \mu_{\nu}=|d \mu(x)| \text { otherwise } .
\end{array}\right.
$$

$\int_{E}\left|d \mu_{\nu}\right|=1$ and thus by Lemma 1 there exists a sequence t_{k}^{ν} and a constant φ_{v} so that

$$
\begin{equation*}
\int_{E} e^{i t_{k}^{v} x+i \varphi_{v}} d \mu_{v} \rightarrow 1 \tag{3}
\end{equation*}
$$

and

$$
t_{k}^{\nu}-\left[t_{k}^{v}\right] \rightarrow \alpha_{v} \quad\left[t_{k}^{v}\right]=n_{k}^{v} .
$$

However, α_{v} is a rational number with denominator less than m. For suppose that the contrary is true. Then there are two integers q_{1} and q_{2} satisfying

$$
q_{1} \alpha_{p}+\alpha-q_{2}=h, \text { where }|h|<\frac{1}{m} .
$$

For $k \geqslant k_{0}$ we have according to (3) and the definition of μ_{v}

$$
\int_{E-E_{v}}\left|e^{i\left(n_{k}^{\eta}+\alpha_{\nu}\right) x+i q_{v}}-1\right||d \mu|<\frac{\delta}{q_{1}}
$$

and thus, if $q_{1} n_{k}^{v}+q_{2}=1_{k}^{v}$,
whence

$$
\delta>\int_{E-E_{v}}\left|e^{i\left(\epsilon_{1} n_{k}^{\eta}+\sigma_{1} \alpha_{\nu}\right) x+i \alpha_{1} \varphi_{v}}-1\right||d \mu|=\int_{E-E_{v}}\left|e^{i i_{k}^{\nu} x+i \alpha_{1} \varphi_{v}} e^{i h x}-e^{i \alpha x}\right||d \mu|
$$

$$
\int_{E} e^{i i_{k}^{i} x+i \alpha_{1} \varphi_{\nu}}-e^{i \alpha x}| | d \mu \left\lvert\,<\delta+2 \pi h+\frac{a \delta}{m!}<4 \delta .\right.
$$

1. wIK, On linear dependence in closed sets

This gives

$$
\left|\int_{E} e^{i n_{j} x} e^{i \alpha x} d \mu(x)-\int_{E}^{i\left(l^{(l} k_{k}+n_{j}\right) x+i \sigma_{1} \varphi_{\nu}} d \mu(x)\right|<4 \delta .
$$

For $j \geqslant j_{0}$ we have by (2)

$$
\left|\int_{E} e^{i\left(l l_{k}+n_{j}\right) x} d \mu\right|>1-5 \delta>P_{1}
$$

contrary to (1), and we have proved that all α_{v} are rational numbers with denominator m !.

We put $\varepsilon_{1}=\frac{a \delta^{2}}{4 m!}$. If $k \geqslant k_{1}$ we have by (3) for all ν

$$
\left|\int_{E_{\nu}} e^{-i \beta x-i \varphi} e^{i\left(n_{k}^{\nu}+\alpha_{\nu}\right) x+i \varphi_{\nu}}\right| d \mu\left|+\int_{E-E_{v}} e^{i\left(n_{k}^{y}+\alpha_{\nu}\right) x+i \varphi_{\nu}}\right| d \mu|-1|<\left(\frac{\varepsilon_{1}}{2^{\nu+1}}\right)^{2} .
$$

Applying Schwarz's inequality as in the proof of Cor. 1 we get:

$$
\int_{E_{v}}\left|e^{i\left(n_{k}^{v}+\alpha_{\nu}\right) x+i \varphi_{v}}-e^{i \beta x+i \varphi}\right||d \mu|<\frac{\varepsilon_{1}}{2^{v}}
$$

and

$$
\int_{E-E_{v}}\left|e^{i\left(n_{k}^{v}+\alpha_{\nu}\right) x+i \varphi_{\nu}}-1\right||d \mu|<\frac{\varepsilon_{1}}{2^{v}} .
$$

Since all α_{v} are rational numbers with denominator n ! we have by Lemma 3 $\sum \alpha_{\nu}=N$, where the summation runs over all ν except at most $m!$. The sets E_{v} corresponding to these indices are removed and we get a new set $E^{c^{\circ}}$.

$$
\int_{E^{C_{-E}}}|d \mu|<\frac{m!a \delta}{m!}=a \delta
$$

By the triangle inequality

$$
\begin{aligned}
& \int_{E^{C^{\prime}}}\left|e^{i\left(N+\Sigma^{\prime} n_{k}^{\nu}\right) x+\Sigma^{\prime} \varphi_{v}}-e^{i \beta x+i \varphi}\right||d \mu(x)|=\sum_{v}^{\prime} \int_{E_{v}}\left|e^{i\left(\Sigma \alpha_{v}+\Sigma^{\prime} n_{k}^{\nu}\right)^{2} x \Sigma^{\prime} \varphi_{\nu}}-e^{i \beta x+i \varphi}\right||d \mu| \leqslant \\
& \leqslant \frac{2 m!}{a \delta} \cdot \sum \frac{\varepsilon_{1}}{2^{2}} \leqslant \delta \text { for } k \geqslant k_{1} .
\end{aligned}
$$

Put $\sum_{\nu}^{\prime} n_{k_{1}}^{\nu}=N_{k_{2}}$ and $\Sigma^{\prime} \varphi_{\nu}=\varphi_{\beta}$.
Now we conclude that

$$
\int_{E^{C}}\left|e^{i\left(N+N_{k_{1}}\right) x+i \varphi_{\beta}-e^{i \beta r+i \varphi}}\right||d \mu| \leqslant \delta+a \delta<2 \delta
$$

The triangle inequality also gives
214

$$
\int_{E^{S}}\left|e^{i\left(N+N_{k_{1}}\right) x+i \varphi_{\beta}}-1\right||d \mu| \leqslant \sum \frac{\varepsilon_{1}}{2^{v}}<\delta .
$$

Put $N+N_{k_{\mathrm{t}}}=N_{\beta}$ and our statement is proved.
Returning to the proof of the theorem we assume that μ is continuous except at the points λ_{S}. $\lambda_{S}-\lambda_{1}$ are linearly independent since $P^{*}(E)=1$. There are by Kronecker's theorem an integer M and a constant ψ so that

$$
\int_{E^{S}}\left|e^{-i M x+i \varphi}-e^{i \alpha x}\right||d \mu|<\delta
$$

According to the preceeding statement there exist an integer N_{M} and a constant φ_{M} with the properties

$$
\int_{E^{C}}\left|e^{i N_{M^{x}}+i \varphi_{M}}-e^{i M x-i \varphi}\right||d \mu|<2 \delta
$$

and

$$
\int_{E^{S}}\left|e^{i N_{M^{x}}+i \varphi_{M}}-1\right||d \mu|<\delta
$$

By the triangle inequality

$$
\left\{\begin{array}{l}
\int_{E^{C}}\left|e^{i\left(N_{M}-M\right) x+i \varphi_{M^{\prime}}+i \varphi}-1\right||d \mu|<2 \delta \tag{4}\\
\int_{E^{S}}\left|e^{i\left(N_{M^{-}} M\right) x+i \varphi_{M^{+}}+i \varphi}-e^{i \alpha x}\right||d \mu|<2 \delta .
\end{array}\right.
$$

There also exist an integer N_{α} and a constant φ_{α} so that

$$
\left\{\begin{array}{l}
\int_{E^{C}}\left|e^{i N_{\alpha^{x}}+i q_{\alpha}}-e^{i \alpha x}\right||d \mu|<2 \delta \tag{5}\\
\int_{E^{S}}\left|e^{i N_{\alpha} x+i \varphi_{\alpha}}-1\right||d \mu|<\delta
\end{array}\right.
$$

(4) and (5) imply

$$
\int_{E}\left|e^{i\left(N_{\alpha}+N_{M}-M\right) x+i q_{\alpha}+i q_{M_{M}} i \psi^{\prime}}-e^{i \alpha x}\right||d \mu|<7 \delta .
$$

Put $N_{\alpha}+N_{M}-M=N^{\prime}$ and $\varphi_{\alpha}+\varphi_{M}+\psi=\varphi^{\prime}$.
For $j \geqslant j_{0}$ we have by (1) and (2)

$$
1-P_{1}-\delta<\mid \int_{E} e^{i n_{j^{x}}} e^{i \alpha x} d \mu(x)-\int_{E} e^{i\left(n_{j}+N^{\prime}\right)_{x}+i \varphi^{\prime}} d \mu<7 \delta
$$

whence $8 \delta>1-P_{1}$, which is a contradiction.
Thus we have proved that $P_{H}^{*}(E)=1$ implies $P_{H}(E)=1$ but by Cor. 3 this implies $P_{C}(E)=1$ and E is a Kronecker set which was to be proved.

Theorem 2. If $P_{H}^{*}(E)>0$, then E is a weak Kronecker set.

1. WIK, On linear dependence in closed sets

Proof: Carleson has shown in [1] that $P_{H}^{*}(E)>0$ implies $P_{H}(E)>0$. It is therefore sufficient to prove that $P_{H}(E)>0$ implies $P_{C}(E)>0$. We give an indirect proof and assume that $P_{C}(E)=0$ while $P_{H}(E)>0$.

Choose $0<\varepsilon<P_{H}$. Since $P_{C}=0$ there exists a function $\mu \in \Gamma^{\circ}$ satisfying

$$
\left|\int_{E} e^{i n x} d \mu(x)\right|<\frac{\varepsilon P_{H}}{4}, n \geqslant 0 .
$$

By the Radon-Nikodym theorem we obtain

$$
\left|\int_{E} e^{-i n x} d \mu(x)\right|=\left|\int_{E} e^{i n x} \overline{d \mu(x)}\right|=\left|\int_{E} e^{i n x} f_{0}(x) d \mu(x)\right|
$$

where $\left|f_{0}(x)\right|=1$ and f_{0} is measurable (μ).
Then we can approximate $f_{0}(x)$ with a continuous function $\varphi(x),|\varphi(x)| \leqslant 1$ in the sense that

$$
\int_{E}\left|\varphi(x)-f_{0}(x)\right||d \mu(x)|<\frac{\varepsilon}{4} .
$$

Since $P_{H}>0, \varphi(x)$ can be represented

$$
\varphi(x)=\sum_{-\infty}^{\infty} a_{v} e^{i v x}, \text { where } \sum_{-\infty}^{\infty}\left|a_{\mathfrak{p}}\right| \leqslant \frac{1}{P_{H}}+\varepsilon
$$

Choose N so that $\sum_{|\nu|>N}\left|a_{v}\right|<\frac{\varepsilon}{4}$. By the triangle inequality we obtain for $n \geqslant N$

$$
\begin{aligned}
&\left|\int_{E} e^{-i n x} d \mu(x)\right| \leqslant\left|\int_{E} e^{i n x}\left(f_{0}(x)-\varphi(x)\right) d \mu(x)\right|+\left|\int_{E} e^{i n x} \varphi(x) d \mu(x)\right|< \\
&<\frac{\varepsilon}{4}+\left|\int_{E} e^{i n x} \sum_{-N}^{N} a_{\nu} e^{i v x} d \mu(x)\right|+\sum_{|\nu|>N}^{-}\left|a_{\nu}\right|<\frac{\varepsilon}{4}+\frac{\varepsilon}{2}+\frac{\varepsilon}{4}=\varepsilon
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\left|\int_{E} e^{i n x} d \mu(x)\right|<\varepsilon \quad|n| \geqslant N \tag{6}
\end{equation*}
$$

$\left|\int_{E}^{i n x} d \mu(x)\right|$ assumes its greatest value, which is called $P_{0}, 1 \geqslant P_{0} \geqslant P_{H}$, when $n=n_{0},\left|n_{0}\right| \leqslant N$.

Hence we have

$$
\left|\int_{E} e^{i n x}\left(1 \pm e^{2 i N x}\right) d \mu(x)\right| \quad\left\{\begin{array}{l}
\leqslant P_{\mathbf{0}}+\varepsilon,|n|<3 N \tag{8}\\
<2 \varepsilon,|n| \geqslant 3 N
\end{array}\right.
$$

We form the functions $\alpha_{1}(x)$ and $\alpha_{2}(x)$.

$$
\begin{equation*}
\alpha_{1}(x)=\int_{0}^{x}\left(1+e^{2 i N x}\right) d \mu(x), \alpha_{2}(x)=\int_{0}^{x}\left(1-e^{2 i N x}\right) d \mu(x) \tag{9}
\end{equation*}
$$

Choose $\delta=\frac{1}{5}\left(P_{0}-\varepsilon\right)$ and suppose that

$$
\int_{E}\left|d \alpha_{1}\right|=\int_{E}\left|1+e^{2 i N x}\right||d \mu(x)|<1+\delta
$$

and

$$
\int_{E}\left|d \alpha_{2}\right|=\int_{E}\left|1-e^{2 i N x}\right||d \mu(x)|<1+\delta
$$

This gives

$$
\int_{E}\left(\left|1+e^{2 i N x}\right|+\left|1-e^{21 N x}\right|-2\right) d \mu<2 \delta .
$$

whence

$$
\int_{E} \frac{2\left|1+e^{2 i N x}\right|\left|1-e^{2 i N x}\right||d \mu(x)|}{\left|1+e^{2 i N x}\right|+\left|1-e^{2 i N x}\right|+2}<2 \delta
$$

and

$$
\int_{E}\left|1-e^{4 i N x}\right||d \mu(x)|<2(1+\sqrt{2}) \delta<5 \delta .
$$

But by (6)

$$
\varepsilon>\left|\int_{E} e^{i\left(n_{0}+4 N\right) x} d \mu(x)\right| \geqslant\left|\int_{E} e^{i n_{0} x} d \mu(x)\right|-\left|\int_{E} e^{i n_{0} x}\left(1-e^{4 i N x}\right) d \mu(x)\right|>P_{0}-5 \delta .
$$

This is a contradiction and thus

$$
\max _{v=1,2} \int_{E}\left|d \alpha_{v}\right| \geqslant 1+\frac{P_{0}-\varepsilon}{5} .
$$

Suppose that the maximum is assumed by α_{1}.

The function

$$
\mu_{1}(x)=\frac{\int_{0}^{x} d \alpha_{1}(x)}{\int_{E}\left|d \alpha_{1}(x)\right|}
$$

then belongs to Γ° and by (8)

$$
\left|\int_{E} e^{i n x} d \mu_{1}(x)\right|<2 \varepsilon,|n| \geqslant 3 N
$$

$\left|\int_{E} e^{i n x} d \mu_{1}(x)\right|$ assumes its greatest value, which is called P_{1} for $n=n_{1}$,

$$
n_{1} \leqslant 3 N, \quad P_{1} \leqslant \frac{P_{0}+\varepsilon}{1+\frac{P_{0}-\varepsilon}{5}}
$$

In the same way as (8) and (9) were formed from (6) and (7) we now form $\left(8^{\prime}\right)$ and (9^{\prime}) and obtain a new function $\mu_{2}(x) \in \Gamma^{\circ}$ with the property

1. wIK, On linear dependence in closed sets
where

$$
\left|\int_{E} e^{i n x} d \mu_{2}(x)\right|\left\{\begin{array}{l}
\leqslant P_{2},|n| \leqslant 3^{2} \cdot N,=P_{2} \text { for } n=n_{2} \\
\leqslant 2^{2} \cdot \varepsilon, n \geqslant 3^{2} \cdot N
\end{array}\right.
$$

$$
P_{2} \leqslant \frac{P_{1}+2 \varepsilon}{1+\frac{P_{1}-2 \varepsilon}{5}}
$$

From $\mu_{2}(x)$ we construct $\mu_{3}(x)$ etc.
We get functions $\mu_{k}(x) \in \Gamma^{\circ}$ satisfying

$$
\left|\int_{E} e^{i n x} d \mu_{k}(x)\right| \leqslant P_{k}, \text { where } P_{k} \leqslant \frac{P_{k-1}+2^{k-1} \cdot \varepsilon}{1+\frac{P_{k-1}-2^{k-1} \cdot \varepsilon}{5}}
$$

However, the sequence given by $a_{0}=1, a_{k}=\frac{a_{k-1}}{1+\frac{a_{k-1}}{5}}$ tends to zero. Further
we have $P_{0} \leqslant 1$ and $\frac{d}{d x}\left(\frac{x}{1+\frac{x}{5}}\right)>0,0 \leqslant x \leqslant 1$, whence $P_{k} \leqslant a_{k}+r_{k}(\varepsilon)$, where $r_{k}(\varepsilon) \rightarrow 0$ when $\varepsilon \rightarrow 0$.

We choose k_{0} such that $a_{k_{0}}<\frac{P_{H}}{3}$ and ε_{0} such that $r_{k_{0}}\left(\varepsilon_{0}\right)<\frac{P_{H}}{3}$ and $2^{k_{0}} \varepsilon_{0}<\frac{P_{H}}{3}$. If we start with $\varepsilon=\varepsilon_{0}$ we obtain a function $\mu_{k_{0}}$ satisfying

$$
\sup _{n}\left|\int_{B} e^{i n x} d \mu_{k_{\mathrm{s}}}(x)\right|<\frac{2 P_{H}}{3} .
$$

This contradicts our assumption and the theorem is proved.

REFERENGES

1. Carleson, L,: Representations of continuous functions. Math. Zeitschr. Bd. 66, pp. 447-451 (1957).
2. -. Sets of uniqueness for functions regular in the unit circle. Acta Math. 87, pp. 325-345 (1952).
3. Kahane, J.-P.-Salem, R.: Construction de pseudomeasures sur les ensembles parfaits symétriques. C. R. Acad. Sci. Paris 243. pp. 1986-1988 (1956).
4. Rudin, W.: The role of perfect sets in harmonic analysis. Symposium on harmonic analysis. Cornell University. July 23-27 (1956).

Tryekt den 10 december 1960

