On the sum of two integral squares in certain quadratic fields

By Trygve Nagell

§ 1. Introduction

1. Let α be an integer $\neq 0$ in the algebraic field Ω. If α is representable as the sum of two integral squares in Ω, we say, for the sake of brevity, that α is an A-number in $\boldsymbol{\Omega}$. We say that

$$
\alpha=\xi^{2}+\eta^{2}
$$

where ξ and η are integers in Ω, is a primitive representation if the ideal (ξ, η) is the unit ideal, and otherwise an imprimitive representation.

In a previous paper [1] I have determined the A-numbers in the quadratic fields $K(\sqrt{D})$, where $D=-1, \pm 2, \pm 3, \pm 7, \pm 11, \pm 19, \pm 43, \pm 67$ and ± 163. In the present paper we shall continue the investigations and treat the cases $D= \pm 5$ and $D= \pm 13$. The following developments are in general based on the results obtained in [1].

It is well known that the number of ideal classes is $=1$ in the fields $\mathbf{K}(\sqrt{5})$, $\mathbf{K}(\sqrt{13})$ and $\mathbf{K}(\sqrt{37})$ and $=2$ in the fields $K(\sqrt{-5}), \mathbf{K}(\sqrt{-13})$ and $\mathbf{K}(\sqrt{-37})$; see [2].

From a general theorem due to Dirichlet [3] we get
Lemma 1. The number of ideal classes in the Dirichlet field $\mathbf{K}(\sqrt{D}, \sqrt{-} \bar{D})$ of the fourth degree is $=1$, when $D=5,13$ and 37 .
2. We also need the following lemmata:

Lemma 2. Let D be a square-free rational integer which is $\equiv \mathbf{2}$ or $\equiv 3(\bmod 4)$. If x and y are rational integers, and if $x+y \sqrt{D}$ is an A-number in the field $\mathbf{K}(\sqrt{D})$, then y is even.

Lemma 3. If α is an integer in the Dirichlet field $\mathbf{K}(\sqrt{D}, \sqrt{-D})$ with squarefree D, the number 2α belongs to the ring $\mathbf{R}(1, \sqrt{-1}, \sqrt{D}, \sqrt{-D})$.

For the proofs see [1], p. 8-9. In [1] we also established the following results:
Lemma 4. Let α and π be A-numbers in the field Ω. If (π) is a prime ideal divisor of (α). the quotient α / π is also an A-number in Ω. This result also holds if π is a unit (Theorem 4 in [1]).
t. nagell, On the sum of two integral squares

Lemma 5. Let α, π, π_{1} and η be integers $\neq 0$ in the field Ω with the following properties. The number $\alpha /\left(\pi \pi_{1}\right)$ is an integer; the principal ideals (π) and $\left(\pi_{1}\right)$ are prime ideal divisors of $(\alpha) ; \pi$ and η are relatively prime. The integers $\alpha, \pi \pi_{1}, \pi \eta$ and $\pi_{\mathbf{1}} \eta$ are A-numbers in $\boldsymbol{\Omega}$, such that
and

$$
\begin{gathered}
\pi \eta=f^{2}+g^{2} \\
\pi_{1} \eta=f_{1}^{2}+g_{1}^{2} \\
\pi \pi_{1}=\left(\frac{f f_{1}+g g_{1}}{\eta}\right)^{2}+\left(\frac{f g_{1}-g f_{1}}{\eta}\right)^{2}
\end{gathered}
$$

where $f, g, f_{1}, g_{1},\left(f f_{1}+g g_{1}\right) / \eta$ and $\left(f g_{1}-g f_{1}\right) / \eta$ are integers in Ω. Then the quotient $\alpha /\left(\pi \pi_{1}\right)$ is also an A-number in Ω.

This result also holds when one of the numbers π and π_{1} is a unit or when both of them are units (Theorem 5 in [1]).

§ 2. The imaginary field $K(\sqrt{-q})$ where q is either $=5$ or $=13$

3. Units and divisors of the rational primes 2 and q. The number -1 is an A-number in these fields since
and

$$
\begin{gathered}
-1=2^{2}+(\sqrt{-5})^{2} \\
-1=18^{2}+(5 \sqrt{-13})^{2}
\end{gathered}
$$

Thus the numbers α and $-\alpha$ are simultaneously A-numbers or not.
It follows from Lemma 2 that the prime $\sqrt{-q}$ is not an A-number. Clearly, no irrational power of $\sqrt{-q}$ can be an A-number. The number -1 is a quad. ratic residue modulo $\sqrt{-q}$. The number $u+v \sqrt{-q}$, where u and v are rational integers, is never an A-number when v is odd.

In virtue of the relations
and

$$
2 \sqrt{-5}=2^{2}+(1+\sqrt{-5})^{2}
$$

$$
2 \sqrt{-13}=\left(4+2 \sqrt{-13}^{2}+(7-\sqrt{-13})^{2}\right.
$$

we may state: the number $2 \sqrt{-q}$ is always an A-number. We have

$$
(2)=\mathfrak{q}^{2}=\left(1^{2}+1^{2}\right)
$$

where the prime ideal \mathfrak{q} is not principal. The number -1 is a quadratic residue modulo q.
4. The rational primes for which $-q$ is a quadratic non-residue. Let p be an odd rational prime such that, in $\mathbf{K}(1)$,

$$
\left(\frac{-1}{p}\right)=+1 \text { and }\left(\frac{\stackrel{-}{p}}{p}\right)=-1
$$

Then (p) is a prime ideal in the field and since

$$
p=u^{2}+v^{2}
$$

where u and v are rational integers, p is an A-prime.
Suppose next that p is an odd rational prime such that, in $K(1)$,

$$
\left(\frac{-1}{p}\right)=-1 \text { and }\left(\frac{-q}{p}\right)=-1
$$

Then (p) is a prime ideal in $K(\sqrt{-q})$. Since $\left(\frac{q}{p}\right)=+1$, and since the field $\mathbf{K}(\sqrt{q})$ is simple, the equation

$$
4 p=x^{2}-q y^{2}
$$

is solvable in rational integers x and y. If x and y are both even, we get

$$
p=x_{1}^{2}+\left(\sqrt{-q} y_{1}\right)^{2}
$$

where $x_{1}=\frac{1}{2} x$ and $y_{1}=\frac{1}{2} y_{1}$. Hence p is an A-prime.
If x and y are both odd, we get, in the case $q=5$,

$$
\frac{1}{2}(x+\sqrt{5} y) \cdot \frac{1}{2}(\sqrt{5} \pm 1)=\frac{1}{4}(5 y \pm x)+\frac{1}{4} \sqrt{5}(x \pm y)
$$

Here it is possible to choose the sign such that the numbers

$$
u=\frac{1}{4}(5 y \pm x) \text { and } v=\frac{1}{4}(y \pm y)
$$

are both integers.
In the case $q=13$ we get, if x and y are both odd,

$$
\frac{1}{2}(x+\sqrt{13} y) \cdot \frac{1}{2}(\sqrt{13} \pm 3)=\frac{1}{4}(13 y \pm 3 x)+\frac{1}{4} \sqrt{13}(x \pm 3 y)
$$

Just as in the proceeding case, we may choose the sign such that the numbers

$$
u=\frac{1}{4}(13 y \pm 3 x) \text { and } v=\frac{1}{4}(x \pm 3 y)
$$

are both integers. Thus we have in both cases

$$
-p=u^{2}+(v \sqrt{-q})^{2}
$$

Hence p is an A-prime. Thus the number -1 is a quadratic residue modulo p in the field $\mathbf{K}(\sqrt{-q})$.
5. The rational primes $p \equiv-1$ (mod 4) for $w h i c h-q$ is a quadratic residue. Let p be an odd prime such that, in $\mathbf{K}(1)$,

$$
\left(\frac{-1}{p}\right)=-1 \text { and }\left(\frac{-q}{p}\right)=+1 .
$$

Then we have

$$
(p)=\mathfrak{p} \mathfrak{p}^{\prime},
$$

where p and p^{\prime} are different prime ideals in the field $K(\sqrt{-q})$. In this field we further have

$$
\begin{equation*}
\left(\frac{-1}{p}\right)=(-1)^{\frac{1}{2}(N p-1)}=-1 . \tag{1}
\end{equation*}
$$

The ideal \mathfrak{p} can never be principal. In fact, if we had $\mathfrak{p}=(x+y \sqrt{-q})$, with rational integers x and y, we should have

$$
p=x^{2}+q y^{2} .
$$

But this equation clearly implies $p \equiv+1(\bmod 4)$.
Lemma 6. Let α and β be integers in $\mathbf{K}(\sqrt{-q})$, not both equal to zero Further, let p be a prime ideal in the field satisfying relation (1). If the sum $c^{2}+\beta^{2}$ is divisible by the power μ^{m}, we must have

$$
\alpha \equiv \beta \equiv 0\left(\bmod \psi^{\nu}\right),
$$

where $\nu=\left[\frac{1}{2}(m+1)\right]$.
Proof. We prove it by induction. In virtue of (1) the lemma is true for $m=1$. Hence we may suppose $m \geqslant 2$. Suppose it is true for all exponents $\leqslant m$. Let ξ and η be integers in the field such that $\xi^{2}+\eta^{2}$ is divisible by \mathfrak{p}^{m+1}. In virtue of (1) the numbers ξ and η are divisible by \mathfrak{p}. When \mathfrak{q} is the prime ideal which divides 2 , we put

$$
\mathfrak{q}(\xi)=\mathfrak{p}(\alpha) \text { and } \mathfrak{q}(\eta)=\mathfrak{p}(\beta),
$$

where α and β are integers in the field. Then we get

$$
\mathfrak{q}^{2}\left(\xi^{2}+\eta^{2}\right)=2\left(\xi^{2}+\eta^{2}\right)=\mathfrak{p}^{2}\left(\alpha^{2}+\xi^{2}\right) .
$$

Hence $\alpha^{2}+\beta^{2}$ is divisible by ψ^{m-1}, and, by hypothesis, we have

$$
\alpha \equiv \beta \equiv 0\left(\bmod b^{2}\right),
$$

where $\lambda=\left[\frac{1}{2} m\right]$. From this relation follows

$$
\xi \equiv \eta \equiv 0\left(\bmod \mathfrak{p}^{\lambda+1}\right) .
$$

This proves the lemma.

Lemma 7. Let p be a prime ideal satisfying relation (1). Then \mathfrak{p}^{2} is a principal ideal $=(u+v \sqrt{-q}), u$ and v rational integers, where u is even and v odd.

Proof. Suppose that $N p=p$. Then we have

$$
p^{2}=u^{2}+q v^{2} .
$$

If v were even, we should have

$$
p \pm u=2 u_{1}^{2}, \quad p \mp u=2 q v_{1}^{2},
$$

where u_{1} and v_{1} are rational integers. Hence

$$
p=u_{1}^{2}+q v_{1}^{2},
$$

which is impossible, since $p \equiv-1(\bmod 4)$. Thus u is even and v odd.
Lemma 8. Let \mathfrak{p} and \mathfrak{p}_{1} be different prime ideals such that

$$
\left(\frac{-1}{p}\right)=\left(\frac{-1}{p_{1}}\right)=-1 .
$$

Then Hp_{1} is a principal ideal $=(\alpha)$, where the integer α is not an A-number. The square $p^{2} p_{1}^{2}$ is a principal ideal $=(\omega)$, where the integer ω is an A-number.

Proof. If we had $\alpha=\xi^{2}+\eta^{2}$, according to Lemma 6, the integers ξ and η should be divisible by \mathfrak{p}, which is impossible since $p \neq \mu_{1}$. Putting $\alpha=u+v \sqrt{-q}$, u and v rational integers, we get

$$
\left(p \mathfrak{p}_{1}\right)^{2}=(\omega)=\left(u+v l^{\prime}-q\right)^{2}+0^{2} .
$$

This proves the lemma.
As a consequence of Lemmata $7-8$ we may state: Let $p_{1}, p_{2}, \ldots, p_{m}$ be m prime ideals (different or not) such that $\left(\frac{-1}{p_{i}}\right)=-1$, and put

$$
\left(\mathfrak{p}_{1} \mathfrak{p}_{2} \ldots \mathfrak{p}_{m}\right)^{2}=(\omega),
$$

where ω is an integer. Then ω is an A-number if and only if m is even.
Lemma 9. Let \mathfrak{p} be a prime ideal satisfying (1) and let $\mathfrak{p}^{2}=(\omega)$, then 2ω is an A-number.

Proof. If (2) $=\mathfrak{q}^{2}$ we have $\mathfrak{q p}=(u+v \sqrt{-q})$, where u and v are odd rational integers. Hence

$$
2 \omega=(u+v \sqrt{-q})^{2}+0^{2} .
$$

Lemma 10. Let \mathfrak{p} be a prime ideal satisfying (1) and let $\mathfrak{p}^{2}=(\omega)$, then $\sqrt{-q} \omega$ is an A-number.

t. Nagell, On the sum of two integral squares

Proof. From the preceding proof we get

$$
\sqrt{-q} \omega=\frac{1}{2} \sqrt{-q}(u+v \sqrt{-q})^{2}
$$

where u and v are odd rational integers. For $q=5$ we obtain

$$
\begin{aligned}
\sqrt{-5} \omega & =\frac{1}{4}[u+v \sqrt{-5}]^{2} \cdot\left[2^{2}+(1+\sqrt{-5})^{2}\right] \\
& =[u+v \sqrt{-5}]^{2}+\left[\frac{1}{2}(u-5 v)+\frac{1}{2}(u+v) \sqrt{-5}\right]^{2}
\end{aligned}
$$

For $q=13$ we have

$$
\begin{aligned}
\sqrt{-13} \omega & =\frac{1}{4}[u+v \sqrt{-13}]^{2} \cdot\left[(4+2 \sqrt{-13})^{2}+(7-\sqrt{-13})^{2}\right] \\
& =[2 u-13 v+(u+2 v) \sqrt{-13}]^{2}+\left[\frac{1}{2}(7 u+13 v)+\frac{1}{2}(7 v-u) \sqrt{-13}\right]^{2}
\end{aligned}
$$

Since the numbers $\frac{1}{2}(u-5 v), \frac{1}{2}(u+v), \frac{1}{2}(7 u+13 v)$ and $\frac{1}{2}(7 v-u)$ are integers, the lemma is proved.
6. The rational primes $p \equiv+1(\bmod 4)$ for which $-q$ is a quadratic residue. Consider finally the cases

$$
\left(\frac{-1}{p}\right)=+1 \text { and }\left(\frac{-q}{p}\right)=+1
$$

where p is an odd rational prime. Here we have

$$
(p)=\mathfrak{p} \mathfrak{p}^{\prime},
$$

where \mathfrak{p} and \mathfrak{p}^{\prime} are different prime ideals in the field. We shall show that these ideals are always principal.

In fact, suppose that \mathfrak{p} were not principal. We have (2) $=\mathfrak{q}^{2}$, where \mathfrak{q} is not principal. Then the product $\mathfrak{q p}$ is principal, since the number of ideal classes is $=2$. Hence the equation

$$
N(q \mathfrak{p})=2 p=a^{2}+q b^{2}
$$

would be solvable in rational odd integers a and b. But this is impossible since $a^{2}+q b^{2} \equiv 1+q \equiv 6(\bmod 8)$ and $2 p \equiv 2(\bmod 8)$. Hence \mathfrak{p} is a principal ideal, and we have

$$
p=u^{2}+q v^{2}
$$

where u and v are rational integers. Then the numbers

$$
\omega=u+v \sqrt{-q} \text { and } \omega^{\prime}=u-v \sqrt{-q}
$$

are conjugate prime factors of p in $K(\sqrt{-q})$. Since by Lemma 1 the field
$\mathbf{K}(\sqrt{-q}, \sqrt{q})$ is simple, we have

$$
\omega=\pi_{1} \pi_{2}
$$

where π_{1} and π_{2} are primes in that field. According to Lemma 3 we may suppose that
and

$$
\pi_{1}=\frac{1}{2}(a+c \sqrt{-q})+i \frac{1}{2}(b+d V \overline{V-q})
$$

$\pi_{2}=\frac{1}{2}(a+c \sqrt{-q})-i \frac{1}{2}(b+d V-q)$,
where a, b, c and d are rational integers. Hence

$$
\begin{equation*}
\omega=\frac{1}{4}(a+c \sqrt{-q})^{2}+\frac{1}{4}(b+d \sqrt{-q})^{2}, \tag{2}
\end{equation*}
$$

which involves the equations

$$
\begin{equation*}
4 u=a^{2}+b^{2}-q c^{2}-q d^{2} \tag{3}
\end{equation*}
$$

and

$$
2 v=a c+b d
$$

It follows from the latter of these relations that, if a is even, either b or d must be even. Suppose that a and b are even and c and d odd. Then we obtain from (3) modulo 4 :

$$
0 \equiv-q-q \equiv 2(\bmod 4)
$$

which is impossible. Supposing that a and b are odd and c and d even, we get from (3):

$$
0 \equiv 1+1(\bmod 4)
$$

which is also impossible. Hence, the remaining possibilities are: (i) all the numbers a, b, c and d are even; (ii) all the numbers a, b, c and d are odd; (iii) a and d are even and b and c are odd. It is, of course, unnecessary to treat the case with b and c even and a and d odd.

If all the numbers a, b, c and d are even, ω is clearly an A-number since the numbers

$$
\frac{1}{2}(a+c \sqrt{-q}) \text { and } \frac{1}{2}(b+d \sqrt{-q})
$$

are integers. If the numbers a, b, c and d are all odd, we get from (3)

$$
4 u \equiv 1+1-q-q \equiv 0(\bmod 8) .
$$

Henee u is even. But according to Lemma 2, u is odd when ω is an A-number.
Suppose finally that a and d are even and b and c are odd. Then we get from (3)

T. NaGELL, On the sum of two integral squares

$$
4 u \equiv a^{2}+1-q-q d^{2}(\bmod 8)
$$

whence

$$
\begin{equation*}
4(u+1) \equiv a^{2}+d^{2}(\bmod 8) \tag{4}
\end{equation*}
$$

When u is even, it follows from this relation that one of the numbers $a / 2$ and $d / 2$ is even and the other one odd. In this case ω is not an A-number.

When u is odd, it follows from (4) that the numbers $a / 2$ and $d / 2$ are either both odd or both even. We shall show that, in this case, ω is an A-number. If $q=5$ we multiply the integer

$$
\pi_{1}=\frac{1}{2}(a+c \sqrt{-5})+i \frac{1}{2}(b+d \sqrt{-5})
$$

by the unit $E=\frac{1}{2}(\sqrt{5} \pm 1)$. The product is equal to

$$
\frac{1}{4}(a \mp d) \sqrt{5}+\frac{1}{4}(5 c \pm b) i+\frac{1}{4}(b \pm c) \sqrt{5}+\frac{1}{4}(\pm a-5 d)
$$

Here the numbers

$$
\frac{1}{4}(a \mp d) \text { and } \frac{1}{4}(\pm a-5 d)
$$

are always integers since $a / 2$ and $d / 2$ are of the same parity. Further, by an appropriate choice of the sign in the unit E, we may obtain that the number $b \pm c$ be divisible by 4. Then the number $5 c \pm b$ is also divisible by 4 . Hence the product $\pi_{1} E$ belongs to the ring $R(1, i, \sqrt{5}, \sqrt{-5})$, and thus it is permitted to suppose that, in π_{1}, the numbers a, b, c and d are all even. Then we have

$$
\omega=\left(a_{1}+c_{1} \sqrt{-5}\right)^{2}+\left(b_{1}+d_{1} \sqrt{-5}\right)^{2}
$$

where a_{1}, b_{1}, c_{1} and d_{1} are rational integers. Hence ω and ω^{\prime} are A-numbers. Consider next the case $q=13$. Multiplying the integer

$$
\pi_{1}=\frac{1}{2}(a+c \sqrt{-13})+i \frac{1}{2}(b+d \sqrt{-13})
$$

by the unit $E=\frac{1}{2}(\sqrt{13} \pm 3)$ we get the product

$$
\frac{1}{4}(a \mp 3 d) \sqrt{13}+\frac{1}{4}(\pm 3 b+13 c) i+\frac{1}{4}(\pm 3 c+b) \sqrt{-13}+\frac{1}{4}(\pm 3 a-13 d)
$$

Here the numbers

$$
\frac{1}{4}(a \mp 3 d) \text { and } \frac{1}{4}(\pm 3 a-13 d)
$$

are always integers since $a / 2$ and $d / 2$ are of the same parity. Further, by an appropriate choice of the sign in the unit E, we may obtain that the number $\pm 3 c+b$ be divisible by 4 . Then the number $\pm 3 b+13 c$ is also divisible by 4 . Hence the product $\pi_{1} E$ belongs to the ring $\mathbf{R}(1, i, \sqrt{13}, \sqrt{-13})$, and thus it is permitted to suppose that, in π_{1}, the numbers a, b, c and d are all even. Then we hive

$$
\omega=\left(a_{1}+c_{1} \sqrt{-13}\right)^{2}+\left(b_{1}+d_{1} \sqrt{-13}\right)^{2}
$$

where a_{1}, b_{1}, c_{1} and d_{1} are rational integers. Hence ω and ω^{\prime} are A-numbers.
7. Definition of C-primes. Further lemmata. Let ω be a prime in $\mathrm{K}(\sqrt{-q})$ of the form $\omega=u+v \sqrt{-q}$ where u and v are rational integers. According to the preceding section, ω is an A-number in the field, if u is odd and v even. If u is even and v odd, ω is never an A-number and in this case we call ω a C-prime.

If ω is a C-prime is follows from relation (2) in Section 6 that 4ω is an A-number. But we can furthermore prove the following lemma.

Lemma 11. If ω is a C-prime, the number 2ω is an A-number.
Proof. We put $\omega=u+v \sqrt{-q}$, where u and v are rational integers; u is even and v odd. Then we have

$$
\omega=\frac{1}{4} \alpha^{2}+\frac{1}{4} \beta^{2}
$$

where α and β are integers in $\mathbf{K}(\sqrt{-q})$. Multiplying by 2 we get

$$
2 \omega=\left(\frac{a+c \sqrt{-q}}{2}\right)^{2}+\left(\frac{b+d \sqrt{-q}}{2}\right)^{2}
$$

where a, b, c and d are rational integers. Hence

$$
\begin{gather*}
8 u=a^{2}+b^{2}-q c^{2}-q d^{2} \tag{5}\\
4 v=a c+b d \tag{6}
\end{gather*}
$$

If a, b, c and d are all even, the number 2ω is an A-number. Suppose next that a and b are even and c and d odd. Then we get from (5) $a^{2}+b^{2} \equiv 2(\bmod 8)$ which is impossible. Consider next the case when a and d are even and b and c odd. Then it follows from (5)

$$
(a / 2)^{2}-5(d / 2)^{2} \equiv 1(\bmod 2)
$$

Hence one of the numbers $a / 2$ and $d / 2$ is odd and the other one is even. But this is impossible because of the relation (6).

Finally we consider the remaining case when a, b, c and d are all odd. When $q=5$ we multiply 2ω by the number $-I=\frac{1}{4}\left(1^{2}+(\sqrt{-5})\right)^{2}$. The product -2ω is equal to (in virtue of Lemma 1 in [1])

$$
\begin{aligned}
& \frac{1}{16}[a+c \sqrt{-5} \pm(b \sqrt{-5}-5 d)]^{2}+\frac{1}{16}[a \sqrt{-5}-5 c \mp(b+d \sqrt{-5})]^{2} \\
= & \frac{1}{16}[(a \mp 5 d)+(c \pm b) \sqrt{-5}]^{2}+\frac{1}{16}[(-5 c \mp b)+(a \mp d) \sqrt{-5}]^{2} .
\end{aligned}
$$

T. Nagell, On the sum of two integral squares

By choosing the sign in an appropriate way the number $\frac{1}{4}(a \mp d)$ will be an integer and so will $\frac{1}{4}(a \mp 5 d)$. Then it follows from relation (6) that

$$
a c+b d \equiv a c \pm a b \equiv 0(\bmod 4) .
$$

Hence

$$
c \pm b \equiv 0(\bmod 4)
$$

and thus the numbers

$$
\frac{1}{4}(c \pm b) \text { and } \frac{1}{4}(-5 c \mp b)
$$

are both integers. Consequently -2ω is an A-number. This proves Lemma 11 when $q=5$.

When $q=13$, we multiply 2ω by the number $-1=\frac{1}{4}\left(3^{2}+(\sqrt{-13})^{2}\right)$. The product will be

$$
\frac{1}{16}[(3 a \mp 13 d)+(3 c \pm b) \sqrt{-13}]^{2}+\frac{1}{16}[(-13 c \mp 3 b)+(a \mp 3 d) \sqrt{-13}]^{2} .
$$

Here we may choose the sign in a way such that the numbers

$$
3 a \mp 13 d, 3 c \pm b,-13 c \mp 3 b, a \mp 3 d
$$

are all divisible by 4. Hence -2ω is an A-number, and the proof of Lemma 11 is complete.

We next prove
Lemma 12. The product of two C-primes is an A-number.
Proof. Let ω and ω_{1} be two C-primes

$$
\omega=u+r \sqrt{-q}, \quad \omega_{1}=u_{1}+v_{1} \sqrt{-q},
$$

where u, v, u_{1} and v_{1} are rational integers, u and u_{1} even, v and v_{1} odd. We put

$$
\omega \omega_{1}=U+V \sqrt{-q},
$$

where U and V are rational integers; U is clearly odd and V even. According to Lemma 11, we have

$$
4 \omega \omega_{1}=(a+c \sqrt{-q})^{2}+(b+d \sqrt{-q})^{2}
$$

where a, b, c and d are rational integers. We get

$$
\begin{gather*}
4 U=a^{2}+b^{2}-q c^{2}-q d^{2} \tag{7}\\
2 V=a c+b d . \tag{8}
\end{gather*}
$$

If the numbers a, b, c and d are all odd, we get from (7)

$$
4 U \equiv 1+1-q-q \equiv 0(\bmod 8)
$$

which is impossible since U is odd. If all the numbers a, b, c and d are even, Lemma 12 is proved.

Suppose next that a and b are even and c and d odd. Then we get from (7)

$$
2 q+4 \equiv a^{2}+b^{2} \equiv 6(\bmod 8)
$$

which is clearly impossible.
Consider finally the case that a and d are even and b and c are odd. Then it follows from (7) that

$$
a^{2} \equiv q d^{2}(\bmod 8)
$$

Hence we conclude that $a \equiv d(\bmod 4)$.
When $q=5$, we multiply the number $4 \omega \omega_{1}$ by $-4=1^{2}+(\sqrt{-5})^{2}$. The product is equal to

$$
-16 \omega \omega_{1}=[(a \mp 5 d)+(c \pm b) \sqrt{-5}]^{2}+[(-5 c \mp b)+(a \mp d) \sqrt{-5}]^{2}
$$

Here we may choose the sign such that the numbers

$$
c \pm b \quad \text { and } \quad-5 c \mp b
$$

will both be divisible by 4 . Since the numbers

$$
a \mp 5 d \quad \text { and } \quad a \mp d
$$

are also divisible by 4 , we see that the number $-\omega \omega_{1}$ is an A-number.
When $q=13$, we multiply the number $4 \omega \omega_{1}$ by $-4=3^{2}+(\sqrt{-13})^{2}$, and the proof of Lemma 12 proceeds in an analogous manner.

Lemma 13. If ω is a C-prime, the number $\sqrt{-q} \omega$ is an A-number.
Proof. According to Lemma 11, the number 2ω is an A-number. Hence

$$
2 \omega=2 u+2 v \sqrt{-q}=(a+c \sqrt{-q})^{2}+(b+d \sqrt{-q})^{2}
$$

where u, v, a, b, c and d are rational integers; u is even, v odd. Then we get

$$
2 u=a^{2}+b^{2}-q c^{2}-q d^{2}, v=a c+b d .
$$

Hence we may suppose that $a c$ is even. This implies that b and d are odd and that a and c are both even. Suppose first $q=5$. Using the identity

$$
2 \sqrt{-5}=2^{2}+(1+\sqrt{-5})^{2}
$$

we get

$$
2 \omega \cdot 2 \sqrt{-5}=[2 a+b-5 d+\sqrt{-5}(d+b+2 c)]^{2}+[-a+5 c-2 b+\sqrt{-5}(-a-c-2 d)]^{2} .
$$

T. Nagell, On the sum of two integral squares

Here the numbers $2 a+b-5 d, d+b+2 c ; a-5 c-2 b$ and $a+c-2 d$ are all even. Hence $\omega \sqrt{-5}$ is an A-number.

Suppose next $q=13$. Using the identity

$$
2 \sqrt{-13}=(4+2 \sqrt{-13})^{2}+(7-\sqrt{-13})^{2}
$$

we get

$$
\begin{aligned}
& 2 \omega \cdot 2 \sqrt{-13}=[4 a-26 c+7 b-13 d+\sqrt{-13}(4 c+2 a+7 d-b)]^{2} \\
&+ {[7 a+13 c-4 b+26 d+\sqrt{-13}(7 c-a-4 d-2 b)]^{2} }
\end{aligned}
$$

As in the preceding case we see then that $\omega \sqrt{-13}$ is an A-number.
Lemma 14. Let \mathfrak{p} be a prime ideal satisfying (1) and $\mathfrak{p}^{2}=(\gamma)$, and let ω be a C-prime. Then the product $\omega \gamma$ is an A-number.

Proot. We have

$$
2 \omega=(a+c \sqrt{-q})^{2}+(b+d \sqrt{-q})^{2}
$$

where, according to the proof of Lemma 13, we may suppose that a and c are even and that b and d are odd. According to Lemma 9, we have

$$
2 \gamma=\left(a_{1}+c_{1} \sqrt{-q}\right)^{2}
$$

where a_{1} and c_{1} clearly are odd. Hence we get

$$
\begin{aligned}
4 \omega \gamma & =\left[a a_{1}-q c c_{1}+\sqrt{-q}\left(a c_{1}+a_{1} c\right)\right]^{2} \\
& +\left[a_{1} b-q c_{1} d+\sqrt{-q}\left(a_{1} d+b c_{1}\right)\right]^{2}
\end{aligned}
$$

Since the numbers $a a_{1}-q c c_{1}, a c_{1}+a_{1} c, a_{1} b-q c_{1} d$ and $a_{1} d+b c_{1}$ are all even, the lemma is proved.
8. Summary and proof of the main result. As a consequence of the discussions in Sections 3-6, we may state the following results.

Theorem 1. All the prime ideals in $\mathbf{K}(\sqrt{-q})$ are principal except the prime ideal divisors of 2 and of the odd rational primes p satisfying the relations, in $\mathbf{K}(1)$,

$$
\left(\frac{-1}{p}\right)=-1,\left(\frac{-q}{p}\right)=+1
$$

Theorem 2. The prime ω in $\mathbf{K}(\sqrt{-q})$ is an A-number only in the following cases:
(i) $\omega= \pm p$ where p is an odd rational prime such that, in $\mathbf{K}(1)$,

$$
\left(\frac{-q}{p}\right)=-1
$$

(ii) ω is of the form $u+v \sqrt{-q}$, where u and v are rational integers, u odd, v even, such that $u^{2}+q v^{2}$ is a rational prime.

The prime ω in the field is a C-prime only when $\omega=u+v \sqrt{-q}$, where u and v are rational integers, u even, v odd, such that $u^{2}+q v^{2}$ is a rational prime.

We further need the result:
Lemma 15. Let \mathfrak{q} be the prime ideal which divides 2, and let ξ be an A-number which is divisible by \mathfrak{q}^{m} and not by \mathfrak{q}^{m+1}. Then m is even.

Proof. Suppose that $\xi=\alpha^{2}+\beta^{2}$, where α and β are integers. If m were odd, it? is evident that ξ should be divisible by the power \mathfrak{p}^{y} of a non-principal prime ideal $\mathfrak{p \neq q}$ with an odd exponent ν. But, according to Theorem 1 and Lemma 6, the exponent ν must be even.

We are now in position to establish our main result.
Theorem 3. The integer α in the field $\mathbf{K}(\sqrt{-q})$ is an A-number if and only if

$$
\alpha=\beta \gamma \delta(\sqrt{-5})^{\pi} \cdot 2^{k},
$$

where β, γ and δ are integers in the field with the following properties: β is either $= \pm 1$ or $=a$ product of A-primes, different or not; γ is either $= \pm 1$ or $=a$ product of v C-primes, different or not; δ is either $= \pm 1$ or $=a$ product of m numbers ω_{i}, different or not, defined by the equations $\left(\omega_{i}\right)=\mathfrak{p}_{i}^{2}, \mathfrak{p}_{i}$ being a nonprincipal prime ideal not dividing 2.

The numbers ν, m, n and k are rational integers $\geqslant 0$ satisfying one of the following conditions:

$$
\begin{aligned}
& v \text { even } \geqslant 0, m \text { even } \geqslant 0, n \text { eve } n \geqslant 0, k \geqslant 0 ; \\
& v \text { even } \geqslant 0, m \text { even } \geqslant 0, n \text { odd, } k \geqslant 1 ; \\
& v \text { even } \geqslant 0, m \text { odd, } n \text { even } \geqslant 0, k \geqslant 1 ; \\
& v \text { even } \geqslant 0, m \text { odd, } n \text { odd, } k \geqslant 0 ; \\
& v \text { odd, } m \text { even } \geqslant 0, n \text { odd, } k \geqslant 0 ; \\
& \nu \text { odd, } m \text { even } \geqslant 0, n \text { even } \geqslant 0, k \geqslant 1, \\
& v \text { odd, } m \text { odd, } n \text { even } \geqslant 0, k \geqslant 0 ; \\
& v \text { odd, } m \text { odd, } n \text { odd, } k \geqslant 1 .
\end{aligned}
$$

Proof. It is evident that the conditions in this theorem are sufficient. If α is an A-number we may, in virtue of Lemma 4, neglect the A-prime divisors. In virtue of Lemmata 5 and 12 we may suppose that v is either $=0$ or $=1$. Suppose that α is divisible by \mathfrak{p}^{h}, where \mathfrak{p} is a non-principal prime ideal not dividing 2. Then, according to Lemma 6, it is sufficient to suppose $h=2$. For the rest of the proof we only have to apply Lemmata 7, 8, 9, 10, 11, 13, 14, 15 and to observe the following fact. Let u, v, u_{1} and v_{1} be rational integers, u_{1} and v odd. Then the product of the two numbers $2 u+v \sqrt{-q}$ and $u_{1}+2 v_{1} \sqrt{-q}$ is of the form $2 u_{2}+v_{2} \sqrt{-q}$. where v_{2} is odd, and thus it cannot be an A-number. Then it is easily seen that the eight cases indicated in the theorem are the only possible ones.
9. On the primitivity of the representations as a sum of two integral squares. Finally we shall determine the A-numbers in the quadratic fields $K(\sqrt{-5})$ and $\mathbf{K}(\sqrt{-13})$ which have at least one primitive representation. By Theorems 29-31 in [1] it suffices to examine the numbers which are products of prime ideal factors of 2. In the actual case we have only to examine the powers of 2. Consider the equation

$$
\begin{equation*}
2^{h}=(a+c \sqrt{-q})^{2}+(b+d \sqrt{-q})^{2}, \tag{9}
\end{equation*}
$$

where a, b, c and d are rational integers. For $h=1$ and $h=2$ we have the primitive representations

$$
\begin{aligned}
2 & =1^{2}+1^{2} \\
2^{2} & =3^{2}+(\sqrt{-5})^{2} \\
2^{2} & =11^{2}+3(\sqrt{-13})^{2}
\end{aligned}
$$

We shall show that there are no primitive representations for $h \geqslant 3$. If the representation (9) is primitive it is clear that the numbers a, b, c, d cannot be all odd. From (9) we obtain

$$
\begin{equation*}
2^{h}=a^{2}+b^{2}-q\left(c^{2}+d^{2}\right), \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
a c=-b d . \tag{11}
\end{equation*}
$$

From (10) it follows that two of the numbers a, b, c, d are odd and two of them are even. If $d=0$ we must have either $a=0$ or $c=0$. When $a=0$ we get from (10)

$$
2^{h}=b^{2}-q c^{2}
$$

where b and c are odd. But this is impossible when $h \geqslant 3$. When $c=0$ we get from (10)

$$
2^{n}=a^{2}+b^{2}
$$

where a and b are odd. Since $h \geqslant 3$ this equation is impossible too. Hence we may suppose $c d \neq 0$. By elimination of b we obtain from (10) and (11)

$$
2^{h} d^{2}=\left(a^{2}-q d^{2}\right)\left(c^{2}+d^{2}\right)
$$

Put $c=g_{1} c_{1}, d=g_{1} d_{1}$, where $\left(c_{1}, d_{1}\right)=1$. Then we get

$$
2^{h} d_{1}^{2}=\left(a^{2}-q g_{1}^{2} d_{1}^{2}\right)\left(c_{1}^{2}+d_{1}^{2}\right)
$$

It follows from this equation that a is divisible by d_{1}. Putting $a=d_{1} f_{1}$ we obtain

$$
2^{h}=\left(f_{1}^{2}-q g_{1}^{2}\right)\left(c_{1}^{2}+d_{1}^{2}\right)
$$

Since $\left(c_{1}, d\right)=1$ and since $c_{1}^{*}+d_{1}^{2}$ is a power of 2 , we must hity $c_{1}^{2}=d=1$. Hence

$$
2^{n-1}=f_{1}^{2}-q \dot{q}_{1}^{2} .
$$

Since $q \equiv 5(\bmod 8), h-1$ is even and $=2 n+2$ with $n \geqslant 0$. Then f_{1} and g_{1} are divisible by 2^{n}. Hence the representation (9) must have the form

$$
2^{h}=2^{2 n+3}=\left(f_{1}+g_{1} \sqrt{\prime-q}\right)^{2}+\left(f_{1}-g_{1} \sqrt{-q}\right)^{2}
$$

But this representation is always imprimitive, since f_{1} and g_{1} are of the same parity.

§ 3. The real field $K(\sqrt{q})$ where q is either $=5$ or $=13$

10. Units and divisors of the rational primes 2 and q. Every A-number in this field must be positive and have a positive norm. The fundamental unit ε in $K(\sqrt{q})$ is $\frac{1}{2}(\sqrt{5}+1)$ or $\frac{1}{2}(\sqrt{13}+3)$ according as $q=5$ or 13 . Since $N(\varepsilon)=-1$ in this field, ε is never an A-number. The nth power of ε is an A-number if and only if n is even. The number 2 is a prime in the field and, of course, an A-number.

Since the prime \sqrt{q} has the negative norm $-q$ it cannot be an A-number. The number -1 is a quadratic residue modulo \sqrt{q}. From the relations

$$
\frac{1}{2}(\sqrt{5}+1) \sqrt{5}=1^{2}+\frac{1}{4}(\sqrt{5}+1)^{2}
$$

and

$$
\frac{1}{2}(\sqrt{13}+3) \sqrt{13}=1^{2}+\frac{1}{4}(\sqrt{13}+1)^{2}
$$

it follows that the product $\varepsilon \sqrt{q}$ is always an A-number. Then it is evident that the number

$$
\varepsilon^{m}(\sqrt{q})^{n}
$$

where m and n are rational integers. $n \geqslant 0$, is an A-number if and only if $m+n$ is even.
11. The rational primes for which q is a quadratic non-residue. Let p be an odd rational prime such that, in $K(1)$,

$$
\left(\frac{-1}{p}\right)=+1 \quad \text { and } \quad\left(\frac{q}{p}\right)=-1
$$

Then p is a prime in the field and since

$$
p=u^{2}+v^{2}
$$

where u and v are rational integers, p is an A-prime.
Suppose next that p is an odd rational prime such that, in $K(1)$,

$$
\left(\frac{-1}{p}\right)=-1 \quad \text { and } \quad\left(\frac{q}{p}\right)=-1
$$

Then p is a prime in $K(\sqrt{q})$. Since $\left(\frac{-q}{p}\right)=+1$ we have in $K(\sqrt{-q})$

$$
(p)=\mathfrak{p} \mathfrak{p}^{\prime}
$$

T. nagell, On the sum of two integral squares

where \mathfrak{p} and \mathfrak{p}^{\prime} are different prime ideals. We showed in Section 5 that these prime ideals are not principal when $q=5$ or $=13$. If q is the prime ideal divisor of 2 in $K(\sqrt{-q})$, the product $p q$ is a principal ideal. Hence

$$
2 p=x^{2}+q y^{2}
$$

where x and y are rational odd integers. Since this relation may be written

$$
p=\frac{1}{4}(x+y \sqrt{q})^{2}+\frac{1}{4}(x-y \sqrt{q})^{2}
$$

the number p is an A-prime in $K\left(l^{\prime} q\right)$. Hence in this field the number -1 is a quadratic residue modulo p.
12. The rational primes for which q is a quadratic residue. Let p an odd rational prime such that, in $K(1)$,

$$
\left(\frac{-1}{p}\right)=-1 \quad \text { and } \quad\left(\frac{q}{p}\right)=+1
$$

In this case we have

$$
p=\omega \omega^{\prime}
$$

where ω and ω^{\prime} are different primes. Since

$$
\left(\frac{-1}{\omega}\right)=(-1)^{\frac{1}{2}(|N \omega|-1)}=-1
$$

the prime ω is not an A-number.
Finally, we consider an odd rational prime p such that, in $K(1)$,

$$
\left(\frac{-1}{p}\right)=+1 \quad \text { and } \quad\left(\frac{q}{p}\right)=+1
$$

Since the field is simple, and since the norm of the fundamental unit ε is $=-1$, we have always

$$
4 p=u^{2}-q v^{2}
$$

where u and v are rational integers. If u and v are even, p may be written in the form

$$
p=(u / 2)^{2}-q(v / 2)^{2}
$$

Suppose next that u and v are both odd. The number ε^{2} is of the form $\frac{1}{2}(a+b \sqrt{q})$, where a and b are odd integers; when $q=5$, we have $a=3, b=1$; when $q=13$, we have $a=11, b=3$. Consider the product

$$
\frac{1}{2}(a \pm b \sqrt{q}) \cdot \frac{1}{2}(u+v \sqrt{q})=\frac{1}{4}(a u \pm q b v)+\frac{1}{4}(a v \pm b u) \sqrt{q}
$$

Here we may choose the sign such that the number $a u \pm q b v$ be divisible by 4 . Then the number $a v \pm b u$ is also divisible by 4 , since $q \equiv 1(\bmod 4)$. Hence, we conclude: the prime p may always be written in the form

$$
p=u^{2}-q v^{2}
$$

where u and v are rational integers. Then the numbers

$$
\omega=u+v \sqrt{q} \quad \text { and } \quad \omega^{\prime}=u-v \sqrt{q}
$$

are conjugate prime factors of p in the field. If we suppose $u>0$, the numbers ω and ω^{\prime} are positive. Since by Lemma 1 the field $K(/ / \bar{q}, \sqrt{-1})$ is simple, we have

$$
\omega=\pi_{1} \pi_{2} \eta
$$

where η is a unit and π_{1} and π_{2} are primes in that field. According to Lemma 3, we may suppose that
and

$$
\pi_{1}=\frac{1}{2}(a+c \sqrt{q})+\frac{1}{2} i(b+d \sqrt{q})
$$

$\pi_{2}=\frac{1}{2}(a+c \sqrt{q})-\frac{1}{2} i(b+d \sqrt{q})$,
a, b, c and d being rational integers. The unit η belongs to the field $\mathbf{K}(\sqrt{q})$, since the product $\pi_{1} \pi_{2}$ belongs to this field. Since ω is positive, η is so. The norm of ω is positive and the norm of $\pi_{1} \pi_{2}$ is also positive. Hence the norm of η is positive. Thus we have

$$
\eta=\varepsilon^{2 m} .
$$

Putting

$$
\psi_{1}=\pi_{1} \varepsilon^{m} \quad \text { and } \quad \psi_{2}=\pi_{2} \varepsilon^{m}
$$

we get

$$
\omega=\psi_{1} \psi_{2},
$$

where ψ_{1} and ψ_{2} are primes in $\mathbf{K}(\sqrt{q}, \sqrt{-q})$ such that ψ_{1} is transformed into ψ_{2} when i is substituted by $-i$ and vice versa. Consequently we may suppose that $\eta=1$. Hence

$$
\begin{equation*}
\omega=\frac{1}{4}(a+c \sqrt{q})^{2}+\frac{1}{4}(b+d \sqrt{q})^{2}, \tag{12}
\end{equation*}
$$

which involves the relations
and

$$
\begin{equation*}
4 u=a^{2}+b^{2}+q\left(c^{2}+d^{2}\right) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
2 v=a c+b d \tag{14}
\end{equation*}
$$

If the integers a, b, c and d are all odd or all even, it is evident that ω is an A-number. If the number $\frac{1}{2}(a+c \sqrt{q})$ is an integer, it follows from (12) that the number $\frac{1}{2}(b+a \sqrt{q})$ is also an integer: hence ω is an A-number. Then it remains to consider the following cases: (i) a is even, c is odd; (ii) a is odd, c is even. In both cases $b d$ is even in virtue of (14); thus one of the numbers b and d is even and the other one is odd. In the first case we get from (13) modulo 4:

$$
b^{2}+1+d^{2} \equiv 0(\bmod 4)
$$

But this congruence is clearly impossible. In the second case we get from (13) the same congruence modulo 4. Hence ω and ω^{\prime} are always A-numbers.
t. nagell, On the sum of two integral squares
13. Summary and proof of the main result. As a consequence of the discussions in Sections 10-12 we may state the following result.

Theorem 4. The prime ω in $\mathbf{K}(\sqrt{q})$ is an A-number only in the following cases: (i) $\omega=2 \varepsilon^{2 m}$; (ii) $\omega=\sqrt{q} \cdot \varepsilon^{2 m+1}$; (iii) $\omega=p \varepsilon^{2 m}$, where p is an odd rational prime such that $\left(\frac{q}{p}\right)=-1$; (iv) ω is of the form $\frac{1}{2}(u+v \sqrt{q})$, where u and v are rational integers such that $\frac{1}{4}\left(u^{2}-q v^{2}\right)$ is a rational prime $\equiv 1(\bmod 4)$.

We are now in position to establish our main result.
Theorem 5. The integer α in the field $\mathbf{K}(\sqrt{q})$ is an A-number if and only if

$$
\alpha=\beta \gamma^{2}(\sqrt{q})^{m} \cdot \varepsilon^{n}
$$

where β and γ are integers in the field with the following properties: β and γ are prime to $\sqrt{q} ; \beta$ is either $=1$ or $=$ a product of A-primes, different or not; γ is either a unit or $=$ a product of primes π such that in $\mathbf{K}(\sqrt{q})$

$$
\left(\frac{-1}{\pi}\right)=-1
$$

m and n are rational integers, $m \geqslant 0$, such that $m+n$ is even. ε is the fundamental unit, chosen >1.

Proof. It is evident that the conditions are sufficient. Suppose that α is an A-number and that

$$
\alpha=\xi \eta(\sqrt{q})^{m}
$$

where ξ and η are integers in the field with the following properties: they are prime to $\sqrt{q} ; \xi$ is either $=1$ or $=$ product of primes π such that, in $\mathbf{K}(\sqrt{q})$,

$$
\left(\frac{-1}{\pi}\right)=-1
$$

m is a rational integer $\geqslant 0$. Then we must have $\eta=\varrho \gamma^{2}$, where γ is an integer in the field and ϱ a unit; thus the number α / γ^{2} is an A-number. Now applying Lemma 4 a certain number of times to the prime factors π of ξ, we find that the number

$$
\frac{\alpha}{\gamma^{2} \xi}=\varrho(\sqrt{q})^{m}
$$

must be an A-number. Finally, applying a result in Section 10 we achieve the proof.

Note. The fields $K(\sqrt{ \pm 37})$ have in the main the same properties as the fields $\mathbf{K}(\sqrt{ \pm 5})$ and $\mathbf{K}(\sqrt{ \pm 13})$. There is, however, an essential difference: The fundamental unit has the form $6+\sqrt{37}$. Thus the equations $x^{2}-37 y^{2}= \pm 4$ have no solutions in odd (rational) integers. This fact necessitates a modification of the
methods used in this paper. We shall treat the fields $\mathbf{K}(\sqrt{ \pm 37})$ in a following paper.
14. Numerical examples. The number $3+2 \sqrt{-5}$ is an A-prime in $\mathbf{K}(\sqrt{-5})$ since

$$
3+21-5=(3+\sqrt{-5})^{2}+(2-\sqrt{-5})^{2}
$$

and since

$$
N(3 \div 2 \sqrt{-5})=29
$$

The number $3+2 / \overline{-13}$ is an A-prime in $\mathbf{K}(\sqrt{-13})$ since

$$
3 \div 2 \sqrt{-13}=(11+5 \sqrt{-13})^{2}+(18-3 \sqrt{-13})^{2}
$$

and since

$$
N(3+2 \sqrt{-13})=61
$$

The number $6+\sqrt{-5}$ is a C-prime in $\mathbf{K}(\sqrt{-5})$ since

$$
N(6+\sqrt{-5})=41 \equiv 1(\bmod 4)
$$

The number $3+\sqrt{-13}$ is a C-prime in $\mathrm{K}(\sqrt[l]{-13})$ since

$$
N(2+\sqrt{-13})=17 \equiv 1(\bmod 4)
$$

We have

$$
(2+\sqrt{-5})=\mathfrak{p}^{2}
$$

where p is a prime ideal dividing 3 in $K(\sqrt{-5})$. We have

$$
(6+\sqrt{\prime}-13)=\mathfrak{p}^{2}
$$

where \mathfrak{p} is a prime ideal dividing 7 in $K(\sqrt{-13})$. The number 7 is an A-prime in $\mathbf{K}(\sqrt{5})$ since

$$
7=\frac{1}{4}(3+\sqrt{5})^{2}+\frac{1}{4}(3-1 / \overline{5})^{2}
$$

The number 7 is an A-prime in $\mathrm{K}(\sqrt{13})$ since

$$
7=\frac{1}{4}(1+\sqrt{13})^{2}+\frac{1}{4}(1-\sqrt{13})^{2}
$$

The number $7+2 \sqrt{5}$ is an A-prime in $\mathrm{K}(\sqrt{5})$ since

$$
7+2 \sqrt{5}=1^{2}+(1+\sqrt{5})^{2}
$$

and since

$$
N(7+2 \sqrt{\prime})=29
$$

The number $15+2 \sqrt{13}$ is an A-prime in $\mathrm{K}(\sqrt{13})$ since
T. NAGELL, On the sum of two integral squares

$$
15+2 \sqrt{13}=1^{2}+(1+\sqrt{13})^{2}
$$

and since

$$
N(15+2 \sqrt{13})=173
$$

is a prime.
15. Addition to paper [1]. The proof of the last part of Theorem 17 in [1], p. 54 , is not in order and may be replaced by the following correct proof:

Let ω be an A-number with the representation

$$
\omega=\alpha^{2}+\beta^{2}
$$

α and β being integers in Ω. Suppose that equation (30) has an infinity of solutions $x=\xi_{n}$ and $y=\eta_{n}$ given by (18) and (29). Put for $n=1,2,3, \ldots$,

$$
\alpha_{n}+\beta_{n} i=\left(\xi_{n}+\eta_{n} i\right)(\alpha+\beta i)
$$

where

$$
\alpha_{n}=\alpha \xi_{n}-\beta \eta_{n} \quad \text { and } \quad \beta_{n}=\alpha \eta_{n}+\beta \xi_{n}
$$

Then we have

$$
\alpha_{n}-\beta_{n} i=\left(\xi_{n}-\eta_{n} i\right)(\alpha-\beta i)
$$

and

$$
\left(\alpha_{n}+\beta_{n} i\right)\left(\alpha_{n}-\beta_{n} i\right)=\left(\xi_{n}^{2}+\eta_{n}^{2}\right)\left(\alpha^{2}+\beta^{2}\right)
$$

Hence

$$
\omega=\alpha_{n}^{2}+\beta_{n}^{2}
$$

It is easy to see that, in this way, we get an infinity of representations of ω. In fact, supposing

$$
\alpha_{m}=\alpha_{n}, \quad \beta_{m}=\beta_{n}
$$

we get

$$
\xi_{n}+\eta_{n} i=\xi_{m}+\eta_{m} i .
$$

But, in the proof of Theorem 15 we showed that this relation is possible only for $m=n$.

REFERENGES

1. Nagele, T., On the representations of integers as the sum of two integral squares in algebraic, mainly quadratic fields. Nova Acta Soc. Sci. upsal., Ser. IV, Vol. 15, No. 11. Uppsala 1953.
2. Sommer, J., Vorlesungen über Zahlentheorie, S. 346-354. Leipzig 1907.
3. Dirichlet, L., Recherches sur les formes quadratiques à coefficients et à indétermininées complexes. Werke I, p. 578-588.
