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B y  ALEXANDRA IONESCU TULCEA 1 

In this paper we give some results centering around B. McMillan's theorem 
in information theory. The paper is presented in the abstract setting developed 
by A. Perez in [9] and [10]. In w 1 we prove some preliminary results. The 
main theorems are given in w 2. They deal with mean convergence of order p 
(where 1 < p  < ~ ) ,  domination by a function in L ~, as well as convergence al- 
most everywhere. w 3 is devoted to various remarks and comments. In particu- 
lar, it is shown here that  various classical theorems from information theory 
for finite alphabets are particular cases of the results proved in this paper. 
The appendix contains a short and direct proof of the fact that  (essentially, 
this follows also from the general theorem 1), in the case of a finite alphabet, 
the almost-everywhere convergence holds in McMillan's theorem. 

1. Preliminary results 

Let X be a s e t . . L e t  B be a a-algebra of subsets of X, 2 and Q two prob- 
abilities on ]~. We say that  2 is absolutely continuous with respect to ~, and 
we write 2-<Q, whenever the relations EEB,  ~ (E) = 0  imply 2 (E) =0;  we denote 
by d2/d~  the corresponding Radon-Nikodym density. 

Throughout this paper we shall use the following notations: 

l~  ~  if if t~<lt>l and 
t = f l o g t  if t < l  

log- 
I C  if t~>l. 

Let  (C,)1<,<oo be a sequence of a-algebras on X,  such that  Cn=C,+I  for 
C each n>~ 1; denote with Coo the a-algebra generated by [Jn~l n. If 2=200 is 

a probability on C~r we shall denote with 2~ the restriction of 2 to C~. 

Proposition 1. Let (Cn)l<n<oo be a sequence o/ a.algebras on X such that 
CncCn+l /or each n>~l. Let Coo be the a.algebra generated by U~-lCn,  and 
2=2oo, ~=eoo two probabilities on Coo such that 2n'<~n /or each n>~ 1. Then: 

(i) For each t> 0 we have 

i This pape r  was  sponsored by  the Office of Ordnance Research under  contract  No. DA-19- 
020-ORD-4912. 
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2({ xl 1.<=<~inf d~d2~ ( x )<t} )~ t .  (1) 

(ii) There is l < q < ~  such that supl<~<o. S (d2n/dp~)qd~n is /inite, i/ and 
only i/ there are two constants C > O, ~ > 0 veri[ying the inequality 

/or every t > O. 

(i) Let t > 0  and define the sets 

<Ce -t6 (2) 

A ( t ) = l x  I inf d2n } ( 1 - < ~ < ~  (~)<t 

d 21 t}, and A 1 (t) = {x I ~ (x) < 

d2j <t}, ~'>~ (d 21 , d21-1 (x)) ~ t, (x) 2. A, (t)= {x I inf \d--QQx (x),. ~ 

It is easily seen that for each t > 0 we have 

Aj(t) 13Ak(t)=r if i4=k, l < j ,  k<c~;  

A (t)= 5 Aj (t); 
i=1 

2 (Aj (t)) ~< tq (Aj (t)) for each 1 < } < ~ .  

Using (5), (6) and (7), we deduce immediately the inequality (1). 

(ii) For each t>  0 define 

B ( t ) = l x  I sup d2. } ( 1.n<.d--~n (x)>t"  

It is clear that (A (e -t) is defined by (3)): 

{x[ sup Ilogd2"(x) > t } = A ( e  -t) 
l~<n<~ [ 

for every t > O. 
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Assume now that there exists 1 < q < c0 such that 

1~n<.r \de.7 
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is finite. In this case 2~<Q~ and [(d2,~/d~,)q]l<,<~ is a 9-semi-martingale(I); it 
then follows that f(SUpl~<n<r162 (d2~/d~,~)qd~ is finite (see [2], p. 319, p. 317). 
For t > 0  we have 

et(q-1)2(B(e~))<~ f (\l<~n<<.ocSUp ~n/d~n~q-1 d~ 
s(eO f I~ 
B (et) 

? / d2A ~ sup - -  
,s (e9 

Using (1), (9) and (10), we deduce immediately (2). Conversely, assume that 
there exist two constants C > 0, 8 > 0 verifying the inequality (2) for every t > 0. 
Let l < q < O + l .  Then, for each t > l  we have 

<~ C/t  '~/(q- D. 

It  follows that S [sup1<.<+ (d2./d~.)] q-a d2 is finite, and hence that 

sup f l~n<~ kdqn/ 

is finite. Thus the proposition is proved. 
Let (C.h<~<~ be a sequence of a-algebras on X such that Cn~Cn+1 for each 

n>~l, C~ the a-algebra generated by U.%lC., and 2=2**, ~ = ~  two prob- 
abilities on C~. We may now give the following consequences of proposition 1: 

Corol lary  1. Suppose that 2.'<Q. ]or each n>~ 1. Then: 

/ d2.~ (i) sup / - l o g - w - / e L " ( X ,  C..,;t) /or each l < p < o o ;  
l~<n<~ 

(ii) lim inf 1 log d2. (x) >/0 2-almost everywhere. 
n---}** n a Qn 

(i) Using (1) ((i), proposition 1), we can write 

({ ( ~ ) }) ( {  ~  ~ "  }) ~ ~l~.<=sup - log -  (~,) >t  ~=~ ~J -r--(~)<~ -' <~-' (11) 

x Relative to the sequence (~n)l~n<oo of a-algebras. 
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for each t > 0 .  From (ll)  follows immediately that the function 

F d 4.] 
sup | -  log- 

belongs to L v (X, Coo, 4) for each 1 ~ p < co. 
(ii) From (i) follows in particular that 

lira 1 log- d A. (x) = 0 

4-almost everywhere. Therefore, 

d4n I d4 .  lira inf 1 log (x)/> lira inf - log + (x) ~> 0 
.-...o . oon a e .  

4-almost everywhere, and hence (ii) is proved. 

Corollary 2. Suppose that 4oo'< Qoo. Then for each 1 ~ p < co 
assertions are equivalent: 

(a) supa<.<or ~[log (dXn/do.)[r d4. is finite; 

(b) supl.<.<oo ~ [log + (d4./dQ.)] vd2.  is finite; 

(c) log (d4oo/dOoo) EL v (X, C~o, 4); 

(d) log + (d4~/dooo)ill2 (X, Coo, 4); 

(e) lim._~oo II log (d 4n /ae . ) -  log (d4oo/aooo)ll.=0. 

Let us remark that 

d4. d4~ 
lira log* ~ (x) = log + ~ (x), 

. - - ~ O 0  

the ]oUowincj 

(:2) 

lira log- dT~" (x) = log- d ;too 
. - ~  a q. d q~ (~)' 

(13) 

d4.  d4~ 
4-almost everywhere since ~irnoo ~ (x)= ~ (x) .o-almost everywhere and 

/d 4. + d 4. i 

a ~-semi-martingale, provided that 

d-b-.~.Jl<.<~ is a 4-semi-martingale, provided that log + d4oodQoo d4 is finite. 
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Using (i), corollary 1, the relations (12) and (13), and a classical result on 
semi-martingales of non-negative functions, (see [2], p. 325), we can easily 
establish the equivalence of (a), (b), (c), (d) and (e). 

2.  M a i n  t h e o r e m s  

Let Y be a set, C a a-algebra of subsets of Y, and X=[InEzX~(1), where 
X~= Y for all n6Z. For each nEZ, denote by pr~ the projection of X onto 
X~, and by ]sn the a-algebra {pr; I (E)IE6C }. For each part I c Z ,  denote by ]81 
the a-algebra generated by [Jne:]sn. If I={n} ,  then ]8c~}=]8n; for I=Z,  we 
shall write ]8 instead of ]sz. Denote with T the mapping (X~)n:GZ'>(Xn+l),~z of 
X onto X. The mapping v is ]8-measurable and z (]8~)=]8~-i for each n6Z. 
Let now 1 be a probability on ]8. For each part  I c Z, we shall denote with 
)tz the restriction of ;~ to ]sz. If I= {n}, we shall write 2n instead of t~n~- The 
probability ;{ is stationary if for every E 6]8, ;t (v -1 (E))=;t  (E). 

Let  (I(s)),,T be a family of disjoint parts of Z; for each s6T, let ~ir be 
a probability on ]8~s). In what follows we shall denote with | 1 6 2  
(probability on ]su,,r](8)) direct product of the ~:(s). 

A probability ~ on ]8 has the property (A) if v is stationary and ~= |  ~n- 
We shall say that a system {p, ~} of probabilities defined on ]8 has the /rrop- 
erty (B) if p~0...n_,)~<~r for each n~>l. A system {p, ~}~ of probalities 
defined on ]8 has the property (PE) if {p, ~ ) h a s  the property (B) and if 

_ d p(o . . . . .  1) lim 1 log (x) = h (z) 

exists, is finite, and h (T (z))=h (x) p-almost everywhere. We say that {p, r)  
has the  property (MEq), where l~<q< 0% i f { p ,  ~) has the property {B) and 
if there exist two functions h e L q X ,  ]8, p), G*eL~(X, ]8, p) such that: 

(~) h is invariant under r ( b o y = h ) ;  

d ~r n- 1) I < G* for all n >/1; 

(7) lim llogdp~~ 
n - ~ o o  ~ d ~ (o . . .  n -  1) 

Let now {p, ~} be a system of probabilities on ]8 such that  (see [10]): 

(C) p is stationary; 

(D) pc. . . -Lo~ p~... -2, -,)| 

(E) p o - ( ~ o .  

If v has the property (A), then, using (C), (D), (E), we deduce: 

,z={..,-1, 0, , , . .}. 
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g(... -1, 0)'~g(.., -2, -1)~20; 04) 

Let  now 

We then have 

for all n >i 1. 

g( n , , , -1 ,0) '~g(  n,. .-1) |  0 for all  n>~ 1; 

the system {#, v} has the proper ty  (B). 

_dg~0.. . , -1)  for l ~ < n <  oo; 1" dv O . . . . .  ~) 

d/z o d #(_ k ... - x. o) for 
go - d v  o, g ~ -  d # ( _ , . . . _ a ) |  

dg(... -1.o) 
9~ = dg( . . . .  x)| o" 

1 ~_=~ 
nl log f .  = n k~o- log g, o v  * 

l ~ k <  ~ ;  

(15) 

(16) 

(17) 

(18) 

Theorem 1. Let {g, v} be a system of probabilities on B satisfying (C), (D) 
and (E). Sutrpose that v has the property (A). Then: 

(i) The sequence [ ( I /n)  log f,]x<.<.r converffes in L I (X, •, g) if and only if 
sup0.<k<~ S l~ + g~dg is finite; i/ h is the limit of the sequence [ ( l / n ) l o g  f~]l<n<~ 
in L x (X, B, p), then h>~ 0, p.almost everywhere. 

(ii) I /  1 < q < ~ and supo<k<~ S (log + g~)* d g  is finite, then the system {g, v} 
has the properties (MEr and (PE).  

Vd (iii) If, in particular, there exists 1 < p <  co such that supo~<.~ Sgk g(-k..,-1)| 
is finite, then the system {g, v} has the properties (P E) and (M E,) for all 1 <<. q < ~ .  
In  this case, there exi.~t a function G*, dominating7, the sequence [ ( l /n )  log f~]i< . . . .  
and two constants CI > O, Oa > O, verifying the inequality 

g ({x I G* (x) > t}) <. C 1 e -t~" (19) 

for each t > O. 

(i) Assume tha t  supo<~<~ ~ log + g~dg is finite. Using corollary 2, we deduce 
tha t  log g~ fiL 1 (X, B,/x), log gkEL I (X, ~, g) for  each k>~0, and tha t  

lira H log gk -- log g~ Ih = 0. 

The argument  of B. McMillan (see [8]; see also A. Perez [10]) shows then tha t  
the sequence [ ( l /n )  log f ,h< ,<~  converges in L 1 (X, B, p); if h is the limit func- 
tion, then (use (ii), corollary 1) h(x)>~O p-almost  everywhere. Conversely, as- 
sume tha t  the sequence [ ( I /n)  log f , ] l<,<~ converges in L 1 (X, B, g). By (i), 
corollary 1 

G'=  sup ( - l o g - g k ) E L q ( X ,  75, g) for each l ~ q <  ~ .  (20) 
O~k<~ 
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Using (18), we obtain for each n~> 1 

n I 1 ~-I ~ _11 1 
-- Z log + ~,~o~ ~[  log l~ + -  y G 'oe  ~, 
n ;:~o ~i n k=0 

whence 1 ~  f II 1 II - log+ 9gd#<~ log]n +IIG'II~<M, (2X) 
~ k ~ 0 .  1 

where M is a constant independent of n. :But ~ log + gkd~u<~j" log* g,~§ for 
each k~>0, since the sequence (log + gk)o,<n<~r is a #-semi-martingale (see for in- 
stance the proof of corollary 2). We deduce then from (21) that  ~ log + g~ d/u <~ M 
for each k>~0, and hence that sup0.<e<~ ~log + gkd# is finite. 

(ii) Assume that l < q <  cr and that supo<k<~ ~ (log + g~)qdff is finite. Since 
the sequence (log + ~k)o<~<~r is a p-semi-martingale, we have then (see [2], p. 317): 

Gtt 

From (20) and (22) we get 

sup log + g~,eL q (X, B, ,u). (22) 
0~tc<zo 

a = sup ] log gel ~< O' + G". (23) 

Now GeLq(X, B, pt), since G' eLq(X, B, fi) and G" eLq(X, B, ,u). On the other 
hand, lim~_.~ log gk (x)=log 9~0 (x) ]~-almost everywhere. Hence we can apply a 
generalized ergodic theorem (see [1] and [ 7 ] ) a n d  deduce the existence of a 
function hELr B, ,u), invariant under v, such that 

lim 1 n-1 - ~ log g~ (~  (x)) = h (~) (24) 
n--~*r fg k ~ 0  

/u-almost everywhere. Therefore the system (/x, v} has the property (P E). To 
complete the proof of (ii), we have to show that  the system (/U, ~'} has also 
the property (MBr By the "dominated ergodie theorem", we have 

G*= sup 1 ,-1 
~ . < ~  -n ,~oo y~ O ~  13,/~). (25) 

Using (24), (25) and the obvious fact that  G* dominates the sequence 
[(l /n) log/.]1~.<~r we deduce that 

Hence the system {/U, v} has the property (MEq), and thus (ii) is proved. 
(iii) From the hypothesis and from (ii), proposition 1, we deduce that  the 

function G defined in (23) satisfies the inequality 

/u ({xl a (x) > t}) < o e - "  (27) 
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for each t>0 ,  C > 0  and (~>0 being suitable constants. I t  follows that  
GEL q (X, B,/~) for every 1 ~<q< c~; hence sup0<.k<~~ (log + gk)qdl ~ is finite for 
each 1 ~<q< c~, and so, by (ii) above, the system {#, v} has the properties (PE) 
and (MEq) for each 1 < q <  c r  The inequality (19) follows from (27) and the 
"maximal ergodic theorem" (see [3], p. 676) ~pplied to the functions G, G* de- 
fined by (23) and (25), respectively. In fact, it is clear that  the inequality (19) 
is satisfied for suitable C~>0, (~1>0, when 0 < t < l .  For t>~l, the inequality 
(19) can be proved, for instance, (1) using the following relations: 

/~((x[G* (x)>t))<-2 f G'd~<-2[[GH~'~({x[G(x)>2}) ~. 
{x [ G ( x) > t/2} 

Hence the theorem is completely proved. 

T h e o r e m  2. Let ~ be a probability on B having the property (A), and 4, # 
two probabilities on B such theg ~ # .  Assume that the system {ju, ~) has the 
property (PE). Then: 

(i) The system {~, ~) has the property (P E) and we have 

lim -1 log d 2(0. :: n- a) (x) = lira _l log d d ~U(o... n- 1) (2:) = h (~.) ~ 0 
n~oon dy(o..,n-l) n--.~o~ n Y(O, . , n - l )  

(2s) 

~-almost everywhere. 

(ii) I] 1 ~<q< oo and i] the sequence 

((1_ log + d~(o, . . . .  l _ . ) ) ]q  1 
d y ( o . . ,  n - l ) ]  ] l~n<oo  

is 2-uni/ormly integrable, then 

~im l o g d - ~ o . ~  h q=13" 

(iii) In particular, if there exi~ constan~ 1 < p < ~ ,  a >~ 1, such that 

( (d,~(o . . . . .  i))•dv(o . , n _ i ) = O  (a n) when 
~d-~(o, . . . .  1)/ ' 

n--->, co 
J 

then the system {2, ,} has the property (MEq) /or every l < q <  oo, and O<~h(x) 
<log a / ( p -  1) k-almost everywhere. 

(i) Let us remark first that  for n>~ 1 we have 

1 This simple argument was shown to the author by C. Ionescu Tulcea; it replaces the initial 
argument of the author. 
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d/~(o, .. n - l )  d L0 . . . . .  1) (X) = d 2(0 . . . . .  D (X) (X) 

d v(o, . ,  n - l )  d/A(o . . . . .  1) d }'(o . . . . .  1) 
(29) 

V(o,..n_l)-almost everywhere, and hence also ;t(o,..~_l)-almost everywhere. I t  
follows tha t  

1 d2{o . . . .  1) 1 d ~  1 d2(o . . . . .  1)(x) = log ' (x) + -  log . . . .  1)(X ) 
n l~ dr(o ~-1) dju(o . . . . .  1) n . . . .  1) 

(30) 

;t-almost everywhere (obviously, (d;tr . . . . .  1)/d~(o,..n-1)) (x) t-O 2-almost every- 
where). Since the system (#, ~} has the proper ty  ( P E )  and since 2~:#,  there 
exists a function h~>0 (use (ii), corollary 1) and finite ).-almost everywhere, 
such tha t  h (T (x)) = h (x) and 

lim 1 log dp(o, _ . . . - 1 )  ( x )  = h ( x )  
n--),oo n d ' P ( o . . , n - l )  

(31) 

2-almost everywhere. Hence to prove (i), i t  will be enough (in view of (30) 
and (31)) to show tha t  limn..~ ( l / n )  log (d2(0 . . . . .  1)/df~(o, . .  n - l ) )  ( X ) =  0 2-almost 
everywhere.  But  the sequence (da(o...n_l)/dlu(o . . . . .  1))1<,<~r is a /~-martingale, 
and since 2(0.1...)'</~(0.1...), we deduce tha t  

lira d 2(0 . . . . . .  1) (x) d ;t(o. ~. . . )  (x) 4= 0 
n---,*o d/z O . . . . . .  1) d~(o.  1. . .  ) 

;t-almost everywhere. I t  follows tha t  

d ;t(o, n-l) lira -1 log - - -  :" (x) = 0 
n.--~ ~ d ~ ( o . . ,  n - l )  

;t-almost everywhere. Hence (i) is proved. 
(ii) follows immediately from (i) and corollary 1. 

remark tha t  
In fact,  it is enough to 

1 d2r . . . . .  z)] (32) sup - -  log- - -  E L q (X, B, ;t) for each 1 < q < c~. 
l~<n<r 7/, d 7)(0.., n - l ) /  

(iii) By  hypothesis there are constants l < p < o o ,  a~>l,  M > 0  such tha t  
S (d;to . . . . .  1)/d~,(o . . . . .  1))p-1 d;t{o . . . . .  1) <~ M a n for each n >~ 1. I t  follows tha t  for 
each r/~>l and t > 0  

({ 1 d;t{0.:.n-l____) ( x ) > t } ) < ~ M a n e  -n(p-1)t (33) 
;t X[nl~  d~'(o . . . . .  1) 

I t  is then easily seen tha t  for t > l o g  a / ( p - 1 )  we have 
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;t x i sup n l ~  : (x) > t  
\ (  l ~ n < ~  d ~(o ~ n - l )  

- a ) .  

We deduce that 

sup / 1  \ [ _ log+d~(0 . : .n_~) }eLq(X,B , t ) for  each l ~ < q < ~ .  
l~<n< :~ \'1~ d~)(o, n - l ) ~  

(34) 

From (32) and (34) follows 

t l d*t(0 . . . . .  1)[ sup - l o g  6La(X, B, ~) for each l < q <  ~ .  (35) 
l~n<r  Tb dY(0. . ;  n - l )  

Hence, by (ii) above, the system {t, v} has the property (MEa)for every 
1 ~< q < ~ .  To complete the proof of (iii), we have to show that  h (x) ~ log a/(p - I) 
2-almost everywhere. Let T >  log a / ( p -  1) and define 

E= ( T ) = / x l l l o g  + d).(o . . . . .  1) ( x ) > T /  for n>~l, 
[ n d v(0, .. n-l) J 

and E~ (T) = {xlh (x) > T}; let ~s, (r), ~0s~ (r) be the characteristic functions of 
the sets E~ (T) and Eor (T), respectively. Since 

lira 1__ log + dt(o . . . . .  1) (x) = h (x) 
n--)-~ ~ d Y(o.., n - 1) 

k-almost everywhere (see corollary 1), it follows that  ~s~r (T) (X) ~< lim inf,-.or ~S,(T) (X) 
;~-almost everywhere. From (33) we deduce that  limn_.~ t (E~ (T))=0,  and hence, 
applying Fatou's theorem, that  ;t (E~ (T)) = 0. Since T > log a / ( p -  1) was arbi- 
trary, we conclude that  t ({xlh (x) > log a / ( p -  1)}) = 0. This completes the proof 
of the theorem. 

3. Remarks 

(1) Concerning corollary 2, see .Cso [9~. (2) Conc~rping (i), f hee~m 1, s~e 
also [10]. (3) The condition 

j ,_,,=o(o,) 
\d r(o,.. ,~-1)/ "' 

when n - + ~  (1 <10< oo, a>~ 1) of (iii), theorem 2, was suggested by the reading 
of [5]. (4) Let  Y, C, X and v be the objects introduced in the beginning of 
w 2, and assume that: Y is a finite set (=alphabet) ,  C is the set of all sub- 
sets of Y. I~ t  a be the number of elements ( =  letters) of Y. Defhm the prob- 
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ability v on B as follows: v =  |  where v~[prT~ ~({y ) ) ]=l /a  for each y 6 Y  
and n 6Z.  

(1) Let  # be a stationary probabili ty on B. I t  is clear tha t  the system 
{#, v} satisfies (C), (D), (E) and also that  v has the property (A). Let  us also 
remark that  gk (x)~< a, p(-k... _~)| everywhere, for each k/> 0 (obviously, 
the gk's are defined by (17)). From (iii), theorem 1, i t  then follows tha t  the 
system {#, v} has the properties (PE)  and (MEq) for all 1 < q  < oo. These re- 
sults contain in particular those given in [5] for discrete stationary sources. 

(II) Let i be an almost periodic probabil i ty on B in the sense of [5]. There 
exists then a stat ionary probabili ty # on B, such that  ~ / ~  (see [5]). Let  us 
remark now that  (d I(0 . . . . . .  1)/dv<o . . . . .  1)) (x)<~a ~, v(o . . . . .  1)-almost everywhere, for 
each n~> 1. As we saw in (I), the system {ju, ~,} has the property (PE);  from 
(i) and (iii), theorem 2, it then follows that  the system {4, v} has the prop- 
erties (PE)  and (MEq) for all l < q < o o ,  and tha t  O<<.h(x)<~loga k-almost 
everywhere (since Ilhll  ~< (log a=)/(p- 1)= ( p / ( p -  1)) log a for each 1 < p <  co). 
These results contain in particular those given in [5] for discrete almost peri- 
odic sources. 

A P P E N D I X  

Let (X, B, P) be a probability space. A measurable measure-preserving trans- 
formation of (X, B, P) is a mapping T of X into X such that  ~ - I ( E ) E B  and 
P ( ~ - I ( E ) ) = P ( E )  for every E E B .  For any set E E B  and a-algebra C c B ,  we 
denote with P (EIC) the conditional probabili ty of E relative to C. For any 
finite a-algebra A c B, we denote with ~ (A) the (uniquely determined) parti- 
tion of the space X such that,, the a-algebra generated by ~ (A) coincides with 
A, and with C(~4) the number of elements of 3r(A). If  (C~), is a family of 
a-algebras contained in B, we denote with V,C, the a-algebra generated by 
U ,C , .  

Let  14 c B be a finite a-algebra, C c B an arbi trary a-algebra. The informa- 
tion of ~4 and the conditional information of J4 relative to C are defined by 
the equa t ions  (we write 0 log 0 = 0, --log 0 = + ~ and we denote with ~a the 
characteristic function of the set (A): 

for every x 6 X ,  and 

I ( J 4 ) ( x ) = -  ~ qA(x) l o g P ( A )  
Ae~(A) 

I (At  C) (x) = - _~, ~A (x) log P (A [ C) (x) 
A~(A) 

for almost ever), x EX, respectively. 

LEJ~iA. Let ~ 4 c ~  be a /inite a-algebra, (C~)0<n<or a sequence o/ a-algebras 
such that Cn c C~ + l c B /or each n ~ O. For every t > 0  we have 

P ( { x  I sup l ( A l C = ) ( x ) > t ) ) < ~ C ( A ) e  -t. 
0 ~ n < r 1 6 2  
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The proof is straightforward and similar to that  of (i), proposition 1 (1). I t  
will be enough to show that  for each A Eg(A)  and t>O 

(~) P({x{ sup I(AlC.)(x)>t}NA)<<.e -t. 
O~<n<~  

Fix now A Ez  (.4) and define the sets 

F (0 = {z { sup z (A  I c.) (~) > t} n .4 
D<~n<~ 

Fo (t) = {xlP (A l Co) (x) < e - ' }  

Fk(t)={x[ inf P(A[Cj)(x)>~e -t, P(AlC~,)(x)<e-t},k>~l 
O~<Y~</c--1 

for every t > 0. I t  is easily seen that  for each t > 0 we have: 

(o0 F~(t) flFm(t)=~ if n={:m, 0 ~ < n , m < c o ;  

(fl) E . ( t )  EC.  for every n/>0; 

(y) P (F. (t) N A) ~< e -t P (F~ (t)) for every n>~0; 

(~) F (t) = U F .  (t) n A. 
n=O 

From (~), (?) and  ((~) the inequality (~+) follows immediately; hence the lemma 
is proved. 

Remarks. (1) Let u be a strictly decreasing (not necessarily convex or concave) 
- 1  

mapping of [0, 1] onto [(~, + oo] (~>0) and let v=u. The above lemma holds 
for every t > ~ (and the method of proof is the same) if we replace everywhere 
- l o g  by  u and e -t  by v(t). (2) Let v 4 c B  be a finite a-algebra, and (Cn)0<~<oo 
a sequence of a-algebras such that  C ~ c C . + , c B  for each n>~0. Then: (2a) 
sup0<~<o. I (~4ICn) belongs to L ~ (X, B, P) for every 1 < q < oo; (2 b) lim._~oo I (.4[C~) (x) 
exists and is finite P-almost  everywhere. The assertion (2a) is a consequence 
of the above lemma, and (2b) follows from the fact tha t  for every AE~(J4) ,  
(P (AIC~))0<~<o. is a martingale. (3) Let z be a measurable measure-preserving 
transformation of (X, B, P), ~ c B a finite a-algebra, and (Cn)0<.<,. the sequence 
of a-algebras defined as follows: Co = {X, ~b}, C~ = VL, ~-t A for k 1> 1. I t  is clear 
that  C~cCn+I~{B for each n~>0. Let us remark now that  for every n>~l 

. - - 1  

z (v~':# ~-' A) = z ( A ) o ,  "-~ + ~: z (AI v L ~ , - '  A ) o ,  n-'-~ 
k - I  

(see [4]). Since the sequence (I(.,4),I(.,41~-1.,4),.,I(~4IV~_1~-~..4),.) satisfies 
(2 a) and (2 b) (see remark (2) above), we can apply a generalized ergodic theo- 
rem (see [1] and [7]) and deduce the existence of a function h, belonging to 
L ~ (X, ~, P) for every 1 ~< q < co, invariant under ~, such tha t  

x The lemma can in fact be deduced from (i), proposition 1; however, the proof given below 
is direct and shorter. 
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n-1 
l im I[I( v v-'.,4)/n-hll.=O for  e v e r y  l < q <  c~, 
n-~oo tffi0 

a n d  
n-1 

h m  I ( V "~-~ .,4) ( x ) / n  = h (x) P - a l m o s t  eve rywhere .  
n--~oo t=O 

I n  th is  w a y  we o b t a i n  t h e  classical  f o r m  of McMil lan ' s  t h e o r e m  in  i n f o r m a t i o n  
t h e o r y  (see [4], [5], [6], [8]), as  wel l  as  t he  asse r t ion  t h a t  a l m o s t  e v e r y w h e r e  
conve rgence  holds  in  McMiUan ' s  t heo rem.  See also [1] a n d  the  r e m a r k s  m a d e  
in  [4]. (4) T h e  resu l t s  c o n t a i n e d  in  th is  a p p e n d i x  were  p r e s e n t e d  on F e b r u a r y  9, 
1960, in a s emina r  on  i n f o r m a t i o n  t h e o r y  h e l d  a t  Y a l e  U n i v e r s i t y  u n d e r  t h e  
d i rec t ion  of Professor  S. K a k u t a n i .  
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