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On sign-independent and almost sign-independent 

convergence in normed linear spaces 
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1. We shall say that  a series of vectors in a normed vector space 

X 1 + X 2 + X] + .,- 

is sign-independently convergent (divergent) if the series 

(1.1) 

El X1 -~- 82 X2  "~- e3 X 3  -t- ".- (1.2) 

is convergent (divergent) for every sequence of signs {ek = +_ 1}. 
I t  is an easy consequence of a result of Orlicz tha t  in a Banach space the 

series (1.1) is sign-independently convergent if and only if it is unconditionally 
convergent, i.e. if and only if every series obtained from it by permutat ion of 
its terms is convergent. Therefore sign-independent convergence is equivalent 
to absolute convergence in finite-dimensional spaces. This is no longer the ease 
in infinite-dimensional spaces. The well-known theorem of Dvoretzky and Rog- 
ers proves that  if B is infinite-dimensional and {ak} a sequence of numbers 

oo  

such tha t  ~ a ~ <  ~ ,  then there is a sequence of unit vectors {xk} in B such 
1 

that  ~ akxk is sign-independently convergent. 
1 

Concerning sign-independent divergence of (1.1) in finite-dimensional spaces 
the necessary and sufficient condition tha t  II Xkll ~-'0 has been proved by Dvo- 
retzky and Hanani. Here the infinite-dimensional spaces present a different situa- 

tion, too. In  2 ~ we shall show that  if B is infinite-dimensional and ~ a~ = oo 
1 

then there is a sequence of unit vectors {xe} in B such that  ~ ak xk is sign- 
1 

independently divergent. 
We shall say tha t  the series (1.1) is almost sign-independently convergent 

(divergent) if the series (1.2) is convergent (divergent)for almost every sequence 
of signs {ek= • 1}. This means tha t  the series 

Xk ~ (t), 
1 

where {cfk (t)} is the Rademacher function system, i.e. 



G. IqORDLAI'~DER, Sign-independent convergence in normed linear spaces 

q~k (t) = sign sin 2 ~ ~r t, 

is convergent (divergent) almost everywhere in 0 ~<t < 1. 

A result of Rademaeher states that if X k = a k  are real numbers and ~ a~ < 
1 

then the series (1.1) is almost sign-independently convergent. A counterpart of 
oo 

this is the theorem of Kolmogoroff, that  ~ a~ = ~ implies almost sign-independent 
1 

divergence of (1.1). 
In 3?-5 ~ we shall give generalizations of the theorems of Rademacher and 

Kolmogoroff, when the Xk:s are vectors in Hilbert space and certain Banach 
spaces. 

I wish to express my gratitude to Professor Lennart Carleson for suggesting 
the problem and for invaluable advice. 

2. Theorem 2.1. Suppose B is an in[inite-dimensional real normed vector space 
and {ak} is a sequence o/ real numbers such that 

o o  

Y 
1 

Then there is a sequence o[ unit vectors {xk} in B such that the series 

• a~ x~ 
1 

sign-independently divergent. 

The idea of the proof is the same as in Dvoretzky-Rogers's proof of~their 
theorem. First we prove a geometrical ]emma about n-dimensioffal Euclidean 
spaces and symmetric convex bodies there. 

Lemma 2.1. Let B be an n-dimensional real normed space; then, i / m  (m - 1) <n~ 
there exist points x I . . . . .  xm o/ norm one in B, such that 

II,~m t, x, II >/[ 1 - (m (m - l ) / n )  t ] (,~m t~)t 

/or all real t I . . . . .  tin. 

Proof. Circumscribe to C, the unit ball of B, the ellipsoid E of minimum 
volume. By a linear transformation of B we may turn E into the Euclidean 
ball whose coordinates satisfy ~ t~ ~< 1. Using subscripts to distinguish the norm 

with unit ball E from that with unit ball C, we want now to search for x~ with 
II x, lIE = II x, IIc = 1 and the x, approximately orthogonal. By induction on i we 
shall find part of an orthonormal basis u ,  i <m,  in the Euclidean space de- 
termined by E and points x,, i<~m, with II X, IIE=II xtllc= 1, such that  

(a) x~= ~ b~suj, and all bo>~0, and 

(b) b~l + . . .  + b2it_l = 1 - b~ <~ (i - 1)/n.  
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To begin the proof take  u I =xa to be any  point  of contact  of the surfaces 
C and E, and, for the momen t  let u2, ..., un be any  vectors completing an 
or thonormal  basis in E. 

Suppose tha t  x a ,  .... x~ and ul, ..., ut, 1 ~ i < m, have been found to s a t i s f y  
(a) and (b) for all j<~i;  fill out  an or thonormal  basis with any  suitable 
u~+l . . . . .  un and consider for e > 0 the "spheroid"  E~ of points whose coordinates 
in this basis satisfy 

(I + e)-(n-,) (fl~ + . . .  + fl~) + (1 + e + e~)' (fl~+~ + - - .  + fl~) < 1. 

The volume of E~ is easily calculated to  be smaller than  t h a t  of E,  so there 
is a point  p, in C and, thus, in E, but  outside E~. Thus, if fll . . . . .  ft, are the 
coordinates of p~, 

~1~+ ... + ~  < 1, 

(1 + e)-("-"  (fl~ + +fl~) + (1 + e + e ~ )  ' -.. (fl,+, -~ . . . .  +fl~) > 1. 

Subtract ing the first of these inequalities from the second gives 

[(1 + e )  - ( ~ - ' )  - 1] (fl~ + . - .  + fl~) + [(I + e .+ e~)' - 1] (fl~+1 + " "  + fl~) > 0. 

B y  compactness,  there is a subsequence of e's tending to 0 such tha t  the cor- 
responding p~ converge to some point  x~+l common to  the surfaces C and E. 
Dividing the last inequali ty by  e and taking the limit gives, if x~+l has  the 
coordinates b 1 . . . . .  bn, 

- ( n -  i) (b~ + . - -  + b~) + i (b~+~ + . . -  + b~) i> 0. 

Choosing Ui+l or thogonal  to u 1 . . . . .  u t in the space spanned by  these and x~+1 
and  completing this sequence to a new orthonormal  basis gives a representation 
for x~+l which can now be seen to satisfy the conditions (a) and (b) for 4+  1. 
This induct ion process defines x~ a n d  u~ for all i <  m. 

(b) implies t ha t  

II x , -  u, II~ = (1 - b~) ~ + ~ b~j <~ 2 (4 - 1 ) / n .  
i< t  

Since C is inside E, II~l ic~l l~l l~ for every x, so 

Use of" Sehwarz's  inequali ty shows tha t  this is 

and the lemma is proved. 
The following lemma is an immediate consequence of Lemma 2.1. 
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Lemma 2.2. I /  4 m ( m -  l ) <  n then in every n-dimensional real normed space B 
there exist m unit vectors Xl, ..., Xm, such that 

Proof of Theorem 2.1. 

in this sum in blocks 

c ~  

Take  {as} such t ha t  ~. a~ = oo. Then group the te rms 
1 

so t h a t  

{k: Nj<k~<Nj+I} 
NI+I 

2 a ~ > l .  
k = N j + l  

In  B find a sequence of finite-dimensional subspaces Bj each of such high 
dimension t h a t  in Bj vectors  x~+l, ..., x~j+ 1 satisfying L e m m a  2.2 can  be 

c o  

constructed. The series ~. akxk is obviously sign-independently divergent,  as is 
1 

seen by  Cauchy 's  principle of convergence. 

3. Theorem 3.1. Let {xk} be a sequence o /uni t  vectors in a complex Hilbert space 
and {ak} a sequence o/ complex numbers such that 

1 

oo 

Then the series ~ ak xk 
1 

is almost sign.independently convergent. 

Before we proceed to the proof we remark  t ha t  Rademaehe r ' s  theorem is a 
special case of Theorem 3.1 (all vectors  xk equally directed). Another  special 
case of the theorem is an immedia te  consequence of Riesz-Fischer 's  theorem 
({x~} an or thonormal  system). 

We shall need the  following lemma,  due to H a r d y  and Litt lewood. 

Lemma 3.1. Suppose ] (t) is defined on (0, 1) and put 

8 

0(s;/)=sup (s-~)-lf/(t)dt,  0<~<1.  
O a 

I /  / belongs to Lv(O, 1), p > l ,  then 0(8 ; ] / I )  also belongs to Lv(O, 1) and 

1 1 

fo,(s; I/l)as<a, fl/i'at, 
0 0 

where A~, depends only on p. 
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Proof of Theorem 3.1, The space spanned by  the vectors xk is mapped  into 
L ~ (0, 1) in the well-known manner .  The vectors xk are thereby mapped  onto 
functions ]k (x), and 

1 

f l s  (z)l~ d x =  l, k=  l, 2 . . . .  
0 

The problem is then to show tha t  the sequence {S~ ( x, t)}, where 

S,~ (x, t) - ak/k (x) qgk (t), 
1 

converges in mean  (in x) for  a lmos t  every t in (0, 1), as n--->~. 
By  the theorem of Beppo Levi  we have 

(~ [aJk(X)i2)dX= ~l ! ]ak/k (X)'~ dX= ~ ]ak'2< c~. 

Thus ~. lake(x)r'< ~ for a lmost  every x in (0, 1). I t  follows by  l~iesz-Fiseher's 
1 

theorem, no~ing (~k (t)} is an  ON-system and regarding az [k (x) as coefficient of 
the function ~0k(t), t ha t  for a lmos t  every x in (0, 1) there is a function 
F (x, t) = Fx (t) e L 2 (0, 1), such tha t  

1 er 

tim f IF (z, t )-  S. t)l' d t  = lim ~la~/k(x)12 = 0. (3.1) 

Another  integrat ion gives 

1 1  

tim I I F - s = I I ~ =  lim ff  IF(x,t)--Sn(x,t)12dxdt = lim ~ lakl2=O. (3.2) 
n = o o  n = o o  O 9 n - ~  n + l  

(U stands for the uni t  square 0~<x~<l,  0~<t~<l, and II...llv for the norm in the 
Hi lber t  space of two-place functions L 2 ( U ) . )  

By  Fubini ' s  theorem 
1 

Go(0= f IF-S l d  
0 

exists for a lmost  every  t in (0, 1). We want  to show tha t  Gn(t)-->O a.e .  as 
n--->c~. To this end we introduce the functions 

H u  (t} = sup G. (t). 
n>~N 

{HN (t)} is a monotonic decreasing sequence of positive functions. I f  we can show 

1 

tim f HN (0 dt = O, 

this implies HN(t)-+O a.e. ,  and a forfiori On (t)--~O a .e .  
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Now we have 

1 1 1 1 1 

o f H,,(t)dt=fo (sup.>~ o f I ~--'Sn 1~ d:~) dt < [ ~ f supn>~ IF-Snl=d~dt=llsupl~-s~lll~"~>~N 

and Minkowski's inequality gives 

II ~ I~-Snl I1~'< IIF-8~,11~,§ 112~ I ~,,- SNI II~" 

The first term in the right member tends to zero as N-~  co by (3.2). We want 
to show that  the second term is majorized by the first term, multiplied by a 
constant. 

Suppose t is a point of (0, 1) and I .  the interval of the type (j" 2 -~, ( j+  1)" 2 -~) 
which contains the point t. For k < n  the Rademacher functions ~ (t) are con- 
stant in In. Thus 

if Sn (x, t) = ~-]  Sn (z, t) dr, 

in 

(3.3) 

where ]In[ denotes the length of I , .  For k>n  the parts of I~ where ~k(t) is 
positive resp. negative have the same measure, thus 

if ly Ilnl sn(~'t)dt=Fi~l Sm(x,t)dt, 
In In 

m >/n. (3.4) 

Formula (3.1) gives (by Schwarz's inequality) that  

1 
f(F(x,t)-Sm(x,t))dt-->O, as m-->~.  IInl , /  

I n  

(3.5) 

For n ~ N  we conclude from (3.3), (3.4) and (3.5) 

1 f(F(~,~)-8N(x,t))dt, sn (x,t)- s~(~, t) = ~-]  

and from this 

s u p l & - - S N I  ~<sup 1 f 

In 

where 0 is the function of Lemma 3.1. Hence 

1 1 

sup Is -  i dt<  fIF-  l dt 
n ~ , '  0 

by Lemma 3.1, and another integration gives 
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Ilsup I ,~. -  s~ I II~, < l/A~ I I-F- ~ .  I1~,. 
n~2V"  

This completes the proof. 

Theorem 3.2. Let {]k(x)} be a sequence o/ /unctions in L~(0,1),  l < p < o o ,  
such that 

ll /k tI = ~ f l /k (x) lp d z~ l/" = Ir 2, . . .  

\ 5 /  

Let {ak} be a sequence o/ complex numbers such that 

a) ~lakl  p < ~  in the case l < p < 2  
1 

b) ~: l a~,l' < oo in the ease 2 < p < oo. 
3. 

oo 

Then Z a~ /k (x) 
1 

is almost sign-independently convergent in the metric o/ the space. 

Lemma 3.2. I /  {Vk (t)} is the Rademacher /unction system and 
f$ 

sn (t) = ~ ak qJk (t), 
1 

1 

f [ n \pie th~n /or p > 0  I s , , - s , . ~ l ' d t < B , , ~  la,2) . , , ,~,  P 

0 

where By depends only on p. 

Lemma 3.2 is wcll known under the name of Khintchine's inequality. 

P r o o f  o f  T h e o r e m  3.2. Minkowski's inequality and Hardy-Littlewood's lemma 
are still valid in the L~-spaces. The reference made to Schwarz's inequality can 
be altered to HSlder-Riesz's inequality. Consequently, the theorem may be 
proved in  the same manner as Th. 3.1 if only the existence of a function F (x, t), 
satisfying (3.1) and (3.2) (with the exponent 2 replaced by p )can  be motivated 
by other arguments. 

Lemma 3.2 gives 
1 

[ n "~12 

f , 
0 

When 1 < p < 2 this is 

m+l 
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When 2~<p<c~ it is 

by H61der's inequahty. Another integration gives 

f -  11 /~P Y l a~l" for 
/ m + l  ffis.-Sml~dxdt<<- I 

oo [1t,(~+ 1 ]akin) "12 for 

l < p < 2  

2 ~ p < ~ .  

From this follows the strong convergence of S~ (x, t) to a function F (x, t) in 
LP(U), i,e. the formula corresponding to (3.2) with the exponent 2 replaced 
by p. Use of B. Levi's theorem on the last integration (with the sum ~:aken 
from m + l  to ~ )  also gives the formula corresponding to (3.1). 

4. The following examples show that the condition on the sequence {ae} in 
Theorem 3.2 cannot be weakened. 

a) l < p < 2 .  

Choose a sequence of intervals {Ik} such that Ikc (0 ,  1 ) f o r  every k ' and  
I t n I ~ = 0  when j # k .  Put  

1 

elsewhere, 

where ]Ikl as before is the length of Ik. Then 
1 

0 
n 

for every k, and, if we put  sn (x)= ~.e~,ak/e (x), where {e~} is an arbitrary 
1 

sequence of signs, we get 
1 n 

fls=(x)pdx=~la~l'. 
0 

o o  o o  

Hence, if ~. l a~ l" = 0% the series ~. a~/~ (x) is sign-independently divergent. 
1 1 

b) 2~<p< c~. 

Let  {f~ (x)} be an 0N-system (in LLsense) of functions in L v (0, 1) (take, for 
instance, a system of bounded functions). Then 

1 ( i  \1~/2 [ n \P/2 
" 

Hence, if ~. la l = the series ~ak /~ (x ) i s  sign-independently divergent. 
1 1 
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5. Theorem 5.1. I[ {xk} is a sequence o/unit  vectors in a complex Hilbert space 
and {ak} a sequence o/ complex numbers, such that 

1 
r162 

then the series ~ ak xk 1 

is almost sign-independently divergent. 

Proof: As in Theorem 3.1 we prove the theorem in the space L 2 (0, 1). Pro- 
ceeding indirectly, we suppose that the series ~ a~ ~k (t)[k (x) is convergent in 
mean for t E E, m E>O. By Egoroff's theorem we can choose E in such a way 
that the convergence will be uniform in E. Then there is a constant M, such 
that 

II&-s~ll.= IS (x,t)-sm(x,t)l dx <M 

for t E E .  For 

and we c h o o s e  N O so that 

IISn--SN.[]=<e for n>No ,  t E E .  

For n < No, t E E, we obtain 

No 

Ils -s .ll.<51a l=a, 
1 

and we may take M = 2  (A +e). 
Consequently 

m 2 " m E > j H S n - S m H 2 d t ' i f  Im~+lakCfkfk 2dxd t -  

1 n 

=f(mE'~[ak/k[2+2Re{ ~ a,a~/,~fqD, q~kdtdx}. (4.1) 
0 m + l  m+l~t<k~n E 

The system of functions {~ ~k}l<~<~, l<k<~ is an ON-system and the inequality 
of Bessel gives 

m+l<~<k<n( f qg~cfkdt)2~ ~ - ~ -  for m , n >  N (E), 

since the left member is the sum of the squares of the coefficients in the 
development of the characteristic function of E. 
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An application of Cauchy's inequality gives 

m+l<i<k~n 
E 

From (4.1) we obtain 
1 

0 
1 

n 
m E  2 ' m E  m~+!aktkl2" 

o km+l<~i<k<~n 

0 

Thus ~ l a~l s < 3 M ~ for +n, n > N (E). 
m+l 

This~implies ~ ]ak[2< oo against the assumption, and theorem 5.1 is proved. 
1 

Added in proo/: In  a letter Prof. Dvoretzky has called m y  at tent ion to his arbicle "A  theorem 

on convex bodies and  applications to B a n a c h  spaces", Prec. Nat.  Acad. Sci. (USA) 45, 223- 
226 (1959). Wi th  the help of his Theorem 1 it  is eas~r to prove the following improvement  of 

Theorem 2.1 of this note: Let B be an infinite-dimensional real normed space, {a/~} and {bk} 
sequences of real numbers  such tha t  

Then  there exists a sequence of uni t  vectors {xk} in B such tha t  

~ a k x k  

is sign-independently convergent, while 

bk xk 

is sign-independently divergent. 
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