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On the boundary behavior of the derivative of analytic 

functions 

By AKE SAMUELSSON 

1. Introduction 

In  1929 R. Nevanllnna [5] introduced the class of functions/(z),  analytic and 
hounded in the unit circle ] z l < l  , for which the radial limits lim /(re ~x) are of 

r - -~ l -0  

modulus 1 for almost all x in the interval 0 ~< x ~< 2 ~. This class will here be 
called class (N). The set of arguments x, such tha t  lira /(re t~) does not exist 

r - ~ 1 - 0  

or is not of modulus 1, will be called the exceptional set of the function [(z). 
Each function in class (N) admits a representation 

/ (z) = B  (z) E (z), (1.1) 

~ (ak - z) (1.2) where B(z) =e'~ zmH la~l (1 - a : )  

(y real, m integer >10,0<{a~{<I, and ~(l--{a~{)<+oo) 
k 

is the Blaschke product, finite or infinite, extended over the zeros of /(z) or- 
dered after increasing modulus, and where 

2?g 

0 

(1.3) 

with a non-decreasing function # (t), defined in the interval 0-<<t-<<2 ~, and with 
the property tha t  p '  ( t)= 0 for all t in that  interval except possibly for a set 
of measure zero. The first extensive description of  the properties of the func- 
tions belonging to class (N) was given almost simultaneously by Frostman [2] 
and Seidel [7]. 

Except in the trivial case when p (t) is identically constant, there is at  least 
one argument x, such that  the symmetric derivative 

lira/~(x+h)-l~(x-h) +o% 
h~+o 2 h 
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and for any  such a rgument  x we have 

lim / (re ~z) = 0 .  
r - -* l  - 0 

The aim of this  paper  is to inves t iga te  the  bounda ry  behavior  of the  deriv-  
a t ive  of /(z) for such a po in t  e ~x and,  in par t icu lar ,  some local condit ions on 
the  function ~t (t) will be given to ensure t ha t  

lim 1' (re t~) = 0 .  
r - ~ l - O  

I n  the  following section we res t r ic t  ou r sdves  to  the  case tha t  / (z) = E (z), i.e. 
/ (z)  has no zeros in I zl < 1 and  in section 3 we consider the  general  case. I n  
section 4 we s ta te  some theorems on the  Lebesgue funct ion const ructed on a 
set of the  Cantor  type ,  to  be used in section 5, where we construct  some ex- 
amples  of funct ions / (z)  belonging to  (N). Each  of these funct ions will have 
the  radia l  l imi t  of the  der iva t ive  equal  to  zero for every  poin t  in the  excep- 
t ional  set, except  in a set which, in a sense to  be defined in section 5, is of 
measure  zero. 

2. The boundary behavior of  E' ( z )  

Theorem 1. Let E (z) be a /unction given by (1.3) and let x be a point in the 
interval 0 < x < 2 7t. Suppose that there exists a number ~ > ~, such that 

lim (# ( x + h ) - / t ( x - h )  +~logh)  
h-,+0 2 h = + oo. (2.1) 

Then lim E(retX)= l im E'(reiX)=O. 
r - * l - O  r - * l - O  

Wri t ing  E (z) = exp { - w (z)} and  w (z) = u (z) + i v (z) we have the  following two 
lemmata .  

L e m m a l .  u ( ( 1 - h ) d X ) ~  # ( x + h ) - p ( x - h ) ,  0 < h ~ < l .  
h 

2 ~x 1-~rU(retZ), 0 ~ < r < l .  i e m m a  2. [ w' (r e ~x) ] < ~ u (r e ) 

L e m m a  1 is essent ia l ly  due to  F a t o u  [1], p. 340 (for the  proof see F r o s t m a n  [2], 
p. 107-109) and Lemma 2 is given by  Zyg mund  [8], p. 72 (for the  proof see 
Zygmund  [9], I ,  p. 258). 

Proof of Theorem 1. I t  follows immedia t e ly  from (2.1) t ha t  

lim p (x + h) - p ( x -  h) 
h-.+0 2 h 

+ c o .  
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Hence, by Lemma 1, 

lim u(re*X) = + ~  and lim ]E(re~*)[ = lim e x p { - u ( r e * * ) } = 0 .  
r--~l  0 r - - ~ l - 0  t - > l -  0 

From Lemma 2 we obtain 

JE' (re'~)l =lw' (re~)l ~ p  {- u (re'~)} < V~7_ ~ u(re '~) exp {- u (re'X)} 

{(I) } 
=2u(re '~)  exp -- 1 - ~  u ( r e  ~) (exp { - l u ( r e ' X ) - ~ l o g ( 1 - r ) } ) ' %  

Hence, since 

lim u(re'X) e x p { - ( 1 - ~ - - ~ ) u ( r e ' Z ) } = O  for z/>�89 
r-->l - 0 

and since, by Lemma 1, with r = l - h  

exp { - ~ u ( r e ~ X ) - ~  log (1-r)}~< exp I -  

it follows from condition (2.1) that  

(x + h) - /~ ( x - h )  ] 
2 h ~ log h 

lim E' (re 'x) = 0 .  
r - . l  - 0 

This proves the theorem. 
Incidentally we remark that for any argument x, where the symmetric de- 

rivative of / ~ (x) is infinite or zero 

lim [E' (z) l (1 - [zl) = 0 ,  

where the limit is uniform in every symmetric triangular neighbourhood of e% 
This is a consequence of Lemma 2. 

3. The boundary behavior o f f '  ( z )  

In this section we consider the general case, when the=e are zeros of ] (z) in 
I z] < 1, i.e. when the Blaschke product does not reduce to a constant. 

Theorem 2. Let / ( z ) =  B (z) E (z) be a /unction in (N) and let x be a point in 
the interval 0 < x < 2 ze. Suppose that there exists a number ~, such that 

lira / ( x + h ) - # ( x - h ) + r l  log h | =  +co,  (3.1) 
h--~+0 \ ] 2  h 

and either (a) ~1>1 1 or (b) 1<~1 < 1, and 
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1- la~!  < ~le , , _ak lm_ ,  ) +oo. (3.2) 

Then lim / ( r e * ' ) =  lim 1' ( r d ' ) = O .  
r - ~ l  - 0 r - ~ l  - 0 

Proof of the theorem. The proof of case (a), being similar to tha t  of case (b), 
will be omitted. 

Suppose we have x and ~/, ~<~  < 1, such that  (3.1) and (3.2) hold. Since 
IB (z)[~< 1 it follows from Theorem 1 that  lira f (re ~') = 0. Differentiating (1.1) 

r - - ~ l - O  

we get 

1' (re*') = B (re ~') E' (r d') + B' (re i') E (r e*'), 

where, by  Theorem 1, the first term tends to zero when z - + l -  0. To prove 
that  the second term tends to zero we differentiate (1.2) and obtain 

mB (z) 
B' (z) 

Z 

1 - I ak r m B (z) 
FB(z)~(z--ak)(1--akz)  z 

a , ,  _ , ,  1-1a,,r 

where B~(z) is the Bla~chke product obtained from B(z) by omitting the factor 
corresponding to a~. Since this factor has a modulus ~< 1 and since 

] 1 - ak z ] ~ = [ 1 - -  ak 5 [~  [~ (~-1 _ ak) [9-2~ >t (1 - -  r )  2n r ~ - ~  I e'x - -  ak [~-2~ 

we obtain 

IB,(re, OE(re, Oi<.~iB(re,,)E(rdO]+ 2 1 E ( r d ~ ) ]  -- 1 - - ]a~ l  (l_r),~rm_~)~le, Z_a~l,(x_~). (3.3) 

Furthermore, by Lemma 1, we have (with r =  1 - h )  

' E ( r e ' Z ) ' ( 1 - r ) - 2 ~  exp { - 2 (  t*(x+h,-p{x-h)2h 

Hence, by  (3.1) 

lira E (re ~x) (1 - r ) - ~ = O  
r.- .~.1-0 

and thus (3.3) together with (3.2) implies that  

lira B' (re ~z) E (re ~x) =0. 
r - . ~ l  - 0 

This completes the proof of the theorem. 
For each argument z, where p (x + 0) - # ( x -  0) > 0, the conditions of Theo- 

rems 1 and 2 are fulfilled and  thus lira j '  (retX)=0. I t  is natural to ask if there 
~--~I--0 

can be other values of x for which ]' (re~X)--~O when t - + l - 0 .  In  section 5 we 
can answer this question affirmatively by  stating examples. 
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4. Lebesgue  funct ions  

I n  this section we invest igate a special type  of functions # (x), which will be 
used in s tat ing the examples  in section 5. We begin by  constructing a class of 
perfect sets. 

By  a dissection of the type  [~], 0 < ~ < ~, of an interval  I :  a ~< x ~< b, we mean  
the dissection 

a<~x<<.a + ~ (b 'a ) ,  a + ~ (b -a)  <x  < b - ~  (b-a) ,  b - ~  (b -a)  <<.x<~b 

into two closed intervals,  each of measure  ~ m (I), and an open interval  of meas- 
ure ( 1 - 2 ~ ) m ( I ) .  Now let ~ denote a sequence of real numbers  ~ ,  0 < ~ k <  1, 

P 

k= 1, 2 . . . . .  such t ha t  llm 2 p 1~ ~k=0 .  Start ing with the interval  I we first 
p-~oo k = 1 

perform a dissection of the  type  [~1] and obtain two closed intervals,  which we 
call ~1.1 and ~1.2. B y  put t ing  C 1 = ~1.1 (J (~1.~ we obtain a closed set of measure 
2 ~ 1 m ( I  ). On each of the  intervals ~1.1 and ~1.8 we then  perform a dissection 
of the type  [~].  We obtain  four closed intervals ~.1, (~2.~, O2.a and ~.4, and 

4 

a closed set C~ = [J ~2. ~ of measure  m (C2) = 4 ~ ~2 m (I). By  repeating this proce- 
]~ffil 

dure we get  a sequence of closed sets C~ = ~1= d~.~ of measure m (C,) = 2 ~ ~=lII ~ m  (I). 

Finally we pu t  C (I,  .~.)= N C,. This is the well-known Cantor set constructed 
p = I  

on the in terval  I by  the  sequence ~ I t  is readily seen t ha t  C (I,  .~.)is a per- 
fect se t  of measure zero and tha t  each point  in C (I, ~)  admits  a representat ion 

x = a +  ~ enrn, 

n - 1  0 

where en is 0 or 1 and r n = ( 1 - ~ , ) I I  ~ m ( I ) ( I I  $~=1) .  I n  the sequel we 
k = l  \ k ~ l  

mainly  consider Cantor sets constructed by  sequences H, such t ha t  0 < ~k ~< ~ < 1, 
k = 1, 2 . . . . .  To indicate this we write H ~< ~ <  1. 

The following lemma,  essentially originating from Hausdorff  [3] (el. Salem [6], 
p. 73), will be of f requent  use. 

L e m m s 3 .  Let x ' = a +  ~ e'nrn and x = a +  ~ e n r  n be two di//erent points in 
n • l  nff i l  

C (I, ~), ~ ~ ~ < ~. Suppose that x' > x and let p be the natural number/or which 

en=en  if n ~ < p - 1 ,  e v = l ,  and e p = 0 .  

p - I  p - 1  

Then A II ~ <~x'-x<~B I I  ~ ,  (4.1) 
k - 1  k = l  

where A = (1 - 2 ~) m (I) and B = m (I). 
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Proof of Lemma 3. We have 

I t  follows that 

x ' - x=rp+ ~ (8'~-en) r~. 
n = p + l  

n = p + l  7t = p + l  

n - 1  P 

and since ~ r~= ~ ( 1 - ~ )  I~ ~km(I) = l~ ~km(I) 
n = p + l  n = p + l  k = l  k ~ l  

p - 1  p - 1  p - 1  

we obtain A II t k < ( 1 - 2 ~ v )  YI ~km(I)<~x'-x<~B 1--I ~k. 
k = l  k = l  k ~ l  

This proves the lemma. Incidentally we remark that the condition ~ ~< $ < 1 is 
not necessary to prove the right-hand side of (4.1). 

We now construct a non-decreasing, continuous function # (x) increasing at 
every point of C = C (I, F.) and constant in each interval contiguous to C. First 
we define /z (x) on C by putting 

~u(x)= ~ ca2 -n for x=a+ ~ e, rn. 
n = l  n ~ l  

We observe that the endpoints of the intervals ~v.k are contained in C. Let 
x 1 be the right-hand endpoint of ~v.~ and xz the left-hand endpoint of 6v.k+l. 
These points admit the representations 

s - 1  ~ s - 1  

x i = a +  ~ e ~ r ~ +  r~ and x ~ = a +  ~ e , r ~ + r ,  
n = l  n = s + l  n = l  

and hence it follows 

S - 1  

= ~ en2- '~+2-~=/z  (x~). 
n = l  n - s + l  n ~ l  

Thus, in order to get a non-decreasing function, we put, in each component of 
I - C ,  # (x) equal to the well-defined value at the endpoints of the component. 
The function, obtained in this way, will be called the Lebesgue function con- 
structed on the Cantor set C. I t  is easy to verify that # (x) is a continuous, 
non-decreasing function, such that /z' (x )=0  almost everywhere in I .  

For each x = a + ~ e~ rn fi C we introduce two sets of integers 
n = l  

No(x)={n;En=O} and Nl(x)={n;e,=l}.  

Let n~, j = 1, 2 . . . . .  he the elements of N~ (x), v = 6, 1, ordered as ~n iuer~.asing 
sequence. If x is not the right-hand endpoint of any 8~.k, the set N O (x) is 
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infinite,  and  if x is not  the lef t -hand endpoint  of any  5p.~. the set N~ (x) is 
infinite.  

We s ta te  two theorems concerning the r ight -hand and the lef t -hand der ivat ives  
of /t (x) at  a point x ~ C .  

Theorem 3. Let x be a poi~t in the Cantor set C( I ,  "z), ~ ~ ~ <.~. and sl~ppose 
that x is not the right-haled endpob~t o/ any 6p.k. Let /L (x) be the Lebesgue /~l~e- 
tion constr~cted on C (I, 7~). The~ 

l im / l  (x + h) - u (x) 
' ~ : -  ~ ( 4 . : ~ )  

h - - * ~ 0  h 

n~ - 1  

i/ and only i/ l im 2 ~ 1  1-] ~k=0 .  (4.3) 
j-~-~,c k = l  

Theorem 4. Let x be a point in the Cantor set C (I, "~), "z <~ ~ < ~. a~d s~ppose 
that x is not the left-hand endpoint o[ any 5p.~. Let /l (x) be the Lebesgue [~tl~c- 
tion constructed on C (I ,  ~) .  Then 

lira t ~ ( x ) - / l ( x - h )  
a~+O h 

i/ and only i/ . n~ l i r a2  ~-1 l-I ~k=0 .  

P r o o f  of Theorem 3. Let  x be a point  in C = C (I, ~'), which is not the  r ight-  
hand  endpoint  of an)- (~p.k. Since C is perfect,  there  is in every  neighbourhood 
of x an  x '  E C, where x" > x .  Le t  us prove t ha t  the  r igh t -hand  der iva t ive  of 
p (x) is infini te  a t  the  point  x if and  only  if 

l i m p  (x') - p (x) ~ o~. (4.4) 
z ' . - * . z - 0  X ~ - -  X 
2"EC 

The necessi ty of (4.4) is obvious.  To prove the sufficiency, we observe t h a t  if 
x + h  {h > 0) is s i tua ted  in an  in te rva l  where p (x) is constant ,  we have 

/z (xl )  - f~ (x) ~< g ( z  + h) - ~ (x) ~</~ (x2) - , u  (x) 

X 1 - -  -~ h x $  - x ' 

where x 1 and x 2 are  the r igh t -hand  and  the lef t -hand endpoints  of the  in terval .  
Hence the sufficiency of (4.4) follows. Let  x and  x '  in C, x ' >  x, admi t  the  
representa t ions  

~ f f i l  n = l  
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By Lemma 3 there is an integer j, such that 

t,(~')-~(~)=2-"~+ ~ (~-~.)2-"= ~ O+~L-~.)2-" 
n=n~+l n=n~+l 

and such that 

( , q - t ) - 1  ( , ~ J - i  \-I ~ (l+e,_e,~)2_,<lU(X,)_p(x) B 21~k n-n~+lfi (1- -gn)  2-n~'~ Bk~----l~k) n--n~q-1 ~,'--X 
(4.5) 

A I-I ~, ~ (l+e~-e, ,)2 -n>#(x')-I~(x)~ 7 (4.6) a n d  
k=l n=.~+l X -- X 

We will now prove that (4.2) holds if and only if 

n~-I 

lira I-I ~ :  ~ ( 1 - e , ) 2 - " = + o o .  
t---~ k=l n=n~+l 

(4.7) 

Since x ' -+x+ 0 implies j--~oo, the sufficiency of (4.7) follows immediately from 
(4.5) and (4.4). Suppose that (4.2) holds and consider the sequence of points 

~,=a+ ~ d.r .ec,  j= l ,  2 . . . . .  
nffil 

where 
~ if n,<n~ 

A =  if n=n~ ~ = 1 , 2  . . . . .  

Since j--~oo implies x~--~x+0, the necessity of (4.7) follows from (4.6) applied 
to x and zj. However, since 

2-n]+1~ < ~ (1 -en)  2-"~<2 -~+1+1' 
nfn~+l 

(4.8) 

(4.7) holds if and only if (4.3) holds. This proves Theorem 3. The proof of 
Theorem 4, being similar to that  of Theorem 3, will be omitted. 

Let x = a  + ~ en rn be a point, which is not the right-hand endpoint of any 

Or. k and consider the sequence of points x# = a + ~ el rn E C, ~ = 1, 2 . . . . .  
'n--1 

where e~ = { en if n :~ n o 
1 if n--n~ j = l ,  2 , .  .... 
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From the definition of .~. we have 

h. ~n~-i n~-x 
m z -  ~ ~ = 0 ,  

J-+oo k=l 

and  thus we conclude from (4.5) t ha t  ( t t (x j ) -#(x ) ) / (x j -x ) - ->+ oo when j-~oo. 
In  the same way, if y E C is no t  the left-hand endpoint  of any  ~ ,  k, we can 
find a sequence of points y j<y  such tha t  (# (y ) -F(y j ) ) / ( y -y j ) - -~+oo  when 
y j ->y-  O. When proving this, we have not  used the condition ~ ~< ~ < ~ and 
thus  we have the following theorem. 

Theorem 5. Let C (I, E) be a Cantor set and # (x) the corresponding Lebesgue 
/unction. Then, at each point x E C (I, Y~), 

lira sup # (x + h) - # (x - h) 
a-.+o 2 h 

+ ~ .  

5. Examples o f  functions in ( N )  

We make use of the Cantor sets C (0 ~< x ~< 2 ~, ~), E ~< ~ < ~, and their corre- 
sponding Lebesgue functions. We prove the following theorem. 

Theorem 6. Let ] (z) = B (z) E (z) be composed of a Blaschke product B (z) and 
a /unction 

2~ 

E ( z ) = e x p { - - f e f t + Z d l z ( t ) } ,  

0 

where P (t) is the Lebesgue /unction constructed on the Cantor set 

C=C(O<<.t<<.2~, ~), E < $ < ~ .  

Let x be a point in this set, such that at least one o/ the conditions 

/fin n~+12 ~+1 n~-i I-I ~ = o, (5.1) 
J- -~  k = l  

1 n~-I 
and lim n~+l 2 ni+1 h ~ = 0 

t--~oo k=l 

holds. Then lim /(re*X)= lim / '  (retX)=O. 
r->l-O r--~l-O 

(5.2) 

Proof. We carry th rough  the proof only for a point  x, such tha t  (5.1) holds. 
By  Theorem 3, condition (5.1) implies t ha t  (4.2) holds. Hence, if x + h  ( h > 0 ) i s  
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s i tuated in an interval  where ,u (x) is constant ,  and if h is sufficiently small ,  
we have 

, u ( x _ - b )  / l( .r h)+ l ogh  ~ p(x+h)-/t(x)_~_ log h ~ p ( ' r O - / t ( ' r )  '- l o g ( x l - a "  ). 
2 h 2 h 2 (a" 1 - x) 

where x~ is the  r ight -hand endpoin t  of the  in terval  of constancy.  Thus, to prove 
the theorem it is enough to prove,  by  Theorem "2, 

l im ~'/' (x') - I ~ (x) - x ) )  + 
�9 , - -~ ,~0 \  2 i x ' - - ~ r i  + log ( x '  , = o~ .  
z'i~ C 

(5.3) 

However,  by (4.5), (4.8), and Lemma 3. there  is for every  x 'E  C with . r ' > . r  an 
integer j, such t ha t  

.~ x k 

2 ( x '  - .r) k = l  
+ log .4 ~_A. 

Hence. since x'-->x+O implies j - - .oo ,  and since (5.1) holds, (5.3) follows, and  
we have proved the theorem.  

Let  S O be the  set of points  x, for which (5.1) holds and S 1 the  set of points.  
for which (5.2) holds. In  order  to invest igate  to wha t  ex ten t  the  points  in C 
belong to S O and S 1, we int roduce for a set S c C the measure 

2 t l  

# (8) = f Xs (t) d tt (t), 
0 

(5.4) 

where Zs (t) is the characteristic function of the set S and p (t) is the Lebesgue 
function constructed on C. We say that 8 is measurable (#) if the integral in 
(5.4) exists. Denote by S' the image of 8 under the transformation 

p (x): C-->{z;  0 ~<x~ 1}. 

By the theorem of Lebesgue [4], p. 87, S is measurable (p) if and only if S' 
is measurable in the ordinary sense, and then 

2n 1 

u(s)= f z~(t)d/~(t)= f x,.(~) 
o o 

d z f m ( 8 ' ) .  
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Theorem 7. S O and S l arc mrasurabb (,.) am7 ,u (S o) = u tSl) l .  

ProoL For  synunetr ic  reason we restr ict  ou~e lves  to S o. Since ,u (('] 1 it is 
enough to show tha t .  for any e. 0 - - e - - 1 .  lhere  is a set S , . ~ - S o c ( ' .  such thai  
,u (S,) ~ 1 e or, what  is the  ~ l n e .  u ((" S,..) ~ e. 

Let ,~- hc a number ,  such tha t  0 - ,~ ' - .  I. and let a be a number  such thai  
a ' - 1  and a : - - ( - l o g  ~) log 2. where ~" ~4S-..1,. We choose an integer K. such 

that  
ar 

\" 2 (''~ i ,,~.l~ e. (5.5) 
~Tic 

Next  we de r ide  the set of na tura l  numbers  into subsets  Z,. r =0. 1. "2 . . . .  de- 
fined by 

Z 0 {n: l ~ < n - . a ~ } .  Z , .  { n : a  s ' l~<~l<a~ '}. r :  1. '2 . . . . .  

Since ~ - . ! .  (5.5) implies tha t  a K " ' - a  K ' '  1{ 1. 1 ..... 1. 2 . . . . .  aud thus Z,.-::() 
( =  the e m p t y  set). Fina l ly  we put  

S , = { x : , r E C .  Z, . t3N 0(.r):~:O for eaeh r= I . '2  . . . .  }. 

Let .rE,% and let n~ ( v ? ' l ) .  Then tl ~ , , l  belongs to Z,. or Z,. l and hence 

ilO r ;  1 f . 1 (IlK 
.~ a K ,  1 a L  (5.l~t 

Since a ~ -. ( -- log ~) log 2, a s imple ea leuh l t ion shows tha t  (5.6) in lp l ies t5 , l )  and 
thus  S , c  S o. In  order to  es t imate  ,u (( '  S,) we list  

�9 5 ( " . . . .  ( , - - & =  T,.. where T,,:: tx, , r 6 C ,  Z, ,cNi ( . r )} .  r 1, 2. t5.7~ 
r 1 

I t  is readi ly  seen tha t  T~ is measurable  (p) and  t ha t  

and  thus.  by  (5.7). 8~ is measurable  (/i) and 

or 

p ( C  S,)~< - \~ '2 - ( ' ~ ' -  ,,s-~,.-~ i )<r"  
i , -  I 

This completes  the  proof. 
F rom Theorem 7 we see tha t  S O and N t have the  power  of eontinuuni.  In 

fact,  since #l (80) = 1 we have m (&;) -- 1. Hence 80 has the  power of continuunl 
and  therefore also S 0. 

In  view of Theorem 7, each funct ion [ (z) of the  type  defined in Theorem 6 
has the  p rope r ty  t h a t  lira i' (rd~) = 0  a lmos t  everywhere  (1~)in the  exceptional  

r-,+l - 0 

set, a l though the associated f i m e t i o n / i  (x) is continuotls.  Thus we have ails~vered 
the  question raised in section 3. 
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