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Stochastic groups 

By U L F  G R E N A N D E R  

This paper is a continuation of "Stochastic groups" by the same author and 
published in the same journal. The reader is referred to the earlier parts of this 
paper and to the author 's  paper, "Stochastic groups and related structures", to 
appear in the fourth Berkeley Symposium on Mathematical Statistics and Probabili ty 
for a full s tatement of the problems and for terminology and notation. 

Part 6. Fourier analysis of  probability distributions on locally compact groups 

6.1. We now turn to the study of such stochastic groups as are assumed to be 
neither compact nor commutative. The probability theory of locally compact groups 
is at  present almost entirely terra incognita and presents a number  of challenging 
problems. Even for stochastic Lie groups the situation is similar, although we have 
some knowledge of the corresponding infinitely divisible probabili ty distributions. 1 
For a general t reatment  the most promising way seems to be via Fourier analysis. 
We then have to start  from the irreducible, unitary group representations, construct 
the Fourier transform and study its properties. We hope to get a tool which will 
be of great help in future investigations. 

For locally compact groups the unitary representations are a good deal more 
complicated than in the compact case, when one can appeal to the Peter-Weyl  
theorem. Now we are forced to use in/inite dimensional representations with all the 
possible pathologies that  can arise. In  this section we will review some known results 
on unitary representations tha t  will be needed below. 

Let  G be a locally compact, separable group with the generic element g. By a 
unitary representation r = (~H, U (g)) we understand a Hilbert space ~ and a family 
of unitary transformations U(g), g E G, in ~H, satisfying the equation U(gl)U(g~) = 
U (gl g~). For any element z E ~ the vector-valued function U (g) z defined on ~H will 
be assumed to be strongly (which here is equivalent to weakly) continuous. The 
representation is said to be irreducible if there is no non-trivial, closed subspace of 
~H left invariant by all the U (g). 

An important  class of representations are the so-called regular ones. Let ~ consist 
of all complex valued functions { (g) defined on the group and quadratically integrable 
with respect to left invariant Haar  measure; the ordinary definition of inner product 
is used. Put  U(h)/(g) =/ (h- ig ) .  I t  is not difficult to see that  (~H, U(g)) is a unitary 
representation. 

1 Very recently Donald Wehn  obtained some , important limit theorems on Lie groups in 
"Limi t  distr ibutions on Lie groups"  (to appear). 
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A fundamental theorem of Gelfand and Raikov tells us that there exists a set 
R ={r} of irreducible, unitary representations which is complete in the following 
sense. If g :~ e is an arbitrary element of G there is a representation r E R such that 
U(g) + I .  

A function ~(g), g EO is called positive de/inite if for any choice of an integer 
n, gl, g2 . . . . .  g~ in G and of complex numbers cl, c 2 . . . .  , c~ we have 

L 

m # = l  

We are especially interested in the normed, ~ (e) = 1, and continuous positive definite 
functions. They are related to the unitary representations in the following way. 
For any unitary representation {~, U(g)} and vector ze ~,  the function (U(g)z, z) 
is continuous and positive definite. Inversely every continuous, positive definite 
function can be represented in this way. 

I t  is natural to use the partial ordering r ~( ~% for two positive definite functions 
if the difference ~2 - ~ 1  is also positive definite; ~1 is said to be subordinated to ~2- 
A positive definite function ~(g), for which the only subordinated functions are 
multiples, c~ (g), is said to be elementary. Their importance lies in the fact that they 
can be used as building blocks via the trigonometric polynomials clq) 1 (g) + c2~2(g ) + 
�9 "" + c~n(g). This completeness property can be expressed in either of the two 
following ways: 

Any continuous function on G can be approximated uniformly on every compact 
set by trigonometric polynomials. 

If # is a bounded complex measure and 

f~G ~0 (g) d #  (g)= 0 

for any elementary function ~, then # = 0. 
To emphasize the concrete nature of this investigation we shall illustrate the general 

prob]em by a particular group that will serve as a simple but illuminating example. 
Consider the group of linear transformations of the real line x-->ax + ft. I t  has one- 
dimensional representations of the form :t" where t is a real number. To construct 
the infinite dimensional representations consider the Hilbert space H + of functions 
[ (4) defined on the positive real line and with the ordinary definition of inner product. 
Put 

U+(g)[(~) = e(~a/(2a)~/~, g = (oe, fl), [(A)EH +. 

Similarly we introduce H -  consisting of quadratically integrable functions on the 
negative real line and in H we define U-(if) analogously. The operators U +(if) and 
U-(g) respectively are easily seen to form irreducible, unitary representations of G. 
Further it can be shown that, together with the one-dimensional representations, 
they form a complete set of irreducible, unitary representations. 

Given a unitary representation (~, U(g)) it can be decomposed into a direct 
integral of irreducible unitary representations 

u (g)- f~ | u ~ (g), 
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which means the following. To each d EO corresponds a Hilbert space ~/a. On ]0 
there exists a measure ~ and we can consider ~ / a s  equivalent to the Hilbert space 

having as elements functions x = x(d), d E ~ ,  x(d)E ~d and With the inner product  

(x, y) = f v  (x (d), y (d)) d ~. 

There exists for almost all d an irreducible uni tary  representation (H a, U a (g)} such 
tha t  

(V (g) x, y) = f ,  (U d (g) x (d), y (d)) d ~. 

This decomposition is not  unique. 
For  more detailed information on uni tary  representations, trigonometric poly- 

nomials, etc. the reader is referred to Neumark  (1959) and Godement (1948). 

6.2. Let  G be a locally compact  group with the set R of all non-equivalent, irredu- 
cible, uni tary  representations and with a regular, normed, P (G) = l, Borel measure 
P.  If  z is an arbi t rary element of :~, the vector U(g)z describes a continuous curve 
when g runs through the group. Furthermore this curve is contained in the sphere 
with 0 as origin and radius [[z [[. The integral 

f U ( g ) z d P ( g ) = ~ z  
G 

then exists in the sense of Bochner. (Note  tha t  if we use the regular representation 
~ coincides with the operator T studied in Par t  3, and 74 =L2(G).) I t  is clear tha t  

~0z II ~< Hzll so tha t  ~ is a bounded linear operator in ~ .  We shall call ~ the Fourier 
trans/orm of P and it will sometimes be denoted by  ~ (r) or ~e (r), r e R, for the sake of 
clearness. We shall describe some simple and fundamental  properties of the Fourier 
t ransform in the following statements (a)-(f). 

(a) ~ (r), r E R, is a linear operator in ~4, it reduces to I i / r  is the identity representa- 
tion; its norm is at most one, I$ q~ II <~ l ;  i] II q~z It = N z N/or r ~ I and some non-trivial z 
then the support o / P  is contained in a coset o /a  proper subgroup of G. 

The three first s tatements are obvious. The fourth one can be proved as follows, 
using a coordinate free version of an idea applied to compact  groups by  I to  and 
Uawada  (1940) and Stromberg (1960). If  there is an element zE ~ /such  tha t  II ~z II 
= I! z II: t h a t  is  

fa U(g) z d P ( g )  =HzH, 

then we must  have U (g)z = ei~z for all g E s (P). In t roduce the sets 

= {g  J U (g) z = e z } .  
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I t  is clear tha t  A 0 is a closed proper subgroup (note tha t  U (g) should be irreducible) 
and tha t  A~ = y A 0 where 7 is an element in A~. This proves tha t  s (P) E7 A0 as stated. 
A consequence of this is that ,  if ~ z = z occurs, we can restrict our a t tent ion to 
a subgroup of G; of course, we will use as our domain the smallest closed subgroup 
spanned by  s (P). 

(b) {q)P, rE R} determines P uniquely. 

Proo]. Suppose the two measures P1 and P~ are not  identical but  have the same 
Fourier transform. Then 

f U(g )dQ(g )=O 
G 

for all rE R; we have put  Q = P 1 -  P2- Let  p(g) be an elementary positive de/inite 
function on G. I t  can then be represented as p (g) = (U (g)z, z), where U (g) is an ir- 
reducible, uni ta ry  representation of G. Bu t  then 

f o  p (g)dQ(g)=O, 

which implies Q = 0 (see the previous section). 
(c) Let P -  denote the probability distribution o/ g-l, P - ( E ) = P ( E - 1 ) .  Then the 

adjoint (q~P)* is equal to the Fourier trans/orm ep P- o[ P-.  In  particular q~ is sel/- 
adjoint if and only i /P  is a symmetric measure. It  is normal if and only i / P - ~  P = P-~ P-.  

Proo]. We have the obvious relations 

~v-= fau (g)dP- (g)= f U (g-l)dp(g)= f u* (g)dP(g)=@~)*. 

The last two s ta tements  follow from the uniqueness proper ty  (b). Unfor tuna te ly  this 
makes application of spectral theory  difficult except in special cases. 

(d) I / P  =PLOP 2 then ~P =q~e, q)P,. 
This is proved just as on the real line. 
(e) I / a  sequence o/probability measures P~ converges weakly to P then q~Pn converges 

strongly to q~P. 
This s ta tement  is known (see R. Godement [1]). I n  order tha t  the Fourier t ransform 

should be really useful for the s tudy  of limit theorems we would need some sort of 
converse of (e). A solution to this problem will be given ]or groups o/ type S: the 
constant  function 1 can be uniformly approximated on every compact  subset G 
by  positive definite functions vanishing outside compact  sets. 

To find positive definite functions approximating to 1 in the way  described, we 
could t ry  functions of the form e ~  (g) or more part icularly functions of the form 

1 p(g) =~b~so*lo(g), 

where It(g) is the indicator funct ion of a compact  set C and ~ (9) = ~ ( g - 1 ) .  
(f) Given probability measures P1, P9 . . . .  and P on a locally compact group G o/type 

S. I /  the Fourier trans/orms q~P', q)P' . . . .  converge strongly to qJP, then P~ converges 
weakly to P. 
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Proo/. We can always choose a subsequence Pn~ converging weakly to a measure 
Q, Q(G) ~< 1. To show tha t  Q(G) = 1 we consider a positive definite function p(g) 
vanishing outside of a compact  set C. The uni tary representation U (g) corresponding 
to p(g) can be decomposed into irreducible representations U(g)=/~@Uf(g). But  
for almost every /E ~ we have 

f , u r (g) d P,,, (g) --~ f aUI (g) dP (g) 

with strong convergence. Hence we get 

fe  p (g) d Q (g) = lira f p (g) d P , ,  (g) = f p (g) d P (g). 
r - - > ~  G G 

But  now we can approximate  the function 1 by functions like p(g) so tha t  we must  
have Q(G) = P ( G )  = 1. 

To complete the proof we observe tha t  Q = P and since this will hold for any  con- 
vergent subsequence the result follows. 

6.3. Now let us return for a moment  to the group of linear transformations of the 
real line. Consider for simplicity the probabil i ty distribution P over G with all its 
mass on ~ = �89 and a distribution D for the values of ft. Then the Fourier t ransform 
associated with the U +(g) representation takes the form 

where D (2) is the characteristic function belonging to D, and where the opera- 
tors ~ and [/ are defined by  

/ (~) = ~) (~) / (~) 1, 

To show tha t  this group is of type  S let us consider the indicator function 
c (g) of the compact  set 

1 <A}. S = { g l ~ - < ~ < B ,  - A < / ~  

The convolution of c(g) with ~ (g) with respect to right invariant  measure v, dv (a, 
fl) =do~dfl/~ is clearly a positive definite function. In t roduce the normed positive 

1 
definite function p(g) = ~ )  c-~(g), p(e) = 1. For  any  fixed g it can be shown tha t  

p (g)-->l when A--> c~ with B = 0 (A). This proves the assertion. 
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Mult iplying independent  s tochast ic  group elements g l ,  g2 . . . .  having the  same 
dis t r ibut ion P ,  we get  the  produc t  7~ = g~ g2. . -gn.  The Four ier  t ransform of the  
d i s t r ibu t ion  of 7~ is then  

r  pffO,.7...Off l. 
n t imes 

If  h is the  group element  with a =  2, fl = 0 the  Four ie r  t ransform of 7~ h~ is 

r 

If  the  mean value of D exists,  the  infinite p roduc t  

r (4)-  ~ 
n=O 

converges and Oj (2) - ->dP(~) / (4)=( I ) / (4 ) .  I t  is not  difficult  to  show tha t  �9 is the  
Four ier  t ransform of a p robab i l i ty  d is t r ibut ion  Q. Hence the  stochast ic  group ele- 
men t  7~h ~ converges dis t r ibut ion-wise .  

While  this  example  is ve ry  simple and can be t rea ted  by  a direct  me thod  (see P a r t  
4) i t  m a y  give some hints  of wha t  can be expected in more compl ica ted  s i tuat ions.  

6.4. I n  a qui te  general  s tochast ic  group we can obviously  not  have  an analogue 
of the  law of large numbers .  On the  real  line (or in R k or in a Banach  space) the  law 
of large numbers  tells us t ha t  (1 /n )x  1 + (1 /n)x  2 §  + (1/n)x,~ converges in some 
probabi l is t ic  sense. Fo r  a general  group we do not  necessar i ly  have  opera t ions  
corresponding to  mul t ip l ica t ions  by  the fac tor  1/n. I n  order  to get  any  fur ther  in 
this  direct ion we mus t  therefore assume that n-th roots are uniquely  defined on G: 
for any  group e lement  g there  is one and only one e lement  y such t h a t  y n = g; we then  
write 7 = gl/~. Such groups are sometimes called divisible R-groups.  

Then we can speak of the  powers gr where r is any  ra t iona l  number .  Assuming t ha t  
gr---~e if r - + 0 ,  we can ex tend  the  defni t ion to a rb i t r a ry  exponents .  We  will therefore 
s t a r t  f rom the  following 

Assumpt ion.  To any  real  t and  element  g e G there is an e lement  g t6G with the  
following propert ies:  

(i) g 0 = e ,  g l = g ,  
(ii) gt is a cont inuous funct ion of g and t, 

(iii) gt+~ = gt g~. 

Our first  t a sk  is to define in an adequa te  way  the mean value of a p robab i l i ty  
d is t r ibut ion  over G. To do so let  us note t ha t  for a f ixed g and (74, U (g)) the  opera tors  

V t = U ( g t ) ,  - ~  < t  < ~ ,  

form a continuous group of un i t a ry  t ransformat ions .  According to  a well-known 
theorem of Stone, there  then  exists a resolut ion of the  ident i ty ,  Eo (4); - oo < )~ < co, 
such t ha t  

338 



ARKIV FOR F/ATEMATIK. Bd 4 nr 25 

We can then  write 

where Ha is the  self-adjoint ,  
spectra l  representa t ion  

U (g t) = exp itHg, 

possibly unbounded  opera tor  associated with the  

Ha=f~_ 2dEg(~) 
~f gl, g2, " "  " ,  gn are  s tochast ical ly  independent  e lements  from our group, le t  us form 

__ x l / ~  x l / n  ~.l/~, the  "average"  y n -  1 2 . . . . . .  note  t ha t  this "average"  in general  depends  
upon the  order  of the  g's. The Four ie r  t ransform of )~ is 

~ = E U (y~) = [E U 1/n (g)Jn, 

and  we have to s tudy  i ts  behavior  for large values of n. 
Heuristics. Since app rox ima te ly  

Ulj~ i (g) =~ I + - H (g), 
U 

i 
we have  E U 1/n (g) ~- I + -  H, 

n 

where the  new opera tor  H is defined b y  

H =  f H(g) dP(g).  

As n tends  to  inf in i ty  we should then  expect  t ha t  

~ n - ~ e x p  i l l ,  

and  if there  is an e lement  ~ such t h a t  U ( ~ ) =  exp i H  for all  irreducible,  u n i t a r y  
representat ions ,  then  ~n converges in probabi l i ty ,  to  the  f ixed element  ~. This  
leads us to  define mean value  as fo l lows .  

Definition. Suppose that/or z E D, where D is everywhere dense in ~l, the operators 
H (g) are defined and that 

follH (g)zHdP(g) < ~; 

operator H = f a H  (g) d P  (g) then the 

is defined in l). I f  there exists an element ~ E G such that 

U(~) = exp i H  
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]or all unitary, irreducible representations {~/, U (g)}, then ~ is said to be the mean 
value  o/the stochastic group. 

Because of the  lack of commuta t i v i t y  we should not  expect  too much s imi lar i ty  
to  the  ord inary  mean value operat ion.  The following propert ies  are easily proved 
though.  

(i) If  P has all i ts  mass in go, then  its mean value is go. 
(ii) Le t  g be the  e lement  of a stochastic group; then  

( # )  = (~)*. 

(iii) If  the  two operators  H~=SH(g)dP~(g), i = 1, 2, are such t ha t  t hey  com- 
mute,  have mean values g, and  Pl § P2 = l ,  p~ >~0, then  the  mean value 
of the  d is t r ibut ion  piP1 + p2P2 is glP'g2. ~' 

I n  the  definit ion of mean value  we could have used ins tead  the  defining re la t ion 
H (~) = H, which should be val id  for any  H (g) associated wi th  an  irreducible,  un i t a ry  
representa t ion.  

To t ransform the  above  heurist ic  discussion into a theorem,  one mus t  impose some 
condit ions on the stochast ic  group. This is done below, bu t  the  au thor  suspects t ha t  
the  theorem holds in much greater  general i ty  than  our ve ry  res t r ic t ive  condit ions 
might  lead one to believe. To remove these restr ic t ions seems to be an impor t an t  
t a sk  in future  work on stochastic groups of this  type.  

Theorem. Let there be given an increasing sequence o/subspaces ~1 (Z ~2 C ~3 "'" C ~ ,  

together /orming an everywhere dense subset o/ ~4. Suppose that /or z E V,~ the element 
H (gl)H (g2) ... H (gp)z is de/ined and of a norm o/the order O(c~). Here c~,n is a constant 
and the statement should hold/or all positive and integral m and p. 

The operator 
[i 

= J | a l l  (g) d R  (g) H 

is then well defined in ~n. Suppose that there is a group element ~ (which is 
then the uniquely defined mean value o/the stochastic qroup) such that U (~) = exp i H.  
Then the average 

~?n = g~/n l ln lln g2 ... g~ 

converges in probability to ~. 
The strong assumpt ions  make  the proof of this  convergence qui te  easy for us. 

Le t  z E Din; then  ~Titing 

( ; ~ n =  I + - i H + A n  , 
n 

( ; we have ~onz= I + - i H  z+Q~ 
n 

llo li< 5: I + 
p = 0  

with 

a S  n - - - >  ( ~ .  But 
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( )~ ~ [ ( p )  1 1]  ~ ( i H ) "  
I + i - - H  z= e x p i H z +  ~ - ~ .  ( iH)Pz - z 

Tb P = 0  n + l  

:and both the two sums have  norms tending to zero. Hence 

qnz--> exp i H z  

for z's forming an everywhere dense set in ~H. But  the operators ~0 n and exp i H  are 
of bounded norm (at mos t  one), so t ha t  convergence holds throughout  :H. Now we 
just  have to appeal  to ([) of 6.2 not  forgetting, of course, tha t  the group should be 
of the type  described in (f). 

6.5. Let  us re turn  to our example.  I t  is easy to verify tha t  n th  roots exist and 
have the properties required. For an element g = (a, f )  E G we have gt = (at, fit) with 

a t ~ a t ] 

1 - a t 

if a =4 = 1 and 

a t = l  1 

fit = fl t J 
if a = l .  

To determine the operators  H (g) (see last  section), we consider the group of 
un i t a ry  representations,  t real, 

U + (gt) / (4) = exp ( i A f  (1 - at)/(1 - a)) ] (4 a t) a t/2. 

To  find the infinitesimal operator  of this group, we s tudy the above expression 
for  small values of t and obtain  

f ~ _ l + - -  /(~)+~log a/' (4), 

say  for / E  ~ = the set of all functions vanishing outside of finite intervals to- 
gether  with their derivative.  

Let  P be a probabi l i ty  measure over  G such tha t  a and/3 are independent  and 

f lfldP(g)<~, f IlogaldP(9)<~. 
G G 

In t roduce  

so t ha t  

alog a d P (g) = a I 

( 
J a a -  1 J 

if oH (9) d P ( g ) = i b  M + 2 I + a  M D, 
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where M is the operator  consisting of multiplication by  2 and D is the differ- 
entiat ion operator.  Then i t  is easily seen t ha t  

if we choose y = ( ~ ,  ~) as 

for a + O  and as 

i H ( g ) d P ( g ) = i H  (y), 

~]= b e~:  1 

rl= 

for a = O .  This element y is hence the mean  value of G with respect  to the  
given distribution. 

For  this simple case we can verify directly tha t  the average converges to the  
mean  value y. We have, put t ing  y~=  (~(~), fl(n)), gv = (~v, fl~). 

{ ~<n) = (~l  aq . . .  an) t/" 

1 - a l l -  1 - a{  l" 
fl(n) = fiX ] - - -  O~ 1 + f12 1 - ~2 

_ _  <xl/n + . . .  + 

�9 l/n 
[g~ I -- O~ n lln l/n l/n + 

- -  0 ~ 1  0 ~ 2  �9 �9 �9 O ~ n  1 �9 

1 - ~,~ 

I t  is immediate ly  clear tha t  a(~)--> ~e= e ~ in probabil i ty .  

I n l 1In 

-?~v 1-~ 
1 2 log  av 

[ b (z" )=-L  f t . - - ~ .  n 1 a ~ - i  

Pu t  

Of course, b(z ") - > b  in probabi l i ty .  But  

exp (1In log a~) - 1 __1  log a. 
n 

so tha t  E b (n) b (~) n E exp 
( 1 / n l o g a ) -  1 l l o g  

n 

( ~ -  1) 
- ~ 0  

so tha t  b~n)--> b in probabil i ty.  To complete the argument ,  we split up the sum 
defining fl(n) into m a n y  long blocks, such tha t  the factors (~i a2. .-  ~)i/v are nearly 
constant  in each block, ~ exp (v /na) ,  and apply  the above to each block; this 
proves the convergence s ta tement .  
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We have seen in Par t  4 tha t  for this part icular  group we also know tha t  another 
"average",  (gl g~. . .  gn) ~/n, converges distribution wise. The limit is not  a constant  
element but  a non-degenerate distribution. This leads us further to ask if such a 
convergence can be proved more generally, but  the author  has not  succeeded in doing 
this so far. 

6.6. Let  us s tudy a limit problem with a different norming. If  the mean value of 
P is y, the " reduced"  distribution Q = �89 + 1~ has mean value zero. By ~-1  we ~-1 
mean the degenerate distribution assigning the probabili ty 1 to the element y - 1  
This follows from what  was said in 6.4 and the fact tha t  H, of course, commutes with 
- - H .  

Let  h~, h2, ..., h~ be independent, stochastic group elements drawn from the 
"reduced" distribution Q. In t roduce the normed variable 

We have a version of the central limit theorem. 

Theorem. Assume the same conditions as in 6.4 and that there is a distribution II 
such that its Fourier trans/orm 

~v n = |  U(g) d I I ( g ) = e x p - � 8 9  
J G 

H 2 : fG H2 (g) d Q (g). where 

Then the distribution o / ~  converges to II as n tends to in/inity. 
The proof is carried out almost in the same way as for the previous theorem; 

we now have the Fourier transform for the distribution of 0n 

H 2 )n 
(Ea U 1/~r~(g))n= I -  2~n+nn  , 

and we get the desired result by expansion. 
As an illustration we s tudy what  happens in our example. For  simplicity let us 

deal with the case where ~ and fl are independent and Eft  = 0. Then the mean value 
7 = e. Fur ther  let us put  

E (log ~)~ = 1, 

E fl~ (log ~] 
\ ~ 1 -  1!  = c < ~ .  

We have 

- -H2(g) / ( ;L)= i ~ - Z - ~ _ l + ~ + 2 1 o g ~ D  i ~ . f l ~ 2 ~ _ I + - ~ - + 2 1 o g e D  /(20 

= A (~, r / (,~) + B (~, f l) / '  (,~) + ~ (~, r (~) 
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with [~ Z--l-j2 i 2 ~/~ 2],_, B (a, fl) = (log cz) 2 + 2 

[ C (a, fl) = 2 2 (log a)2. 

Hence  -H2= - f(~H2(g)dP(g)=AI + BD+CD2, 

where 

wi th  

A =az2e+a12+ao 

B = b222+ b12 

C = c~ 22 

a 0 = �88 E (log ~)~ 

a I = i E (log ~)2 fl 

a 2 = - E ( l o g e ) 2  ~ 

b 1 = 2 E (log a)2 

b e = 2 i E ( l o g ~ ) ~  fl 
0 ~ - I  

c 2 = E (log a)2 

so t h a t  wi th  our  choice of cons tan ts  

A= -c22+  �88 
B = 2 2  

C = 22. 

Fo," a sufficiently wel l -behaved f (2) we pu t  

so tha t  we have  the  parabol ic  equa t ion  

~1 ~t_Cz~/+�89 

The opera tor  [(2)-->](2, 1) should  be expressed in t e rms  of the  u n i t a ry  representa-  
t ions to give the  required l imit  dis tr ibut ion.  
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However ,  in this  s imple case we know, wi th  a minor  modif ica t ion  of wha t  was 
1/~ ~-l/~r~ a 1/;~ = v / n ,  is governed done in P a r t  5, t h a t  the  l imi t  d i s t r ibu t ion  of gl y2 ... ~ , t 

b y  the  equa t ion  

~2 a 2 a 
OP=~ ~(a:2 p) +c 1 _ _  ~ t-- " ~ ~ fl2 (~2 p ) -  �89 ~ (g P)= LP; 

i t  should be no ted  t h a t  the  first  order  t e rm corresponding to the  inf ini tesimal  m e a n  
va lue  does no t  vanish.  In t roduce  the  Four ie r  t ransforms 

~t = f a  u (g) d p (g, t), 

which obvious ly  form a semigroup wi th  

l im ~vt t I / ( A ) =  fL* U (g)/(A)ds(g), 
t~0 

where s(g) is the  p robab i l i t y  measure  wi th  al l  i ts  p robab i l i t y  in the  uni t  e l emen t  
(1,0). Bu t  this  reduces to the  same second order  different ia l  opera to r  as given above  
for ~ / /~ t .  This verifies t h a t  the  l imi t  d i s t r ibu t ion  is the  one s ta ted .  
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