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On sign-independent and almost sign-independent

convergence in normed linear spaces

By GOTE NORDLANDER

1. We shall say that a series of vectors in a normed vector space
X+ X+ X+ - (L1)
is sign-independently convergent (divergent) if the series
g X, te Xyt Xy+ - - (1.2)

is convergent (divergent) for every sequence of signs {g = 1 1}.

It is an easy consequence of a result of Orlicz that in a Banach space the
series (1.1) is sign-independently convergent if and only if it is unconditionally
convergent, i.e. if and only if every series obtained from it by permutation of
its terms is convergent. Therefore sign-independent convergence is equivalent
to absolute convergence in finite-dimensional spaces. This is no longer the case
in infinite-dimensional spaces. The well-known theorem of Dvoretzky and Rog-
ers proves that if B is infinite-dimensional and {a,} a sequence of numbers

o0
such that Y a% < oo, then there is a sequence of unit vectors {z;} in B such
T

oS
that > a,; is sign-independently convergent.
T

Concerning sign-independent divergence of (1.1) in finite-dimensional spaces
the necessary and sufficient condition that || X, ||>~0 has been proved by Dvo-
retzky and Hanani. Here the infinite-dimensional spaces present a different situa-

tion, too. In 2° we shall show that if B is infinite-dimensional and Y af = oo
1

-]
then there is a sequence of unit vectors {x,} in B such that > a, . is sign-
1

independently divergent.

We shall say that the series (l.1) is almost sign-independently convergent
(divergent) if the series (1.2) is convergent (divergent) for almost every sequence
of signs {g = +1}. This means that the series

Zl Xk (pk (t)1
where {p, (1)} is the Rademacher function system, i.e.
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G. NORDLANDER, Sign-independent convergence in normed linear spaces
@x (¢) =sign sin 2 nt,

is convergent (divergent) almost everywhere in 0<¢<1.

A result of Rademacher states that if X, =a, are real numbers and §a%< 00
then the series (1.1) is almost sign-independently convergent. A countelrpart of
this is the theorem of Kolmogoroff, that 02:: ai = oo implies almost sign-independent

divergence of (1.1).
In 3°-5° we shall give generalizations of the theorems of Rademacher and

Kolmogoroff, when the X,:s are vectors in Hilbert space and certain Banach
spaces.

I wish to express my gratitude to Professor Lennart Carleson for suggesting
the problem and for invaluable advice.

2. Theorem 2.1. Suppose B is an infinite-dimensional real normed wvector space
and {a,} is a sequence of real numbers such that

2
= ©0,

=18

Then there is a sequence of unit vectors {z,} in B such that the series
g Ay Ty
sign-independently divergent.

The idea of the proof is the same as in Dvoretzky-Rogers’s proof of:their
theorem. First we prove a geometrical lemma about n-dimensional Euclidean
spaces and symmetric convex bodies there.

Lemma 2.1. Let B be an n-dimensional real normed space; then, if m (m—1)<mn,
there exist points z,, ..., x, of norm one in B, such that

3t | 1= (m m = 1)/m)t) (5 i)}
for all real t,, ..., tp.

Proof. Circumscribe to €, the unit ball of B, the ellipsoid £ of minimum
volume. By a linear transformation of B we may turn E into the Euclidean
ball whose coordinates satisfy D < 1. Using subscripts to distinguish the norm

ign .

with unit ball £ from that with unit ball C, we want now to search for z; with
% ]le=]|l2]lc=1 and the =z approximately orthogonal. By induction on i we
shall find part of an orthonormal basis u;, 1<m, in the Euclidean space de-
termined by K and points x;, ¢<m, with ||z ||z=| :]lc=1, such that

(a) z,= 12‘ biyuy, and all b,>0, and
<
(b) bh+ -+ =1-bi<(i—1)/n.
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To begin the proof take u, =z, to be any point of contact of the surfaces

C and E, and, for the moment let w,, ..., 4, be any vectors completing an
orthonormal basis in K.
Suppose that z;,-...,%; and w,, ..., %, 1<i<m, have been found to satisfy -

(@) and (b) for all §<i; fill out an orthonormal basis with any suitable
Uis1, ..., U, and consider for e>0 the “spheroid” E, of points whose coordinates
in this basis satisfy

(L+e) " DB+ + BB+ (L+e+e) (Bh+ - +p2)<1.
The volume of E, is easily calculated to be smaller than that of E, so there
is a point p, in C and, thus, in E, but outside E,. Thus, if §;, ..., §, are the
coordinates of p,,

i+ +pa<1,

(L+e) B+ +B)+ (1 +e+ed) (fia+ - +pa)>1.
Subtracting the first of these inequalities from the second gives

[(1+e) =1} BT+ + ) +[(1 +&+ &Y — 1] (Frs + -+ + §7) > 0.

By compactness, there is a subsequence of &’s tending to 0 such that the cor-
responding p. converge to some point z;,; common to the surfaces ¢ and K.
Dividing the last inequality by £ and taking the limit gives, if z;,; has the
coordinates by, ..., b,,

—(n—1) Bf+ - + b7+ 4 (D1 + -+ +B2)=0.

Choosing w;.; orthogonal to u,, ..., #; in the space spanned by these and ;.
and completing this sequence to a new orthonormal basis gives a representation
for %7 which can now be seen to satisfy the conditions (a) and (b) for ¢+ 1.
This induction process defines z; and u; for all i< m.

(b) implies that

|2 —w|f= (1 —8,)*+ 2 <2 (@E—1)/n.
i<
Since C is inside B, ||z]lc>| ||z for every =, so
| Ztzlle= 2 tadlz= | 2 towlle—1| 2 6 (2 —w) |l
igm igm i<m i<m
2| 3 twlle— 262 6E-1)/n)t
i<m igm
Use of Schwarz’s inequality shows that this is
(2= (28} (226-1)/n)}t =[1-(m@m—1)/n)1( 26),
i<m ism i<m im

and the lemma is proved.
The following lemma is an immediate consequence of Lemma 2.1.
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Lemma 2.2. If 4m(m—1)<n then in every n-dimensional real normed space B
there exist m unit vectors x,, ..., &y, such that

N2t |23 3 )2
igm ism

Proof of Theorem 2.1. Take {a,} such that > a;= co. Then group the terms
T

in this sum in blocks
{’C: N]<’C<Nj+1}

Nis1 .
so that > ax=l.
k=Nj+1

In B find a sequence of finite-dimensional subspaces B; each of such high

dimension that in B; vectors y.i1, ..., Zw, satisfying Lemma 2.2 can be

constructed. The series  a, . is obviously sign-independently divergent, as is
T

seen by Cauchy’s principle of convergence.

3. Theorem 3.1. Let {x,} be a sequence of unit vectors in a complex Hilbert space
and {a,} a sequence of complex mumbers such that

0
Slaff < eo.
1
0
Then the series > ay X
T

i almost sign-independently convergent.

Before we proceed to the proof we remark that Rademacher’s theorem is a
special case of Theorem 3.1 (all vectors z, equally directed). Another special
case of the theorem is an immediate consequence of Riesz-Fischer’s theorem
({xc} an orthonormal system).

We shall need the following lemma, due to Hardy and Littlewood.

Lemma 3.1. Suppose f(t) is defined on (0,1) and put
@ (s; f)=sup (s—a)‘lfs)‘(t)dt, 0<o<l.
o a
If f belongs to L?(0,1), p>1, then 0 (s; If]) also belongs to L? (0,1) and
[or s pas<afisias,

where A, depends only on p.
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Proof of Theorem 3.1. The space spanned by the vectors z, is mapped into
L*(0,1) in the well-known manner. The vectors z, are thereby mapped onto
functions f, (x), and

1
JIh@Pde=1, k=12, ..
0
The problem is then to show that the sequence {S.(z,t)}, where

Su @)= 0o (2) ),

converges in mean (in x) for almost every ¢ in (0, 1), as n—>oo.
By the theorem of Beppo Levi we have

1 o0 o0 1 0
f (; |akfk($)|2)dx = 21: f Ialc fr (x)]2dx= ; Iaklz < oo.
0 0
Thus 3 |ay f, (%) |*< co for almost every x in (0, 1). It follows by Riesz—Fischer’s
1
theorem, noting {¢ (¢)} is an ON-system and regarding a f (%) as coefficient of

the function ¢ (t), that for almost every « in (0,1) there is a function
F(x,t)=F, () €L’ (0, 1), such that

1 o0
lim [|F (2, t)— 8, (z, )2 dt = lim leakfk(x)|2 =0. (3.1)
n=o00 g n=00 N+

Another integration gives

lim | F—8,|[% = lim f“F(x t)— 8, (x, ) dxdt= llm Z |a,,| =0. (3.2)
=00 B =00 00
(U stands for the unit square 0<x<1, 0<¢<1, and ||...]|y for the norm in the

Hilbert space of two-place functions L2( U).)
By Fubini’s theorem

1
G )= [|F~8,]da
0

exists for almost every ¢ in (0,1). We want to show that G, ({)—0 a.e. as
n—co, To this end we introduce the functions

Hy (8)= sup G, (1).
n>N
{Hy#)} is a monotonic decreasing sequence of positive functions. If we can show
1
lim [ Hy(t)dt=0,
N=00 3

this implies Hy ()—0 a.e., and a fortiori G, (£)—0 a.e.
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Now we have
1 1 1 11
E f— 2 — 2 = —_ 2v
OfHN(t)dt Oj(fggojlﬁ' S, Pda)di< Mgglﬁ S, Pdxdt llsgglF S, | 113,
and Minkowski’s inequality gives
llsup | F~8alllo <I| F — Sullo+1| sup | 8, = Su] ll-

The first term in the right member tends to zero as N—>oco by (3.2). We want
to show that the second term is majorized by the first term, multiplied by a
constant.

Suppose ¢ is a point of (0, 1) and 7, the interval of the type (j-27", {(f+1)}-277)
which contains the point #. For k<n the Rademacher functions ¢ (f) are con-
stant in I,. Thus

Sn (=, t)= |Ii| f S, (z, 1) dat, (33)
In

where |I,| denotes the length of I,. For k>n the parts of I, where ¢ (t) is
positive resp. negative have the same measure, thus

1 J' 1
= | 8, (x, ) dt=—— fS,,, {z,0)dt, m=>=n. (3.4)
AT A 1A}

Formula (3.1) gives (by Schwarz’s inequality) that

ﬁl—l f(F (x,t)— Sy (z,1)) dt—0, as m—>oo. (3.5)

For n> N we conclude from (3.3), (3.4) and (3.5)
Sn (xr t)_SN(x: t)=|_I1—l f(F (xs t)_SN (x? t))dt,
n Pt
and from this
sup | 8, — Sy| < sup € fIF—SNIdt<6(t;|E~SN|),
n>N n>N lInlI
where @ is the function of Lemma 3.1. Hence
1 1
[sup |8, —Sy[Pdt<4,[|F—Sy[*dt
o n2N o

by Lemma 3.1, and another integration gives
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l|sup | Sn— Syl llo< VA, | F — Sllo
n>N

This completes the proof.

Theorem 3.2. Let {f. (x)} be a sequence of functions in LP (0,1), 1<p< oo,
such that

HMI=(ofllfux)fwx)lm:l, £E=1,2, ...

Let {a,} be a sequence of complex mumbers such that
e
a) > |ag|P<oo in the case 1<p<2
1

o0
b) J|ax]P< oo in the case 2<p< oo,
1

Then i; ay fr (%)

s almost sign-independently convergent in the metric of the space.

Lemma 3.2. If {p. (1)} is the Rademacher function system and

=3 e 1),

1
n pie
then for p>0 flsn—smlpdt<B,(Z |ak|2) ,
m+1
°

where B, depends only on p.

Lemma 3.2 is well known under the name of Khintchine’s inequality.

Proof of Theorem 3.2. Minkowski’s inequality and Hardy-Littlewood’s lemma
are still valid in the LP-spaces. The reference made to Schwarz’s inequality can
be altered to Holder-Riesz’s inequality. Consequently, the theorem may be
proved in the same manner as Th. 3.1 if only the existence of a function F (z,t),
satisfying (3.1) and (3.2) (with the exponent 2 replaced by p) can be motivated
by other arguments.

Lemma 3.2 gives

2

[150-supar<s,( 5 latar)
0

When 1<p<2 this is
n
<B,,m§1|ak P |fx () -
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6. NORDLANDER, Sign-independent convergence in normed linear spaces

When 2<p<oo it is

n

pi2-1 n
<B(Zaf) 3 1
m+1 m+1

by Holder’s inequality. Another integration gives

B,3 |aclf for 1<p<2
m+1
n

1
[185—SnlPdadt<
0

Oy

B, (3 |a[?)? for 2<p< oo,
m+1

From this follows the strong convergence of S, (z,t) to a function F (z,?) in
L?(U), i,e. the formula corresponding to (3.2) with the exponent 2 replaced
by p. Use of B. Levi’s theorem on the last integration (with the sum taken
from m+1 to oo) also gives the formula corresponding to (3.1).

4. The following examples show that the condition on the sequence '{a,,} in
Theorem 3.2 cannot be weakened.

a) 1<p<?2.
Choose a sequence of intervals {I,} such that I,<=(0, 1) for every k and
I;nI,=0 when j*k. Put

1

_ |Ikl p, erk
(@)= {0 elsewhere,

where |I,| as before is the length of I,. Then
1
[lfe@)Pdz=1
0

n
for every k, and, if we put s,(x)= &axfy (%), where {g} is an arbitrary
1

sequence of signs, we get
1 n
[18 (@) |"dx=¥|ak|”.
)

Hence, if ) |a,|?= oo, the series > a;f () is sign-independently divergent.
T T

b) 2<p< oo,

Let {f¢ ()} be an ON-system (in L*-sense) of functions in L” (0, 1) (take, for
instance, a system of bounded functions). Then

12

1 1 22 nm »
“s,,(:v)l"dx?(flsn(x)lzdx) =(Z|a,,|2) .
° 0 1
Hence, if ) |a,[*= oo, the series ga,, fr () is signsindependently divergent.
T T
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5. Theorem 5.1. If {x;} is a sequence of unit vectors in a complex Hilbert space
and {a,} a sequence of complex numbers, such that

o0
; lak |2 = o0,
o0
then the series > oy X
1

s almost sign-independently divergent.

Proof: As in Theorem 3.1 we prove the theorem in the space L?(0,1). Pro-
ceeding indirectly, we suppose that the series > ay @y (f) fx (%) is convergent in
mean for t€E, mE>0. By Egoroff’s theorem we can choose E in such a way
that the convergence will be uniform in E. Then there is a constant M, such
that

1 3
||S,,—-S,,,||,=(“Sn(x,t)—Sm(x,t)|2dx) <M
]
for t€ E. For || 8= Smlls <||Sn—Sw, ||z + | S — S |l
and we choose N, so that
8. —Swll: <& for n>N, tEE.
For n< N, t€E, we obtain
N,
”Sn'—SN.”:tgglaltI:A’

and we may take M =2 (4 +¢).
Consequently '

1 2
M*-mE> [||8y—8al2dt=f [ dazdt=

”
> % @xfr
m+1

1 n
=I(ME‘ZJ“kfkl2+2Re{ N 2. aidkfiiki!“Pi(Pkdtdx}' (4.1)
0 m+ m n

Igi<kg

The system of functions {p; gr}1cick, 1<k<co is an ON-system and the inequality
of Bessel gives

2
i kdt2<£m—E—)— for m,n> N (E),

([orpedt)<—5

E

m+lgi<kgn

since the left member is the sum of the squares of the coefficients in the
development of the characteristic function of E.
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An application of Cauchy’s inequality gives

¥
| Re { 2 aidkfifkj¢i¢kdt}|<7%lg'( > |aiakfifk12) <

mt+lgi<kgn 2 mtdlg<i<k<n

mE 2
3 ) |akfk|2-
m+1

From (4.1) we obtain
1

i . 2mE 2
st m > [ (mo 3ot - 258 3 jaif) az-
m+1 m+1

0

1
mE I mE 2
5 > Iaklzflfk|2dx="§“' > laf
m+1 o m+1

Thus > |laP<3M* for m,n>N(E).
m+1
Thisjimplies > |a,[*< oo against the assumption, and theorem 5.1 is proved.
1

Added in proof: In a letter Prof. Dvoretzky has called my attention to his article ‘A theorem
on convex bodies and applications to Banach spaces”, Proc. Nat. Acad. Sci. (USA) 45, 223~
226 (1959). With the help of his Theorem 1 it is easy to prove the following improvement of
Theorem 2.1 of this note: Let B be an infinite-dimensional real normed space, {ak} and {bk}
sequences of real numbers such that

Za%<oo, Zb;%=oo.

Then there exists a sequence of unit vectors {xk} in B such that

2 ax

is sign-independently convergent, while

Dbk

is sign-independently divergent.
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