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On a class of  exponential equations 

B y  J .  W.  S. CASSELS 

In this note I shall prove the following theorem. 

Theorem. Let II1, H2 be two finite sets of rational prime numbers and let P1, P2 be 
the sets of positive integers all of whose prime factors are in H1, H2 respectively. Then 
for any fixed integer C :~ 0 there are only a finite number of solutions o/ 

X -  Y = C ,  X e P 1 ,  Y e P 2 .  (1) 

These can all be determined in a finite number o/steps.  
The novelty of the theorem lies only in the last sentence. Without it, the theo- 

rem is a well-known consequence of the theorem of Thue about the approximation 
of algebraic numbers by rationals which was subsequently improved by Siegel 
and Roth. We shall use instead a result (Lemma 1, below), given by Gelfond [2], 
which is related to Mahler's p-adie analogue of the Gelfond-Schneider theorem 
about the transcendence of ~ ,  where ~ and fl are algebraic. 

For the earlier history of the problem solved by our theorem we refer to Nagc!l 
[1] w 1. Nagell's formulation is different from ours, but  the two formulations are 
readily seen to be identical. 

The result which we require is given on page 157 of Gelfond's book, and may 
be formulated for our purposes as follows. 

Lemma 1. Let a, b be elements o /some algebraic number field ~(. Suppose that 

a u = b v (2) 

with rational integers u, v implie~ that u = v = O. Let p be a prime ideal o / ~  for which 
a and b are p-adiv units. Then there is a number x o = x o (a, b, p), which can be deter- 
mined in a finite number of steps, with the following property: 

For any x >1 x o the congruence 

aU~b  ~ (rood pro) (3) 

is insoluble in rational integers u, v, m with 

We shall need to supplement this by the trivial Lemma 2. 

(4) 
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Lemma 2. L(t  ~. b be chments  o/somr algeb,'aie n u m b e r / i ( h t  7g. Suppos~ that b= 1 
~t,',.d that thcr~ i~ a t~lir o/ coprim*: inb!lers U. I such that 

C -  b v. (5) 

L~t t' be ,,t pri,,~e ideal of 3( for which a and b are p.adic units.  Then there exists a 
eo~st,.znt d) = d) ia, ~, pl, u'hi',h can be determined in a f ini te number o / s t e p s ,  with the 
f,')!l,)~cing prop~ rty: 

I i  the i~t~!ler,~ :t, ,:, m are such that 

a '~=b : ( m o d p  '~) 

then u = t U. c = t V 

i,.)r some rational integer t. 

(6) 
(7) 

iS) 

We sketch the simple proof. From (5) and (6) it follows that  

b~=------I (mod p~), (9) 

where w =  V u -  Ur .  

If ~7) is true. we have 

1"1.<2 max ([ U[, [ V [ ) m a x  ([ u[, It, l) 
~<2 max ( t U I - [ V [ ) e x p  ( - ~ b + ~ - ' m ) .  (10) 

Here 2 m:,x (1 u [, Iv  I) is fixed. The theory of the p-adie logari thm now shows 
immediately that  (9) and (10) together imply u ' = 0 ,  provided that  ~b is chosen 
lar~,e enough. 

We are now in a position to prove the following lemma, of which the theo- 
rem is an easy consequence. 

L e m m a  3. Let  I I  be a f ini te  set o~ rational pr imes  and let P be the set o /pos i t i ve  in- 
tegers all o/ whose p r ime /ac tor s  are in H. Le t  D > 0 and E #-0 be rational integers and 
suppose that no pr ime /actors of E is in H.  Then there are emly a f ini te  number o/ 
solutions Z.  Y ot. the equation 

Z " - D Y * - = E ,  ( l l )  

where Z is a rational integer and Y e P .  These can all  be obtained in  a f ini te  number 
of ste W . 

When D is a perfect square the lemma is trivial, so we may  assume without 
loss of generahty  that  the field J f = k ( D  i) generated by D t over the rational 
field is a real quadratic field. Let  q >  1 be the fundamental  unit of k ( D t ) .  3:hen 
(11) imphes that  

Z= Y D t = x ~  ", g-YDi=~t'(t l ')" (12) 

for some rational integer n, where 0t is one of a finite set of integers of h (D �89 
and where ~t', 1/' are the conjugates of ~t, ~/ respeet4vely. Hence 

ate" - r (r/')" = 2 Y D  t . (13) 
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B y  (12) there  is a cons tant  O=O(~,D)>O such t ha t  

Y>O~ ~. (14) 
Since Y EP, we have 

Y =  1-I p ~  (15) 
l<~a<~S 

for some integers ao>~ 0, where Pl, "",  P~ are  the  pr imes in the  set II .  Hence,  
by  (14) 

m a x  a~ ~> y~ n, 

where ~=~o(a ,  D, 1 ] ) > 0 .  ~ '~  m a y  suppose, wi thout  loss of general i ty ,  t h a t  

a I > y,n. (16) 

Le t  p be a pr ime ideal divisor of Pl in k(D�89 Since E = N o r m ~ r  and pI4E,  
b y  hypothesis ,  i t  follows t h a t  r162 and  a '  a re  integers for p. Hence,  b y  (13), (15) 
and  (16) we have  

a----b n (mod p ~ ) ,  (17) 

a = ~ / c x ' ,  b = r / ' /~ /  where 

are  integers for p. 
But  now 

y) n > log 7 n 

and  ~0 n > 4 2 + ~b log n 

for all suff iciently large n. Hence L e m m a  3 follows from L e m m a  2 or L e m m a  1 
according as a is an  o rd inary  uni t  or not .  

We  can now deduce the  theorem in a few lines. After  d iv id ing  X,  Y, C in (1) 
be their  common divisor,  we m a y  suppose wi thout  loss of genera l i ty  t h a t  X,  Y, C 
are coprime in pairg. Hence we m a y  suppose tha t  the  two sets II1, II~ of primes 
are  d is jo int  and  t h a t  C is no t  divisible  b y  a n y  pr ime  in I I I  or  Ha. 

I n  (1) we m a y  wri te  

X = A X ~ ,  Y=BY~,  

where A and  B are coprime. There are  only  a f inite number  of possible values 
for A and  B. Clearly 

Xl e P 1 Yl e P2. 
But  now 

Z ~ - D Y12 = E,  

where Z = A X 1 ,  D = A B ,  E = A C .  

W e  can now a p p l y  L e m m a  3 with  [ I  = II~. Note  t h a t  we do no t  use the  fac t  
t ha t  X 1 E II  I. 

Trinity College, Cambridge, England. 
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(Added in proof: An English t~anslati(.n has just appeared, published by the Dover Press.) 
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