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On the asymptotic distribution of sums of  independent 
identically distributed random variables 

By BENC.T ROSfiN 

1. Introduction 

Let  Xt (i = 1, 2 . . . .  ) be independent random variables with the common distri- 
bution function F(x).  Let  P ,  (x) be the d.f. of the sum Sn = X1 + X2 + ".. + X~. 
We define the probabilities 

a~ = Prob (8n < 0), n = 1, 2 . . . . .  

Let  I~ be intervals on the x-axis. Theorem 1 is concerned with the problem 
of giving upper bounds for the probabilities Prob (S~ E I~) for some different types 
of interval families. 

I n  Theorem 2 we give a n  inversion formula for characteristic functions. 
We derive the following result in Theorem 3. I f  E X~ = O, E X~ = a2> 0, then 

the series 
1 (a~- �89 (H) 

is absolutely convergent. This strengthens the result, derived by  F. Spitzer [2], 
t ha t  (1.1) is convergent. 

2. Asymptotic prolperties of F~ (x) 

Let  q (t) be the characteristic function of the d.f. F(x) ,  i.e. 

q~ (t) = f~_~ e '~t d F (x). 

Lemma 1. Let X be a nondegenerate r.v. with d./. F (x) and c./. qJ (t). There exist 
two constants 6 > 0 and C > 0 such that 

I q ~ ( t ) l < l - C t  ~ /or Itl < &  

Proof. (1) The Lemma is true for a variable with mean zero and finite second 
moment  = a", because we then have 

~(t) = 1 - �89 a~t2 + f  o(1). 
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Thus I~ (t) l< 1 - t  2(�89 I o(1)l)- 

We now choose C and ~5 such tha t  

~ ~  for I t [ < ~ .  

This is possible because I o(1)1-~0 when t-->0 and a 2 > 0 ,  as X is nondegenerate.  
(2) The Lemma is valid for any distribution with a finite second moment ,  

because the c.f. of such a distribution can be written 

q) (t) = e t~'t y) (t), 

where # = E X  and ~p (t) is the c.f. of a distribution with two finite moments  
and mean zero. I n  virtue of (1) we thus get 

I~(t}l=lw(t)l< 1 - c t  ~ for Itl<~. 

(3) The Lemma is t rue for any  nondegenerate distribution 

[~(t)l=l f? e'~tdF(x)l<l flx,<Ae'~tdF(x)l+ f,x,> dF(x)" 

We denote f d F (x) = m. According to (2) 
31 xI<~A 

e'XtdF(x) m ( 1 - C t ' )  for Itl<~. 
IxI<A 

Thus [ q ~ ( t ) l < < . m ( 1 - C t 2 ) + l - m = 1 - m C t  z for It[~<~ 

and m is positive if we choose A large enough. 
Thus the Lemma is proved. 

Theorem 1. Let X~ (i = 1, 2, .. .) be independent random variables with the common 
d. /. F (x), which is nondegenerate. Let F~ (x) be the d. ]. o] the sum 

S~= Xx  + X2 + ... + Xn. 

I~ is an interval on the x-axis and 1 (I~) its length. C is a constant which is independ- 
ent o] n and ln. 

(a) I ]  1 (In) ~< n v, 0 < p < 12, then 

Prob (S~ E I , )  <. C/n�89 v. 

(b) 1 / 1  (I~) <~ e ~n, e > O, then 

Prob (Sne 1~) < e (C + ~ (e, n)) 

where ~ (e, n ) ~ O  when n---> oo ]or every ]ixed e > O. 
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(c) I/  1 (I~) <~ M (constant) then 

Prob (S. e I.) <~ C/Vn. 

(d) max Prob (S. = a) <~ C/Vn. 

These results cannot be generally improved. 
Proo/. We use two auxil iary functions ~o~ (t) and ~.  (x) with the properties 

(1) f ~ _ = l v . ( t ) l d t  < ~ ,  I~.(t)l< 1, 

e~=t y)~ (t) dr, (2) ~.(x) = f _ ~  

(3) 4,. (x) I> o. 

The c.f. of F , (x )  is q~(t)". Thus 

f?  ~,.(x)dF.(x)= f? V,.(t)qD(t)" dt. 

As ~.  (x)/> 0, we can estimate 

which combined with (2.1) gives 

�9 f o az, ( dF"(x)<~[min ~"(x)} o. [q;(t)l"l~"(t)tdt" 

As ]q~(t) l~< 1 and Jvj,(t) J ~< 1, we get 

where 8 is the 6 in Lemma 1. 
In virtue of this Lemma we have 

flt,<. Iq~(t)I.dt<~ ~ (l_Ct~).dt<~ fit,<<.o c.t. - C1 J l t l <<. o e- g t <~ -~n ' 

where C 1 is independent  of n. Thus 

We now choose the functions ~o, (t) and ~ ( x )  conveniently. 

(2A) 

(2.2) 
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To prove (a) we choose 

and 

~vn (x) = ( l / ~ / n  ~) exp { - (x - # .)2/2 n 2 v} 

~vn (t) = exp ( - �89 t ~ n 2 p - i/tn t), 

where /zn is the midpoint  of In. I t  is easily verified tha t  ~n(x) and ~vn(t) are 
functions with the desired properties. 

As Ix- /~nl-< �89 nP, for x E In we get 

and (2.2) gives 

rain ~n (x)/> n----V-- 
XEln 

f1~ n v ~C r~ } .~ ~ --+ (-�89 d Fn (x) -< 1 "t 2 .  n 2 r )  d t 
e - 'V2zr l~n  L cxp 

For  the last integral we have 

f~ exp ( - � 8 9  . t~.n2V)dt~ C~ 

where C~ is independent  of n and In. Thus 

f dFn(z )  
C ~< 

n n�89 

and (a) is proved. 
In case (b) we choose 

and ~n (t) = exp ( - �89 t 2. e ~. n -  ignt). 

Then 

rain ~ .  (x) ~> e - t  2VT~-(~ ~ ) - ~  
t e l l  

and (2.2) gives 

t ~. e ~-n) dt}, f, d$'.(x)<"e{Vl +e_t l/~ f~exp (-�89 

where the function 

(n, e) e- ~ . / a  exp ( - �89 f .  ~ "  n) d t 

satisfies lim ~(n, e ) = 0  for every  fixed e > 0. 
n - ~ 0 o  
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This proves (b). 

Choose 

and 

\ �89 / 

~n(t)=](1-[ t /~l l )exp (i/lnt) for Iris<b1, 

~o for Itl>Sx, 

where /~n is the midpoint of the interval I , .  (~1 is chosen so that  ~1 ~< 5 and 
M ~< 2 ~/(~1 which assures that  

rain ~n(x)~>e>o. 
xe/n 

f r  c Thus (2.2) gives n d F ,  (x) ~< ~n'  

which proves (c). 
We can choose In so that  it covers the maximal jump of Fn(x). Then (d) 

immediately follows from (c). 
Let  F(x) be the normal distribution with mean zero and variance 1. Then 

Prob ([ sn I< n p ) 
V :  o < p < �89 

n�89 - P  ~ __~,  

This shows that  the result in (a) cannot be generally improved. The same is 
true for the result in (b). The proof is not difficult but somewhat laborious and 
we omit it. An example which shows that  the results in (c) and (d)cannot  be 
improved is given in, e.g. [1], p. 53. 

3. A n  invers ion  f o r m u l a  

Theorem 2. Let F ( x ) b e  a el.]. and qp(t) its c . l . l /  ~-I-or176 (l§ 
then the /oUowing inversion ]ormula holds: 

1 +l im 1 fN 1 {e~tq ~ ( - t ) -e -~ t~( t ) }d t .  �89 N~ ~ o 

Proo/. We define 
1 (y < x), 

l l f :s in(x-y)tdt= �89 
~(Y' ~)=~+~ t 

0 (y >x).  

Then �89 Iv ( ~ -  o) + v (z + o)] = f ~  ~ (y, ~) a F (y) = 

where the right-hand side is an L - S - i n t e g r a l  
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2 ~- {~v(y,x)-�89 +1 sin (x - y) t d t 

f~_ f Nsin(x-y)t  dt+l- f f S s i n ( x - y ) t d t  = _ 1 +  d F (y) d F (y) 
2 ~ o t ~ y,z t 

=�89 + I~(N) + I~ (N). 

For  11 (N) we have 

~]II(N)l<~f~acdF(Y)f~ sin(x--y)t all= ,J-oodF(y)f~lz-ull~-s 

<~ f ~  dF(y){l +log(l ~ NIx-yl)} 

ds 

In  vir tue of the assumpt ion | l o g ( l  +lxl)dF(x)<~ we thus have that, 
d -  or 

II(N) is absolutely convergent.  Therefore we can change the order of in tegra-  
t ion in 11 (N). This gives 

11 (N)~ 2 ~  ~ dg, ,J-oo(~176 { et(x-y) t-e-i(x-y)t} d.F(y) 

l 

The following est imations are well known. For  N >  0 

f :  sin x t d t C1 (3.1} 

f: s i n x t d t  ~<C 2, 
t 

(3.2> 

where C 1 and C 2 are absolute constants.  
Es t imate  I~(N) as follows 

fo ,I; + dF(y <[x-yl<l/N N 
According to (3.1) and2{3.2) we get 

sin (x-y) t  " 

_<C 1 f dE(y) fo dF(y). 
[I2 (~V) -~ ~ -  JI x_yl>llNl~ ---Yi ~- C2 <1X-y[<IlN 
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We have l dF(y)--->O for N--->~ 
30 < I x - y [ - : : l l N  

and ( d F (y) T0 for N--> oo 
J~ x -Y I>_I /N  JY, lz-yl 

by Lebesgue's theorem on dominated convergence, as 

(Nlx-yl)- i<l  for I x - y l > ~ l / N  

and (NIx--y])-I--->0 when N-->oo. 

Thus I2(N)-->O when N-->oo. 
Summing up 

�89 ~ {d~tq~ - e  '~tq~(t)}dt§ 

N--~ c~ gives the theorem. 
We now apply the inversion formula to the d.f. .F~ (x) with c.f. ~0 n (t). 

1 1 •0 1 . ~xt 
�89 [F~ ( x - 0 )  + F , ( x + 0 ) ]  =2+2~iJo  ~ te q)(-t)~-e-'X~q~(~)'}dt+R(n'x'6)' (3.3) 

where ~ is a positive number and 

i f= sin(x-y)tdt" R(n,x, 6)=~ dFn(x) 
_ ~  ~ t 

Lemma 2. R (n, x, <}) satisfies /or fixed ~ > 0 the inequality 

IR (n, ~, ~)l <-< Cn =~ 

-where C is independent o/ n and x. 

Proof. 

~iR (n'~' ~)l< f "r dF~(Y)lf; sin (x-Y)t dt I t  

fl f dF~(x) < C2 4 d F~ (y) + C 1 4 

~ceording to (3.1) and (3.2). Theorem 1 (a) gives 

IR(n, x, ~) I < C n - ~ .  
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4. On the  series ~ _1 (a.-�89 
1 n 

We introduce the nota t ion  a ,  = Prob (S, <0) .  

Theorem 3. I/  EX~=O and EX~=a  2, 0 < a 2 <  oo, then the series ~ 1 (a~-�89 
converges absolutely. 1 n 

We first need a lemma.  Let  ~ (t) be the c.f. of the variables X~. ~o (t) has the  
Taylor  expansion 

q~ (t) = 1 - �89 a 2 t ~ + f (R  (t) + i I (t) ), 

where R(t) and I(t) are real functions such tha t  R(t)-->O, I(t)--->O when t-+0.  

Lemma 3" F~ every 6>0 the integral f6o ' I  (t)' dt is 

We put whioh is no loss of genera' ty As Proo/. x d f (x) =O, 
j -  o o  

have I ( t ) = ~  ( s in t x - t x )dF(x )  

f] f_~ f' Isinxt--xtl and we get [ I  (t)[ dt<~ dF(x) dr, 
t or ~ t 8 

the inversion of integrat ion being justified by  absolute convergence. P u t  

w(x,e)=f]lsinxt-xtl 
ts dt. 

By using the inequalities 

I~i~xt-xtl<~l=tl~ for Ixtl<x 

Isi~xt-xtl<21xtl for Ixtl>l, 

<31xl *. 

and 

we get  for 1 ~<]x]~< 1/e 

W(x,e)<J~ I~ldt+ 21xl" dt=lxl~ i~-~ +21xl{Ixl-1} 
l / I z l  

For  I~1<1 we get vp(x, e)~< f: t~lxl'at< t~l=l'- 
For  I xl > 1/e we have 

v/(x, e)<f~ 2Ix I .~ 
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Thus  0 ~< v 2 (x, s) ~< 3 ] x ]2, which gives 

; f: II(t)l dt< ~(x, e)dF(x)<~3 [xl2dF(x) = 3 a  2. 
t - o o  oo 

We now let e-->0 and get 

and  the L e m m a  is proved.  

Proo[ o/ Theorem 3. 

We put  x = 0  in (3.3) 

j " II(t)l d t  < c~ 

o t 

�89 [ F n ( - O ) + F n ( + O ) ] = a n + � 8 9  Prob {Sn=O} = 

1 1 f~  1 . = 2 + ~ /  0~{~~ ( - t ) - ~ n ( t ) } d t + R ( n ) ,  

where (~ is a positive constant  to be determined later.  
For  any  c.f. ~ ( - t ) - - ~ ( t )  holds. Thus we can write 

a n _  1 =1_ f e  [qo (t!.!n sin {n arg ~(t)}dt + R(n) -  1Prob {S. = 0}, 
7~ do t 

which gives 

Thus 

~, ''an--�89 jarg~(t)tt 
From L e m m a  2 we conclude 

and  Theorem 1 (d) gives 

- -  I arg q~ (Old t + I R (n)] + �89 Prob {Sn = 0}. 

IqT(t) l dt ~ 1 [R(n) l + ~ 1  P r o b { S . = 0 } .  
1-1~,(t)l + ~ n  , ,S 

~. _1 ]R(n) l  = D I <  ~o 
1 Tt 

] 

I 
"lb 

t ~. I (t) 
arg ~ (t) = aretg 1 - �89 a t ~ + t z R (t)' 

and for (St sufficiently small, there exists a constant  C 1 > 0 so t ha t  

larg~(t)l<~cl.t~lI(t)l for Itl~<~ 1. 

2 2 : 4  

(4.1) 

331 



B. ROS~, Asymptotic distribution of sums of random variables 

Let 62 be the ~ in Lemma 1. We choose ~ in (4.1) to be (~=min (~1, (~2). By 
Lemma 1, 1-1q~(t)[ />C 2t 2 for It[~<5" Thus 

~ 1  la'~--ll~< C1 f~o [I(t) t dt+Dl+D2 
i n   --d2 t 

and Lemma 3 gives ~ _1 l a~_ �89 < oo 
1 n 

and Theorem 3 is proved. 
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