On the asymptotic distribution of sums of independent identically distributed random variables

By Bengt Rosén

1. Introduction

Let $X_{i}(i=1,2, \ldots)$ be independent random variables with the common distribution function $F(x)$. Let $F_{n}(x)$ be the d.f. of the sum $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. We define the probabilities

$$
a_{n}=\operatorname{Prob}\left(S_{n}<0\right), \quad n=1,2, \ldots .
$$

Let I_{n} be intervals on the x-axis. Theorem 1 is concerned with the problem of giving upper bounds for the probabilities Prob ($S_{n} \in I_{n}$) for some different types of interval families.

In Theorem 2 we give an inversion formula for characteristic functions.
We derive the following result in Theorem 3. If $E X_{i}=0, E X_{i}^{2}=\sigma^{2}>0$, then the series

$$
\begin{equation*}
\sum_{1}^{\infty} \frac{1}{n}\left(a_{n}-\frac{1}{2}\right) \tag{1.1}
\end{equation*}
$$

is absolutely convergent. This strengthens the result, derived by F. Spitzer [2], that (1.1) is convergent.

2. Asymptotic properties of $\boldsymbol{F}_{\boldsymbol{n}}(\boldsymbol{x})$

Let $\varphi(t)$ be the characteristic function of the d.f. $F(x)$, i.e.

$$
\varphi(t)=\int_{-\infty}^{\infty} e^{i x t} d \boldsymbol{F}(x) .
$$

Lemma 1. Let X be a nondegenerate r.v. with d.f. $F(x)$ and c.f. $\varphi(t)$. There exist two constants $\delta>0$ and $C>0$ such that

$$
|\varphi(t)| \leqslant 1-C t^{2} \text { for }|t| \leqslant \delta .
$$

Proof. (1) The Lemma is true for a variable with mean zero and finite second moment $=\sigma^{2}$, because we then have

$$
\varphi(t)=1-\frac{1}{2} \sigma^{2} t^{2}+t^{2} o(1) .
$$

Thus

$$
|\varphi(t)| \leqslant 1-t^{2}\left(\frac{1}{2} \sigma^{2}-|o(1)|\right) .
$$

We now choose C and δ such that

$$
\frac{1}{2} \sigma^{2}-|o(1)| \geqslant C>0 \text { for }|t| \leqslant \delta .
$$

This is possible because $|O(1)| \rightarrow 0$ when $t \rightarrow 0$ and $\sigma^{2}>0$, as X is nondegenerate.
(2) The Lemma is valid for any distribution with a finite second moment, because the c.f. of such a distribution can be written

$$
\varphi(t)=e^{i \mu t} \psi(t)
$$

where $\mu=E X$ and $\psi(t)$ is the c.f. of a distribution with two finite moments and mean zero. In virtue of (1) we thus get

$$
|\varphi(t)|=|\psi(t)| \leqslant 1-C t^{2} \text { for }|t| \leqslant \delta .
$$

(3) The Lemma is true for any nondegenerate distribution

$$
|\varphi(t)|=\left|\int_{-\infty}^{\infty} e^{i x t} d F(x)\right| \leqslant\left|\int_{|x| \leqslant A} e^{i x t} d F(x)\right|+\int_{|x|>A} d F(x) .
$$

We denote

$$
\begin{gathered}
\int_{|x| \leqslant A} d F(x)=m . \quad \text { According to }(2) \\
\left|\int_{|x| \leqslant A} e^{i x t} d F(x)\right| \leqslant m\left(1-C t^{2}\right) \text { for }|t| \leqslant \delta .
\end{gathered}
$$

Thus

$$
|\varphi(t)| \leqslant m\left(1-C t^{2}\right)+1-m=1-m C t^{2} \text { for }|t| \leqslant \delta
$$

and m is positive if we choose A large enough.
Thus the Lemma is proved.
Theorem 1. Let $X_{i}(i=1,2, \ldots)$ be independent random variables with the common d.f. $\boldsymbol{F}(x)$, which is nondegenerate. Let $F_{n}(x)$ be the d.f. of the sum

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n} .
$$

I_{n} is an interval on the x-axis and $1\left(I_{n}\right)$ its length. C is a constant which is independent of n and I_{n}.
(a) If $1\left(I_{n}\right) \leqslant n^{p}, 0<p<\frac{1}{2}$, then

$$
\text { Prob }\left(S_{n} \in I_{n}\right) \leqslant C / n^{\frac{1}{2}-p} .
$$

(b) If $1\left(I_{n}\right) \leqslant \varepsilon \sqrt{n}, \varepsilon>0$, then

$$
\operatorname{Prob}\left(S_{n} \in I_{n}\right) \leqslant \varepsilon(C+\xi(\varepsilon, n))
$$

where $\xi(\varepsilon, n) \rightarrow 0$ when $n \rightarrow \infty$ for every fixed $\varepsilon>0$.
(c) If $1\left(I_{n}\right) \leqslant M$ (constant) then

$$
\text { Prob }\left(S_{n} \in I_{n}\right) \leqslant C / \sqrt{n}
$$

(d) $\max _{a} \operatorname{Prob}\left(S_{n}=a\right) \leqslant C / \sqrt{n}$.

These results cannot be generally improved.
Proof. We use two auxiliary functions $\psi_{n}(t)$ and $\hat{\psi}_{n}(x)$ with the properties

$$
\begin{align*}
& \int_{-\infty}^{\infty}\left|\psi_{n}(t)\right| d t<\infty,\left|\psi_{n}(t)\right| \leqslant 1, \tag{1}\\
& \hat{\psi}_{n}(x)=\int_{-\infty}^{\infty} e^{i x t} \psi_{n}(t) d t \\
& \hat{\psi}_{n}(x) \geqslant 0 \tag{3}
\end{align*}
$$

The c.f. of $F_{n}(x)$ is $\varphi(t)^{n}$. Thus

$$
\begin{equation*}
\int_{-\infty}^{\infty} \hat{\psi}_{n}(x) d F_{n}(x)=\int_{-\infty}^{\infty} \psi_{n}(t) \varphi(t)^{n} d t \tag{2.1}
\end{equation*}
$$

As $\hat{\psi}_{n}(x) \geqslant 0$, we can estimate

$$
\int_{-\infty}^{\infty} \hat{\psi}_{n}(x) d F_{n}(x) \geqslant \int_{I_{n}} \hat{\psi}_{n}(x) d F_{n}(x) \geqslant \min _{x \in I_{n}} \hat{\psi}_{n}(x) \int_{I_{n}} d F_{n}(x)
$$

which combined with (2.1) gives

$$
\int_{J_{n}} d F_{n}(x) \leqslant\left\{\min _{x \in I_{n}} \hat{\psi}_{n}(x)\right\}^{-1} \int_{-\infty}^{\infty}|\varphi(t)|^{n}\left|\psi_{n}(t)\right| d t
$$

As $|\varphi(t)| \leqslant 1$ and $\left|\psi_{n}(t)\right| \leqslant 1$, we get

$$
\int_{I_{n}} d F_{n}(x) \leqslant\left\{\min _{x \in I_{n}} \hat{\psi}_{n}(x)\right\}^{-1}\left\{\int_{|t| \leqslant \delta}|\varphi(t)|^{n} d t+\int_{|t|>\delta}\left|\psi_{n}(t)\right| d t\right\}
$$

where δ is the δ in Lemma 1.
In virtue of this Lemma we have

$$
\int_{|t| \leqslant \delta}|\varphi(t)|^{n} d t \leqslant \int_{|t| \leqslant \delta}\left(1-C t^{2}\right)^{n} d t \leqslant \int_{|t| \leqslant \delta} e^{-C n t^{2}} d t \leqslant \frac{C_{1}}{\sqrt{n}},
$$

where C_{1} is independent of n. Thus

$$
\begin{equation*}
\int_{I_{n}} d F_{n}(x) \leqslant\left\{\min _{x \in I_{n}} \hat{\psi}_{n}(x)\right\}^{-1}\left\{\frac{C_{2}}{\sqrt{n}}+\int_{|t|>\delta}\left|\psi_{n}(t)\right| d t\right\} . \tag{2.2}
\end{equation*}
$$

We now choose the functions $\psi_{n}(t)$ and $\hat{\psi}_{n}(x)$ conveniently.
B. Rosén, Asymptotic distribution of sums of random variables

To prove (a) we choose

$$
\begin{gathered}
\hat{\psi}_{n}(x)=\left(\sqrt{2 \pi} / n^{p}\right) \exp \left\{-\left(x-\mu_{n}\right)^{2} / 2 n^{2 p}\right\} \\
\psi_{n}(t)=\exp \left(-\frac{1}{2} \cdot t^{2} n^{2 p}-i \mu_{n} t\right),
\end{gathered}
$$

and
where μ_{n} is the midpoint of I_{n}. It is easily verified that $\hat{\psi}_{n}(x)$ and $\psi_{n}(t)$ are functions with the desired properties.

As $\left|x-\mu_{n}\right| \leqslant \frac{1}{2} n^{p}$, for $x \in I_{n}$ we get

$$
\min _{x \in I_{n}} \hat{\psi}_{n}(x) \geqslant \frac{e^{-x} \sqrt{2 \pi}}{n^{p}}
$$

and (2.2) gives

$$
\int_{I_{n}} d F_{n}(x) \leqslant \frac{n^{p}}{e^{-1} \sqrt{2 \pi}}\left\{\frac{C_{1}}{\sqrt{n}}+\int_{\delta}^{\infty} \exp \left(-\frac{1}{2} \cdot t^{2} \cdot n^{2 D}\right) d t\right\} .
$$

For the last integral we have

$$
\int_{\delta}^{\infty} \exp \left(-\frac{1}{2} \cdot t^{2} \cdot n^{2 p}\right) d t \leqslant \frac{C_{2}}{\sqrt{n}},
$$

where C_{2} is independent of n and I_{n}. Thus

$$
\int_{I_{n}} d F_{n}(x) \leqslant \frac{C}{n^{\ddagger-p}}
$$

and (a) is proved.
In case (b) we choose

$$
\hat{\psi}_{n}(x)=\frac{\sqrt{2 \pi}}{\varepsilon \sqrt{n}} \exp \left\{-\left(x-\mu_{n}\right)^{2} / 2 \varepsilon^{2} n\right\}
$$

and

$$
\psi_{n}(t)=\exp \left(-\frac{1}{2} \cdot t^{2} \cdot \varepsilon^{2} \cdot n-i \mu_{n} t\right) .
$$

Then

$$
\min _{x \in I_{n}} \hat{\psi}_{n}(x) \geqslant e^{-\frac{1}{z}} \sqrt{2 \pi} \cdot(\varepsilon \sqrt{n})^{-1}
$$

and (2.2) gives

$$
\int_{I_{n}} d F_{n}(x) \leqslant \varepsilon\left\{C_{1}+\frac{\sqrt{n}}{e^{-\frac{1}{2}} \sqrt{2 \pi}} \int_{\delta}^{\infty} \exp \left(-\frac{1}{2} \cdot t^{2} \cdot \varepsilon^{2} \cdot n\right) d t\right\},
$$

where the function

$$
\xi(n, \varepsilon)=\frac{\sqrt{n}}{e^{-t} \sqrt{2 \pi}} \int_{0}^{\infty} \exp \left(-\frac{1}{2} \cdot t^{2} \cdot \varepsilon^{2} \cdot n\right) d t
$$

satisfies $\lim _{n \rightarrow \infty} \xi(n, \varepsilon)=0$ for every fixed $\varepsilon>0$.

This proves (b).
Choose

$$
\hat{\psi}_{n}(x)=\delta_{1}\left(\frac{\sin \frac{1}{2} \delta_{1}\left(x-\mu_{n}\right)}{\frac{1}{2} \delta_{1}\left(x-\mu_{n}\right)}\right)^{2}
$$

and

$$
\psi_{n}(t)= \begin{cases}\left(1-\left|t / \delta_{1}\right|\right) \exp \left(i \mu_{n} t\right) & \text { for }|t| \leqslant \delta_{1} \\ 0 & \text { for }|t|>\delta_{1}\end{cases}
$$

where μ_{n} is the midpoint of the interval I_{n}. δ_{1} is chosen so that $\delta_{1} \leqslant \delta$ and $M \leqslant 2 \pi / \delta_{1}$ which assures that

Thus (2.2) gives

$$
\begin{aligned}
& \min _{x \in I_{n}} \hat{\psi}_{n}(x) \geqslant \varrho>0 . \\
& \int_{I_{n}} d F_{n}(x) \leqslant \frac{C}{\sqrt{n}},
\end{aligned}
$$

which proves (c).
We can choose I_{n} so that it covers the maximal jump of $F_{n}(x)$. Then (d) immediately follows from (c).

Let $F(x)$ be the normal distribution with mean zero and variance 1 . Then

$$
\frac{\operatorname{Prob}\left(\left|S_{n}\right| \leqslant n^{p}\right)}{n^{\frac{1}{y}-p}} \rightarrow \sqrt{\frac{2}{\pi}}, \quad 0<p<\frac{1}{2}
$$

This shows that the result in (a) cannot be generally improved. The same is true for the result in (b). The proof is not difficult but somewhat laborions and we omit it. An example which shows that the results in (c) and (d) cannot be improved is given in, e.g. [1], p. 53.

3. An inversion formula

Theorem 2. Let $F(x)$ be a d.f. and $\varphi(t)$ its c.f. If $\int_{-\infty}^{\infty} \log (1+|x|) d F(x)<\infty$ then the following inversion formula holds:

$$
\frac{1}{2}[F(x-0)+F(x+0)]=\frac{1}{2}+\lim _{N \rightarrow \infty} \frac{1}{2 \pi i} \int_{0}^{N} \frac{1}{t}\left\{e^{i x t} \varphi(-t)-e^{-i x t} \varphi(t)\right\} d t .
$$

Proof. We define

$$
\psi(y, x)=\frac{1}{2}+\frac{1}{\pi} \int_{0}^{\infty} \frac{\sin (x-y) t}{t} d t=\left\{\begin{array}{l}
1(y<x) \\
\frac{1}{2}(y=x) \\
0(y>x)
\end{array}\right.
$$

Then

$$
\frac{1}{2}[F(x-0)+F(x+0)]=\int_{-\infty}^{\infty} \psi(y, x) d F(y)=
$$

where the right-hand side is an $L-S$-integral
B. ROSÉN, Asymptotic distribution of sums of random variables

$$
\begin{aligned}
& =\frac{1}{2}+\int_{y \neq x}\left\{\psi(y, x)-\frac{1}{2}\right\} d F(y)=\frac{1}{2}+\frac{1}{\pi} \int_{y \neq x} d F(y) \int_{0}^{\infty} \frac{\sin (x-y) t}{t} d t \\
& =\frac{1}{2}+\frac{1}{\pi} \int_{-\infty}^{\infty} d F(y) \int_{0}^{N} \frac{\sin (x-y) t}{t} d t+\frac{1}{\pi} \int_{y \neq x} d F(y) \int_{N}^{\infty} \frac{\sin (x-y) t}{t} d t \\
& =\frac{1}{2}+I_{1}(N)+I_{2}(N) .
\end{aligned}
$$

For $I_{1}(N)$ we have

$$
\begin{aligned}
\pi\left|I_{1}(N)\right| & \leqslant \int_{-\infty}^{\infty} d F(y) \int_{0}^{N}\left|\frac{\sin (x-y) t}{t}\right| d t=\int_{-\infty}^{\infty} d F(y) \int_{0}^{N|x-y|}\left|\frac{\sin s}{s}\right| d s \\
& \leqslant \int_{-\infty}^{\infty} d F(y)\{1+\log (1+N|x-y|)\}
\end{aligned}
$$

In virtue of the assumption $\int_{-\infty}^{\infty} \log (1+|x|) d F(x)<\infty$ we thus have that $I_{1}(N)$ is absolutely convergent. Therefore we can change the order of integration in $I_{1}(N)$. This gives

$$
\begin{aligned}
I_{1}(N) & =\frac{1}{2 \pi i} \int_{0}^{N} \frac{d t}{t} \int_{-\infty}^{\infty}\left\{e^{i(x-y) t}-e^{-i(x-y) t}\right\} d F(y) \\
& =\frac{1}{2 \pi i} \int_{0}^{N} \frac{1}{t}\left\{e^{i x t} \varphi(-t)-e^{-i x t} \varphi(t)\right\} d t
\end{aligned}
$$

The following estimations are well known. For $N>0$

$$
\begin{align*}
& \left|\int_{N}^{\infty} \frac{\sin x t}{t} d t\right| \leqslant \frac{C_{1}}{|x| N} \tag{3.1}\\
& \left|\int_{N}^{\infty} \frac{\sin x t}{t} d t\right| \leqslant C_{2} \tag{3.2}
\end{align*}
$$

where C_{1} and C_{2} are absolute constants.
Estimate $I_{2}(N)$ as follows

$$
\begin{aligned}
& \pi\left|I_{2}(N)\right| \leqslant \int_{|x-y| \geq 1 / N} d F(y)\left|\int_{N}^{\infty} \frac{\sin (x-y) t}{t} d t\right| \\
&+\int_{0<|x-y|<1 / N} d F(y)\left|\int_{N}^{\infty} \frac{\sin (x-y) t}{t} d t\right|
\end{aligned}
$$

According to (3.1) and ${ }_{\mathbf{A}}(3.2)$ we get

$$
\pi\left|I_{2}(N)\right| \leqslant \frac{C_{1}}{N} \int_{|x-y| \geq 1 / N} \frac{d F(y)}{|x-y|}+C_{2} \int_{0<|x-y|<1 / N} d F(y)
$$

We have

$$
\int_{0<|x-y|<1 / N} d F(y) \rightarrow 0 \text { for } N \rightarrow \infty
$$

and

$$
\int_{|x-y| \geq 1 / N} \frac{d F(y)}{N|x-y|} \rightarrow 0 \text { for } N \rightarrow \infty
$$

by Lebesgue's theorem on dominated convergence, as

$$
(N|x-y|)^{-1} \leqslant 1 \text { for }|x-y| \geqslant 1 / N
$$

and $(N|x-y|)^{-1} \rightarrow 0$ when $N \rightarrow \infty$.

Thus $I_{2}(N) \rightarrow 0$ when $N \rightarrow \infty$.
Summing up

$$
\frac{1}{2}[F(x-0)+F(x+0)]=\frac{1}{2}+\frac{1}{2 \pi i} \int_{0}^{N} \frac{1}{t}\left\{e^{i \pi t} \varphi(-t)-e^{-i \pi t} \varphi(t)\right\} d t+I_{2}(N) .
$$

$N \rightarrow \infty$ gives the theorem.
We now apply the inversion formula to the d.f. $F_{n}(x)$ with c.f. $\varphi^{n}(t)$.
$\frac{1}{2}\left[F_{n}(x-0)+F_{n}(x+0)\right]=\frac{1}{2}+\frac{1}{2 \pi i} \int_{0}^{\delta} \frac{1}{t}\left\{e^{i x t} \varphi(-t)^{n}-e^{-i x t} \varphi(t)^{n}\right\} d t+R(n, x, \delta)$,
where δ is a positive number and

$$
R(n, x, \delta)=\frac{1}{\pi} \int_{-\infty}^{\infty} d F_{n}(x) \int_{d}^{\infty} \frac{\sin (x-y) t}{t} d t .
$$

Lemma 2. $R(n, x, \delta)$ satisfies for fixed $\delta>0$ the inequality

$$
|R(n, x, \delta)| \leqslant C n^{-\frac{1}{2}}
$$

where C is independent of n and x.
Proof.

$$
\begin{aligned}
\pi|R(n, x, \delta)| & \leqslant \int_{-\infty}^{\infty} d F_{n}(y)\left|\int_{\delta}^{\infty} \frac{\sin (x-y) t}{t} d t\right| \\
& \leqslant C_{2} \int_{|x-y| \leq \gamma^{4} \bar{n}} d F_{n}(y)+C_{1} \int_{|x-y|>r^{\prime} \bar{n}} \frac{d F_{n}(x)}{|x-y|}
\end{aligned}
$$

according to (3.1) and (3.2). Theorem 1 (a) gives

$$
|R(n, x, \delta)| \leqslant C n^{-\frac{1}{2}}
$$

B. Rosén, Asymptotic distribution of sums of random variables
4. On the series $\sum_{1}^{\infty} \frac{1}{n}\left(a_{n}-\frac{1}{2}\right)$

We introduce the notation $a_{n}=$ Prob $\left(S_{n}<0\right)$.
Theorem 3. If $E X_{i}=0$ and $E X_{i}^{2}=\sigma^{2}, 0<\sigma^{2}<\infty$, then the series $\sum_{1}^{\infty} \frac{1}{n}\left(a_{n}-\frac{1}{2}\right)$ converges absolutely.

We first need a lemma. Let $\varphi(t)$ be the c.f. of the variables $X_{i} . \varphi(t)$ has the Taylor expansion

$$
\varphi(t)=1-\frac{1}{2} \sigma^{2} t^{2}+t^{2}(R(t)+i I(t))
$$

where $R(t)$ and $I(t)$ are real functions such that $R(t) \rightarrow 0, I(t) \rightarrow 0$ when $t \rightarrow 0$.
Lemma 3. For every $\delta>0$ the integral $\int_{0}^{\delta} \frac{|I(t)|}{t} d t$ is convergent.
Proof. We put $\delta=1$, which is no loss of generality. As $\int_{-\infty}^{\infty} x d F(x)=0$, we have

$$
I(t)=\frac{1}{t^{2}} \int_{-\infty}^{\infty}(\sin t x-t x) d F^{\prime}(x)
$$

and we get $\quad \int_{\varepsilon}^{1} \frac{|I(t)|}{t} d t \leqslant \int_{-\infty}^{\infty} d F(x) \int_{\varepsilon}^{1} \frac{|\sin x t-x t|}{t^{3}} d t$,
the inversion of integration being justified by absolute convergence. Put

$$
\psi(x, \varepsilon)=\int_{\varepsilon}^{1} \frac{|\sin x t-x t|}{t^{3}} d t
$$

By using the inequalities

$$
|\sin x t-x t| \leqslant \frac{1}{6}|x t|^{3} \text { for }|x t| \leqslant 1
$$

and

$$
|\sin x t-x t| \leqslant 2|x t| \text { for }|x t|>1
$$

we get for $1 \leqslant|x| \leqslant 1 / \varepsilon$

$$
\psi(x, \varepsilon) \leqslant \int_{\varepsilon}^{1 /|x|}\left|x^{3}\right| d t+\int_{1 /|x|}^{1} 2|x| \cdot \frac{1}{t^{2}} d t=|x|^{3}\left\{\frac{1}{|x|}-\varepsilon\right\}+2|x|\{|x|-1\} \leqslant 3|x|^{2}
$$

For $|x|<1$ we get

$$
\psi(x, \varepsilon) \leqslant \int_{\varepsilon}^{1} \frac{1}{6}|x|^{3} d t \leqslant \frac{1}{8}|x|^{3} .
$$

For $|x|>1 / \varepsilon$ we have

$$
\psi(x, \varepsilon) \leqslant \int_{\varepsilon}^{1} 2|x| \cdot \frac{1}{t^{2}} d t=2|x|\left(\frac{1}{\varepsilon}-1\right) \leqslant \frac{2|x|}{\varepsilon} \leqslant 2|x|^{2}
$$

Thus $0 \leqslant \psi(x, \varepsilon) \leqslant 3|x|^{2}$, which gives

$$
\int_{\varepsilon}^{1} \frac{|I(t)|}{t} d t \leqslant \int_{-\infty}^{\infty} \psi(x, \varepsilon) d F(x) \leqslant 3 \int_{-\infty}^{\infty}|x|^{2} d F(x)=3 \sigma^{2} .
$$

We now let $\varepsilon \rightarrow 0$ and get $\quad \int_{0}^{\delta} \frac{|I(t)|}{t} d t<\infty$
and the Lemma is proved.
Proof of Theorem 3.
We put $x=0$ in (3.3)
$\frac{1}{2}\left[F_{n}(-0)+F_{n}(+0)\right]=a_{n}+\frac{1}{2} \operatorname{Prob}\left\{S_{n}=0\right\}=$

$$
\begin{equation*}
=\frac{1}{2}+\frac{1}{2 \pi i} \int_{0}^{\delta} \frac{1}{t}\left\{\varphi^{n}(-t)-\varphi^{n}(t)\right\} d t+R(n) \tag{4.1}
\end{equation*}
$$

where δ is a positive constant to be determined later.
For any c.f. $\varphi(-t)=\overline{\varphi(t)}$ holds. Thus we can write

$$
a_{n}-\frac{1}{2}=\frac{1}{\pi} \int_{0}^{\delta} \frac{\left.|\varphi(t)|\right|^{n}}{t} \sin \{n \arg \varphi(t)\} d t+R(n)-\frac{1}{2} \operatorname{Prob}\left\{S_{n}=0\right\}
$$

which gives

$$
\left|a_{n}-\frac{1}{2}\right| \leqslant \frac{n}{\pi} \int_{0}^{\delta} \frac{|\varphi(t)|^{n}}{t}|\arg \varphi(t)| d t+|R(n)|+\frac{1}{2} \operatorname{Prob}\left\{S_{n}=0\right\}
$$

Thus

$$
\sum_{1}^{\infty} \frac{1}{n}\left|a_{n}-\frac{1}{2}\right| \leqslant \frac{1}{\pi} \int_{0}^{\delta} \frac{|\arg \varphi(t)|}{t} \cdot \frac{|\varphi(t)|}{1-|\varphi(t)|} d t+\sum_{1}^{\infty} \frac{1}{n}|R(n)|+\frac{1}{2} \sum_{1}^{\infty} \frac{1}{n} \operatorname{Prob}\left\{S_{n}=0\right\} .
$$

From Lemma 2 we conclude

$$
\sum_{1}^{\infty} \frac{1}{n}|R(n)|=D_{1}<\infty
$$

and Theorem 1 (d) gives

$$
\begin{gathered}
\frac{1}{2} \sum_{1}^{\infty} \frac{1}{n} \operatorname{Prob}\left\{S_{n}=0\right\}=D_{2}<\infty \\
\arg \varphi(t)=\operatorname{arctg} \frac{t^{2} \cdot I(t)}{1-\frac{1}{2} \sigma^{2} t^{2}+t^{2} R(t)},
\end{gathered}
$$

and for δ_{1} sufficiently small, there exists a constant $C_{1}>0$ so that

$$
|\arg \varphi(t)| \leqslant C_{1} \cdot t^{2}|I(t)| \text { for }|t| \leqslant \delta_{1} .
$$

B. rosén, Asymptotic distribution of sums of random variables

Let δ_{2} be the δ in Lemma 1. We choose δ in (4.1) to be $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. By Lemma 1, $1-|\varphi(t)| \geqslant C_{2} t^{2}$ for $|t| \leqslant \delta$. Thus

$$
\sum_{1}^{\infty} \frac{1}{n}\left|a_{n}-\frac{1}{2}\right| \leqslant \frac{C_{1}}{\pi C_{2}} \int_{0}^{\delta} \frac{|I(t)|}{t} d t+D_{1}+D_{2}
$$

and Lemma 3 gives

$$
\sum_{1}^{\infty} \frac{1}{n}\left|a_{n}-\frac{1}{2}\right|<\infty
$$

and Theorem 3 is proved.

REFERENCES

1. Esseen, C. G., Fourier analysis of distribution functions. Acta Math. 77, 1-125 (1945).
2. Spitzer, F., A Tauberian therrem and its probability interpretation, Trans. Amer. Math. Soc. 94, 150-169 (1960).
