Communicated 10 February 1960 by O. FROSTMAN and L. CARLESON

On linear dependence in closed sets

By INGEMAR WIK

1. Kronecker's theorem can be formulated as follows: A necessary and sufficient condition for $\lambda_2 - \lambda_1, \lambda_3 - \lambda_1, \dots, \lambda_k - \lambda_1$ to be linearly independent (mod 2π) is

$$\inf_{a_{\boldsymbol{\nu}}} \sup_{n \geq 0} \left| \sum_{1}^{k} a_{\boldsymbol{\nu}} e^{i n \lambda_{\boldsymbol{\nu}}} \right| = \sum_{1}^{k} \left| a_{\boldsymbol{\nu}} \right|.$$

Throughout the paper n represents integers and t arbitrary real numbers.

For an arbitrary closed set on $(0,2\pi)$ we define the following indices of linear independence:

$$(a) \quad P_{C}(E) = \inf_{\mu \in \Gamma^{\circ}} \sup_{n \geqslant 0} \left| \int_{E} e^{inx} d\mu(x) \right|$$

$$(b) \quad P_{C}^{*}(E) = \inf_{\mu \in \Gamma^{\circ}} \sup_{t \ge 0} \left| \int_{E} e^{itx} d\mu(x) \right|$$

$$(c) \quad P_{H}(E) = \inf_{\mu \in \Gamma^{\circ}} \sup_{n} \left| \int_{E} e^{inx} d\mu(x) \right|$$

$$(d) \quad P_{H}^{*}(E) = \inf_{\mu \in \Gamma^{\circ}} \sup_{t} \left| \int_{E} e^{itx} d\mu(x) \right|,$$

where Γ° is the class of functions μ which are constant outside E and satisfy

$$\int_E |d\mu| = 1.$$

An immediate consequence of the definitions is:

$$0 \leq P_C \leq \begin{cases} P_C^* \\ P_H \end{cases} \leq P_H^* \leq 1.$$

In Kronecker's theorem the condition $n \ge 0$ can be changed to $t \ge 0$, $-\infty < < n < \infty$ or $-\infty < t < \infty$.

If E consists of a finite number of linearly independent points we thus have $P_C = P_C^* = P_H = P_H^* = 1$. We shall prove that this property holds for all sets E for which $P_H^*(E) = 1$ (Theorem 1) and that $P_H^*(E) > 0$ implies $P_C(E) > 0$ (Theorem 2).

A set E is called a Kronecker set if $P_{C}(E) = 1$ and a weak Kronecker set if $P_{C}(E) > 0$.

13:2

I. WIK, On linear dependence in closed sets

An example of a perfect Kronecker set of the Cantor type was given in Rudin [4]. Theorem 2 provides a positive answer to the question, raised by Kahane-Salem in [3], concerning the equivalence of Carleson-sets and Helson-sets. Both notions are equivalent to weak Kronecker sets.

The following theorem by Carleson [1] is fundamental for the proof of Theorem 2:

Theorem A. A necessary and sufficient condition that $P_H(E) > 0$ is that for each $\delta > 0$ every continuous function $\varphi(x)$ has a representation

$$\varphi(x) = \sum_{-\infty}^{\infty} a_{\nu} e^{i\nu x}, x \in E,$$
$$\sum_{-\infty}^{\infty} |a_{\nu}| \leq \frac{1}{P_{H}} + \delta$$

where

2. To prove Theorem 1 below we use

Lemma 1. If $P_H^*(E) = 1$ we have for all $\mu \in \Gamma^{\circ}$

$$\overline{\lim_{|t|\to\infty}}\left|\int_{E}e^{itx}\,d\,\mu\left(x\right)\right|=1.$$

Proof. Suppose that the lemma is false. Then there exists a function $\mu \in \Gamma^{\circ}$ so that for $t = t_0$ we have

$$\int_{E} e^{it_{\mathfrak{o}}x} d\mu(x) = e^{iq_{\mathfrak{o}}}.$$

 μ cannot be a step function. In that case the lemma follows immediately from Kronecker's theorem. Without loss of generality we put $\varphi_0 = 0$ and we have $d\mu = e^{-it_*x} dp(x), dp(x) \ge 0$.

Choose $\xi \in E$, a point of continuity of μ , so that $e^{it_{b}\xi} \neq 1$ and form

$$d\mu_1 = e^{-it_0 x} dp(x) + d\delta(x - \xi). [\delta(x) = 0 \text{ for } x < 0, = 1 \text{ for } x \ge 0]$$

There is no τ satisfying $\left| \int_{E} e^{i\tau x} d\mu_{1} \right| = 2$. Thus $\lim_{|t| \to \infty} \left| \int_{E} e^{itx} d\mu_{1}(x) \right| = 2$ and $\lim_{|t| \to \infty} \left| \int_{E} e^{itx} d\mu(x) \right| = 1$ which is a contradiction that proves Lemma 1.

Lemma 2. If $P_H^*(E) = 1$ we have for all $\mu \in \Gamma^\circ$

$$\lim_{|n|\to\infty} \left|\int e^{inx}\,d\,\mu(x)\right| = 1.$$

Proof. The same as for Lemma 1 if t is changed to n.

Cor. 1. If $P_H^*(E) = 1$ we have for all $\mu \in \Gamma^{\circ}$

$$\lim_{k\to\infty}\int_E |e^{itx}-1||d\mu|=0.$$

 $\mathbf{210}$

ARKIV FÖR MATEMATIK. Bd 4 nr 15

Proof. Choose an arbitrary $\varepsilon > 0$. By Lemma 1 there is a sequence $\{t_r\}_1^{\infty}$ so that

$$\left| \int_{E} e^{it_{v}x + i\varphi} d\mu - 1 \right| < \frac{\varepsilon^{2}}{6}, \quad v \ge v_{0}.$$
$$d\mu_{2} = e^{it_{v}x + i\varphi} d\mu = d\mu_{2}' + id\mu_{2}''.$$

 \mathbf{Put}

Then we have $\int_{E} (|d\mu| - d\mu'_2) < \frac{\varepsilon^2}{6} \text{ and } \int_{E} |d\mu''_2| < \frac{\varepsilon^2}{6}.$

By the triangle inequality we obtain for $\nu \ge \nu_0$

$$\begin{aligned} \frac{\varepsilon^2}{6} &> \left|1 - \int_E e^{it_v x + i\varphi} d\mu\right| = \left|1 - \int_E e^{i(t_v - t_{v_0})x} d\mu_2\right| \ge \\ &\ge \left|\int_E 1 - e^{i(t_v - t_{v_0})x} \left|d\mu\right|\right| - \int_E \left|e^{i(t_v - t_{v_0})x} \left(\left|d\mu\right| - d\mu_2'\right) - \int_E \left|e^{i(t_v - t_{v_0})x} d\mu_2'\right|\right| \\ &= \int_E 1 - \cos\left(t_v - t_{v_0}\right)x \left|d\mu\right| < \frac{\varepsilon^2}{6} + \frac{\varepsilon^2}{6} + \frac{\varepsilon^2}{6} = \frac{\varepsilon^2}{2} \end{aligned}$$

whence

and by Schwarz's inequality

$$\int_{E} \left| e^{i(t_{\nu} - t_{\nu_{0}})x} - 1 \right| \left| d\mu \right| = 2 \int_{E} \left| \sin \frac{(t_{\nu} - t_{\nu_{0}})x}{2} \right| \left| d\mu \right| \le 2 \sqrt{\int_{E} \sin^{2} \frac{(t_{\nu} - t_{\nu_{0}})x}{2} \left| d\mu \right|} \\\int \left| e^{i(t_{\nu} - t_{\nu_{0}})x} - 1 \right| \left| d\mu \right| < \varepsilon \text{ for } \nu \ge \nu_{0}$$

and Cor. 1 is shown.

Cor. 2. If $P_H(E) = 1$ we have for all $\mu \in \Gamma^{\circ}$

$$\lim_{n\to\infty}\int_E |e^{inx}-1||d\mu|=0.$$

Proof. The same as for Cor. 1 if t is changed to n and Lemma 2 is used instead of Lemma 1.

Cor. 3. $P_H(E) = 1$ implies $P_C(E) = 1$

Proof. Suppose that $P_C(E) < 1$. Then there exists a function $\mu \in \Gamma^\circ$ with $\left| \int_E e^{inx} d\mu(x) \right| < r < 1, n \ge 0$. According to Lemma 2 we choose n_0 so that

$$\left|\int_{E} e^{in_{\bullet}x} d\mu(x)\right| > \frac{1+r}{2}$$

and by Cor. 2 there exists n_1 with the properties: $n_1 + n_0 > 0$ and

$$\int_{E} |e^{in_{1}x} - 1| |d\mu| < \frac{1-r}{2}.$$

1. WIK, On linear dependence in closed sets

The triangle inequality gives

$$r > \left| \int_{E} e^{i(n_{\bullet} + n_{\bullet})x} d\mu(x) \right| \ge \left| \int_{E} e^{in_{\bullet}x} d\mu(x) \right| - \int_{E} \left| e^{i(n_{\bullet} + n_{\bullet})x} - e^{in_{\bullet}x} \right| \left| d\mu(x) \right| > \frac{1 + r}{2} - \frac{1 - r}{2} = r.$$

This contradiction proves Cor. 3.

Lemma 3. From a set of rational numbers with denominator m, it is sufficient to remove m-1 to get an integer as the sum of the others.

Proof. Enumerate the numbers $\left\{\frac{P_{r}}{m}\right\}_{1}^{N}$ and from the sums

$$\sum_{1}^{k} \frac{P_{\nu}}{m} = n_k + \frac{\alpha_k}{m} \qquad k = 1, 2, \ldots, m.$$

At least two of the α_k :s are identical, e.g. α_{k_1} and α_{k_2} . Thus

$$\sum_{k_1+1}^{k_1} \frac{P_r}{m} = n_1.$$

These P_{\star} are removed and the others are enumerated again from 1 to $N - (k_1 - k_2)$. We obtain a similar sum:

$$\sum_{k'_{1}+1}^{k'_{1}} \frac{P'_{\nu}}{m} = n_{2}.$$

Analogously we can continue until the number of terms is less than m-1. The sum of the others is then an integer, which was to be proved.

Theorem 1. If $P_H^*(E) = 1$, then E is a Kronecker set.

Proof: Suppose that $P_H^*(E) = 1$ and $P_H(E) < 1$. Then there exists a function $\mu \in \Gamma^{\circ}$ satisfying

$$\left| \int_{E} e^{inx} d\mu(x) \right| < P_{1}, \text{ all } n, P_{1} < 1.$$
 (1)

By Lemma 1 there is a sequence $\{t_j\}_{1}^{\infty}$ with the properties:

$$\left| \int_{E} e^{it_{f}x} d\mu(x) \right| \rightarrow 1$$
$$t_{t} - [t_{t}] \rightarrow \alpha, \qquad [t_{t}] = n_{t},$$

and

$$l_j - [l_j] \rightarrow \alpha, \quad [l_j] = n_j$$

Put

$$\delta = \frac{1 - P_1}{8}$$
 and $m = \left[\frac{8\pi}{1 - P_1}\right] + 1.$

For $j \ge j_0$ we have

$$1 - \left| \int e^{i n_j x} e^{i \alpha x} d\mu(x) \right| < \delta.$$
⁽²⁾

 μ is continuous on E^{C} and discontinuous on E^{S} . $E = E^{C} \cup E^{S}$ and $\int_{E} |d\mu| = a$.

 $a \neq 0$ for otherwise the theorem follows directly from Kronecker's theorem.

Before proving the theorem we make the following statement: To each number β and each ψ there exist an integer N_{β} and a constant ψ_{β} with the properties

$$\int_{E^{C}} \left| e^{iN_{\beta}x + i\varphi_{\beta}} - e^{i\beta x + i\psi} \right| \left| d\mu \right| < 2\delta$$
$$\int_{E^{S}} \left| e^{iN_{\beta}x + i\varphi_{\beta}} - 1 \right| \left| d\mu \right| < \delta.$$

and

To show this we divide E^{C} into disjoint subsets E_{ν} , $\cup E_{\nu} = E^{C}$, restricted by the condition

$$\frac{a\,\delta}{2\,m!} \leq \int_{E_{\mu}} \left| d\,\mu \right| \leq \frac{a\,\delta}{m!}.$$

We construct new functions μ_{ν} of bounded variation on E by choosing

$$\begin{cases} d\mu_{\nu} = e^{-i\beta x - i\psi} |d\mu(x)| \text{ on } E_{\nu} \\ d\mu_{\nu} = |d\mu(x)| \text{ otherwise.} \end{cases}$$

 $\int_{T} |d\mu_{\nu}| = 1$ and thus by Lemma 1 there exists a sequence t_{k}^{ν} and a constant φ_{ν} so that

$$\int_{E} e^{it_{k}^{\nu}x+i\varphi_{\nu}} d\mu_{\nu} \rightarrow 1$$

$$t_{k}^{\nu} - [t_{k}^{\nu}] \rightarrow \alpha_{\nu} \qquad [t_{k}^{\nu}] = n_{k}^{\nu}.$$
(3)

and

However, α_r is a rational number with denominator less than m. For suppose that the contrary is true. Then there are two integers q_1 and q_2 satisfying

$$q_1 \alpha_r + \alpha - q_2 = h$$
, where $\left|h\right| < \frac{1}{m}$

For $k \ge k_0$ we have according to (3) and the definition of μ_r

$$\int_{E-E_{y}} e^{i(n_{k}^{y}+\alpha_{y})x+iq_{y}}-1 \left| \left| d \mu \right| < \frac{\delta}{q_{1}}$$

and thus, if $q_1 n_k^{\nu} + q_2 = l_k^{\nu}$,

$$\delta > \int_{E-E_{\mathbf{y}}} \left| e^{i(q_1n_k^{\mathbf{y}}+q_1\alpha_{\mathbf{y}})x+iq_1\varphi_{\mathbf{y}}} - 1 \right| \left| d\mu \right| = \int_{E-E_{\mathbf{y}}} \left| e^{in_k^{\mathbf{y}}x+iq_1\varphi_{\mathbf{y}}} e^{ihx} - e^{i\alpha x} \right| \left| d\mu \right|$$

 $\int_{\mathbf{r}} e^{i t_k^{\mathbf{r}} \mathbf{x} + i q_t \varphi_{\mathbf{r}}} - e^{i \alpha \mathbf{x}} \left| \left| d \mu \right| < \delta + 2 \pi h + \frac{a \, \delta}{m!} < 4 \, \delta.$

whence

1. WIK, On linear dependence in closed sets

This gives

$$\left|\int\limits_{E} e^{in_{j}x} e^{i\alpha x} d\mu(x) - \int\limits_{E} e^{i(l_{k}^{p}+n_{j})x+iq_{l}\varphi_{p}} d\mu(x)\right| < 4\delta.$$

For $j \ge j_0$ we have by (2)

$$\left|\int\limits_{E} e^{i(l_k^p + n_j)x} d\mu\right| > 1 - 5\,\delta > P_1$$

contrary to (1), and we have proved that all α_r are rational numbers with denominator m!.

We put $\varepsilon_1 = \frac{a \, \delta^2}{4 \, m!}$. If $k \ge k_1$ we have by (3) for all ν

$$\left|\int\limits_{E_{\mathbf{y}}} e^{-i\beta x - i\varphi} e^{i(n_{k}^{\mathbf{y}} + \alpha_{p})x + i\varphi_{p}} \left| d\mu \right| + \int\limits_{E-E_{p}} e^{i(n_{k}^{\mathbf{y}} + \alpha_{p})x + i\varphi_{p}} \left| d\mu \right| - 1 \left| < \left(\frac{\varepsilon_{1}}{2^{\nu+1}}\right)^{2}.$$

Applying Schwarz's inequality as in the proof of Cor. 1 we get:

$$\int_{E_{\mathbf{y}}} \left| e^{i(n_{k}^{\mathbf{y}} + \alpha_{\mathbf{y}})x + i\varphi_{\mathbf{y}}} - e^{i\beta x + i\varphi} \right| \left| d\mu \right| < \frac{\varepsilon_{1}}{2^{\mathbf{y}}}$$
$$\int_{E-E_{\mathbf{y}}} \left| e^{i(n_{k}^{\mathbf{y}} + \alpha_{\mathbf{y}})x + i\varphi_{\mathbf{y}}} - 1 \right| \left| d\mu \right| < \frac{\varepsilon_{1}}{2^{\mathbf{y}}}.$$

and

Since all α_{ν} are rational numbers with denominator m! we have by Lemma 3 $\sum \alpha_{\nu} = N$, where the summation runs over all ν except at most m!. The sets E_{ν} corresponding to these indices are removed and we get a new set $E^{C'}$.

$$\int_{E^C-E^{C'}} |d\mu| < \frac{m! \, a \, \delta}{m!} = a \, \delta.$$

By the triangle inequality

$$\int_{E^{C'}} \left| e^{i(N+\Sigma'n_{k}^{v})x+\Sigma'i\varphi_{v}} - e^{i\beta x+i\psi} \right| \left| d\mu(x) \right| = \sum_{\nu} \int_{E_{\nu}} \left| e^{i(\Sigma\alpha_{\nu}+\Sigma'n_{k}^{\nu})x+\Sigma'i\varphi_{\nu}} - e^{i\beta x+i\psi} \right| \left| d\mu \right| \leq$$

$$\leq \frac{2m!}{a\delta} \cdot \sum \frac{\varepsilon_{1}}{2^{\nu}} \leq \delta \text{ for } k \geq k_{1}$$

Put $\sum_{\nu}' n_{k_1}^{\nu} = N_{k_1}$ and $\sum' \varphi_{\nu} = \varphi_{\beta}$. Now we conclude that

$$\int_{E^{C}} \left| e^{i(N+N_{k_{i}})x+i\varphi_{\beta}} - e^{i\beta x+i\psi} \right| \left| d\mu \right| \leq \delta + a\,\delta < 2\,\delta$$

The triangle inequality also gives

ARKIV FÖR MATEMATIK. Bd 4 nr 15

$$\int_{\mathbf{E}^{S}} \left| e^{i(N+N_{k_{1}})x+i\varphi_{\beta}}-1 \right| \left| d\mu \right| \leq \sum \frac{\varepsilon_{1}}{2^{r}} < \delta.$$

Put $N + N_{k_1} = N_{\beta}$ and our statement is proved.

Returning to the proof of the theorem we assume that μ is continuous except at the points λ_s . $\lambda_s - \lambda_1$ are linearly independent since $P^*(E) = 1$. There are by Kronecker's theorem an integer M and a constant ψ so that

$$\int_{E^S} \left| e^{-iMx+i\psi} - e^{i\alpha x} \right| \left| d\mu \right| < \delta.$$

According to the preceeding statement there exist an integer N_M and a constant φ_M with the properties

$$\int_{E^{C}} \left| e^{iN_{M}x + i\varphi_{M}} - e^{iMx - i\varphi} \right| \left| d\mu \right| < 2\delta$$
$$\int_{E^{S}} \left| e^{iN_{M}x + i\varphi_{M}} - 1 \right| \left| d\mu \right| < \delta.$$

and

By the triangle inequality

$$\left(\int_{E^{C}} \left| e^{i(N_{M} - M)x + i\varphi_{M} + i\psi} - 1 \right| \left| d\mu \right| < 2\delta \\ \int_{E^{S}} \left| e^{i(N_{M} - M)x + i\varphi_{M} + i\psi} - e^{i\alpha x} \right| \left| d\mu \right| < 2\delta.$$
(4)

There also exist an integer N_{α} and a constant φ_{α} so that

$$\begin{cases} \int\limits_{E^{C}} \left| e^{iN\alpha^{x+i\varphi_{\alpha}}} - e^{i\alpha x} \right| d\mu | < 2\delta \\ \int\limits_{E^{S}} \left| e^{iN\alpha^{x+i\varphi_{\alpha}}} - 1 \right| |d\mu| < \delta. \end{cases}$$
(5)

(4) and (5) imply

$$\int\limits_{E} \left| e^{i(N_{\alpha}+N_{M}-M)x+i\varphi_{\alpha}+i\varphi_{M}+i\psi}-e^{i\alpha x} \right| \left| d\mu \right| < 7\,\delta.$$

Put $N_{\alpha} + N_M - M = N'$ and $\varphi_{\alpha} + \varphi_M + \psi = \varphi'$. For $j \ge j_0$ we have by (1) and (2)

$$1 - P_1 - \delta < \left| \int_E e^{in_j x} e^{i\alpha x} d\mu(x) - \int_E e^{i(n_j + N')x + i\varphi'} d\mu < 7 \delta \right|$$

whence $8\delta > 1 - P_1$, which is a contradiction.

Thus we have proved that $P_H^*(E) = 1$ implies $P_H(E) = 1$ but by Cor. 3 this implies $P_C(E) = 1$ and E is a Kronecker set which was to be proved.

Theorem 2. If $P_H^*(E) > 0$, then E is a weak Kronecker set.

I. WIK, On linear dependence in closed sets

Proof: Carleson has shown in [1] that $P_H^*(E) > 0$ implies $P_H(E) > 0$. It is therefore sufficient to prove that $P_H(E) > 0$ implies $P_C(E) > 0$. We give an indirect proof and assume that $P_C(E) = 0$ while $P_H(E) > 0$. Choose $0 < \varepsilon < P_H$. Since $P_C = 0$ there exists a function $\mu \in \Gamma^\circ$ satisfying

$$\left|\int_{E} e^{inx} d\mu(x)\right| < \frac{\varepsilon P_{H}}{4}, \ n \ge 0.$$

By the Radon-Nikodym theorem we obtain

$$\left|\int\limits_{E} e^{-inx} d\mu(x)\right| = \left|\int\limits_{E} e^{inx} \overline{d\mu(x)}\right| = \left|\int\limits_{E} e^{inx} f_{0}(x) d\mu(x)\right|,$$

where $|f_0(x)| = 1$ and f_0 is measurable (μ) .

Then we can approximate $f_0(x)$ with a continuous function $\varphi(x)$, $|\varphi(x)| \leq 1$ in the sense that

$$\int_{E} |\varphi(x) - f_0(x)| |d\mu(x)| < \frac{\varepsilon}{4}.$$

Since $P_H > 0$, $\varphi(x)$ can be represented

$$\varphi(x) = \sum_{-\infty}^{\infty} a_{\nu} e^{i\nu x}$$
, where $\sum_{-\infty}^{\infty} |a_{\nu}| \leq \frac{1}{P_{H}} + \varepsilon$.

Choose N so that $\sum_{|v|>N} |a_v| < \frac{\varepsilon}{4}$. By the triangle inequality we obtain for $n \ge N$

i.e

 $\left|\int_{-}^{e^{i\pi x}}d\mu(x)\right|$ assumes its greatest value, which is called P_0 , $1 \ge P_0 \ge P_H$, (7) when $n = n_0$, $|n_0| \leq N$. Hence we have

$$\left| \int_{E} e^{inx} \left(1 \pm e^{2iNx} \right) d\mu(x) \right| \qquad \begin{cases} \leq P_0 + \varepsilon, \ |n| < 3N \\ < 2\varepsilon, \ |n| \geq 3N \end{cases}$$
(8)

We form the functions $\alpha_1(x)$ and $\alpha_2(x)$.

$$\alpha_{1}(x) = \int_{0}^{x} (1 + e^{2iNx}) d\mu(x), \ \alpha_{2}(x) = \int_{0}^{x} (1 - e^{2iNx}) d\mu(x).$$
(9)

Choose $\delta = \frac{1}{5}(P_0 - \varepsilon)$ and suppose that

$$\int_{E} \left| d \alpha_{1} \right| = \int_{E} \left| 1 + e^{2iNx} \right| \left| d \mu(x) \right| < 1 + \delta$$
$$\int_{E} \left| d \alpha_{2} \right| = \int_{E} \left| 1 - e^{2iNx} \right| \left| d \mu(x) \right| < 1 + \delta$$

and

This gives

$$\int_{E} (|1+e^{2iNx}|+|1-e^{2iNx}|-2) d\mu < 2\delta.$$

whence
$$\int_{E} \frac{2 \left| 1 + e^{2iNx} \right| \left| 1 - e^{2iNx} \right| \left| d\mu(x) \right|}{\left| 1 + e^{2iNx} \right| + \left| 1 - e^{2iNx} \right| + 2} < 2\delta$$

and
$$\int_{E} \left| 1 - e^{4iNx} \right| \left| d\mu(x) \right| < 2(1 + \sqrt{2}) \delta < 5 \delta.$$

But by (6)

$$\varepsilon > \left| \int_{E} e^{i(n_{\bullet} + 4N)x} d\mu(x) \right| \ge \left| \int_{E} e^{in_{\bullet}x} d\mu(x) \right| - \left| \int_{E} e^{in_{\bullet}x} (1 - e^{4iNx}) d\mu(x) \right| > P_{0} - 5 \delta.$$

This is a contradiction and thus

$$\max_{\nu=1,2} \int_{E} |d\alpha_{\nu}| \ge 1 + \frac{P_{0} - \varepsilon}{5}.$$

Suppose that the maximum is assumed by α_1 .

$$\mu_1(x) = \frac{\int\limits_0^x d\alpha_1(x)}{\int\limits_E |d\alpha_1(x)|}$$

then belongs to Γ° and by (8)

$$\left|\int\limits_{E} e^{inx} d\mu_1(x)\right| < 2\varepsilon, \ \left|n\right| \ge 3N \tag{6'}$$

 $\left|\int_{E} e^{inx} d\mu_1(x)\right|$ assumes its greatest value, which is called P_1 for $n = n_1$, (7')

$$n_1 \leq 3N, \qquad P_1 \leq \frac{P_0 + \varepsilon}{1 + \frac{P_0 - \varepsilon}{5}}.$$

In the same way as (8) and (9) were formed from (6) and (7) we now form (8') and (9') and obtain a new function $\mu_2(x) \in \Gamma^\circ$ with the property

14:2

I. WIK, On linear dependence in closed sets

$$\int_{\Sigma} e^{inx} d\mu_2(x) \left| \begin{cases} \leq P_2, \ |n| \leq 3^2 \cdot N, = P_2 \text{ for } n = n_2 \\ \leq 2^2 \cdot \varepsilon, \ n \geq 3^2 \cdot N \end{cases} \right.$$

$$P_2 \leq \frac{P_1 + 2\varepsilon}{1 + \frac{P_1 - 2\varepsilon}{5}}.$$

where

From $\mu_2(x)$ we construct $\mu_3(x)$ etc.

We get functions $\mu_k(x) \in \Gamma^{\circ}$ satisfying

$$\left|\int_{E} e^{inx} d\mu_k(x)\right| \leq P_k, \text{ where } P_k \leq \frac{P_{k-1} + 2^{k-1} \cdot \varepsilon}{1 + \frac{P_{k-1} - 2^{k-1} \cdot \varepsilon}{5}}.$$

However, the sequence given by $a_0 = 1$, $a_k = \frac{a_{k-1}}{1 + \frac{a_{k-1}}{r}}$ tends to zero. Further

we have $P_0 \leq 1$ and $\frac{d}{dx} \left(\frac{x}{1 + \frac{x}{\epsilon}} \right) > 0, \ 0 \leq x \leq 1$, whence $P_k \leq a_k + r_k(\epsilon)$, where $r_k(\epsilon) \to 0$

when $\varepsilon \rightarrow 0$.

We choose k_0 such that $a_{k_*} < \frac{P_H}{3}$ and ε_0 such that $r_{k_*}(\varepsilon_0) < \frac{P_H}{3}$ and $2^{k_*}\varepsilon_0 < \frac{P_H}{3}$. If we start with $\varepsilon = \varepsilon_0$ we obtain a function μ_{k_0} satisfying

$$\sup_{n} \left| \int_{\mathcal{B}} e^{inx} d\mu_{k_{\bullet}}(x) \right| < \frac{2P_{H}}{3}.$$

This contradicts our assumption and the theorem is proved.

REFERENCES

- 1. CARLESON, L.: Representations of continuous functions. Math. Zeitschr. Bd. 66, pp. 447-451 (1957).
- 2. ----, Sets of uniqueness for functions regular in the unit circle. Acta Math. 87, pp. 325-345 (1952).
- 3. KAHANE, J.-P.-SALEM, R.: Construction de pseudomeasures sur les ensembles parfaits symétriques. C. R. Acad. Sci. Paris 243. pp. 1986–1988 (1956). 4. RUDIN, W.: The role of perfect sets in harmonic analysis. Symposium on harmonic analysis.
- Cornell University. July 23-27 (1956).

Tryckt den 10 december 1960

Uppsala 1960. Almqvist & Wiksells Boktryckeri AB