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Stochastic groups

By ULr GRENANDER

This paper is a continuation of ‘“‘Stochastic groups” by the same author and
published in the same journal. The reader is referred to the earlier parts of this
paper and to the author’s paper, ‘“Stochastic groups and related structures”, to
appear in the fourth Berkeley Symposium on Mathematical Statistics and Probability
for a full statement of the problems and for terminology and notation.

Part 6. Fourier analysis of probability distributions on locally compact groups

6.1. We now turn to the study of such stochastic groups as are assumed to be
neither compact nor commutative. The probability theory of locally compact groups
is at present almost entirely terra incognita and presents a number of challenging
problems. Even for stochastic Lie groups the situation is similar, although we have
some knowledge of the corresponding infinitely divisible probability distributions.!
For a general treatment the most promising way seems to be via Fourier analysis.
We then have to start from the irreducible, unitary group representations, construct
the Fourier transform and study its properties. We hope to get a tool which will
be of great help in future investigations.

For locally compact groups the unitary representations are a good deal more
complicated than in the compact case, when one can appeal to the Peter-Weyl
theorem. Now we are forced to use infinite dimensional representations with all the
possible pathologies that can arise. In this section we will review some known results
on unitary representations that will be needed below.

Let G be a locally compact, separable group with the generic element g. By a
unitary representation » = (H, U (g)) we understand a Hilbert space # and a family
of unitary transformations U (g), €@, in H, satisfying the equation U (g,) U (g,) =
U(g,9,). For any element z€ 3 the vector-valued function U (g)z defined on H will
be assumed to be strongly (which here is equivalent to weakly) continuous. The
representation is said to be irreducible if there is no non-trivial, closed subspace of
H left invariant by all the U (g).

An important class of representations are the so-called regular ones. Let H consist
of all complex valued functions f (g) defined on the group and quadratically integrable
with respect to left invariant Haar measure; the ordinary definition of inner product
is used. Put U (h)f(g) =f(h1g). It is not difficult to see that (¥, U(g)) is a unitary
representation.

! Very recently Donald Wehn obtained some important limit theorems on Lie groups in
“Limit distributions on Lie groups” (to appear).
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A fundamental theorem of Gelfand and Raikov tells us that there exists a set
R ={r} of irreducible, unitary representations which is complete in the following
sense. If g=e is an arbitrary element of & there is a representation 7€ R such that
Ug) =1.

A function @{g), g€G is called positive definite if for any choice of an integer
7, Gy, J3» < -» 9 in G and of complex numbers ¢,, ¢,, ..., ¢, we have

> ¢ é plgatg)=0.
=

v 1

We are especially interested in the normed, ¢ (¢) = 1, and continuous positive definite
functions. They are related to the unitary representations in the following way.
For any unitary representation {#, U(g)} and vector z€ ¥, the function (U (g)z, 2)
is continuous and positive definite. Inversely every continuous, positive definite
function can be represented in this way.

It is natural to use the partial ordering p, < @, for two positive definite functions
if the difference g, — ¢, is also positive definite; ¢, is said to be subordinated to ¢,.
A positive definite function @(g), for which the only subordinated functions are
multiples, ¢ (g), is said to be elementary. Their importance lies in the fact that they
can be used as building blocks via the trigonometric polynomials ¢ @;(g) + cap,(g) +
-+ +¢,@,(g). This completeness property can be expressed in either of the two
following ways:

Any continuous function on @ can be approximated uniformiy on every compact
set by trigonometric polynomials.

If u is a bounded complex measure and

f plg)dulg)=0
geCG

for any elementary function ¢, then y =0.

To emphasize the concrete nature of this investigation we shall illustrate the general
problem by a particular group that will serve as a simple but illuminating example.
Consider the group of linear transformations of the real line #—ax + 8. It has one-
dimensional representations of the form o'* where ¢ is a real number. To construct
the infinite dimensional representations consider the Hilbert space H+* of functions
f(A) defined on the positive real line and with the ordinary definition of inner product.
Put

U+@)f () =e¥fAala, g=(x p), f(R)EH.

Similarly we introduce H— consisting of quadratically integrable functions on the
negative real line and in H we define U-(g) analogously. The operators U+(g) and
U~ (g) respectively are easily seen to form irreducible, unitary representations of G.
Further it can be shown that, together with the one-dimensional representations,
they form a complete set of irreducible, unitary representations.

Given a unitary representation (¥, U(g)) it can be decomposed into a direct
integral of irreducible unitary representations

U@=L®W@,
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which means the following. To each d€D corresponds a Hilbert space ¢ On D
there exists a measure 9 and we can consider # as equivalent to the Hilbert space

W= [ e,
D
having as elements functions z =xz(d), d€D, x(d) € #¢ and with the inner product

(x,y)= fv (@ (d), y(d)) do-

There exists for almost all d an irreducible unitary representation {H¢, U%(g)} such
that

(U(g)w,y)=fD(Ud(g)x(d), y@)do.

This decomposition is not unique.
For more detailed information on unitary representations, trigonometric poly-
nomials, etc. the reader is referred to Neumark (1959) and Godement (1948).

6.2. Let @ be a locally compact group with the set R of all non-equivalent, irredu-
cible, unitary representations and with a regular, normed, P (&) = 1, Borel measure
P. If z is an arbitrary element of H, the vector U (g)z describes a continuous curve
when g runs through the group. Furthermore this curve is contained in the sphere
with 0 as origin and radius ||z||. The integral

LU(!J)zdP(g)=<Pz

then exists in the sense of Bochner. (Note that if we use the regular representation
@ coincides with the operator T studied in Part 3, and # = L,(G).) It is clear that
[lpz ]| <||2|| so that ¢ is a bounded linear operator in H. We shall call ¢ the Fourier
transform of P and it will sometimes be denoted by ¢ (r) or g% (r), r € B, for the sake of
clearness. We shall describe some simple and fundamental properties of the Fourier
transform in the following statements (a)—(f).

(a) @(r), r€R, is a linear operator in I it reduces to I if r is the identity representa-
tion; its norm is ot most one, || || < 1; if || pz||=|| 2|| for r & I and some non-trivial z
then the support of P is contained tn a coset of a proper subgroup of G-

The three first statements are obvious. The fourth one can be proved as follows,
using a coordinate free version of an idea applied to compact groups by Ito and
Ka”W&[(lla (1940) and Stromberg (1960). If there is an element z € H such that || pz||
=|| z|l, that is

|
|[.v@=aro)|-1e.
then we must have U (g)z=e“z for all g €s(P). Introduce the sets

4,={g|U(g)z=e"2}.
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It is clear that A, is a closed proper subgroup (note that U (g) should be irreducible)
and that 4, =y A, where y is an element in A,. This proves that s(P)€y 4, as stated.
A consequence of this is that, if ¢ z=2 occurs, we can restrict our attention to
a subgroup of G@; of course, we will use as our domain the smallest closed subgroup
spanned by s(P).

(b) {¢%, r€ R} determines P uniquely.

Proof. Suppose the two measures P, and P, are not identical but have the same
Fourier transform. Then

fGU(y)dQ(g)=0

for all r€ R; we have put @ =P, —P,. Let p(g) be an elementary positive definite
function on @. It can then be represented as p(g9) = (U (y9)z, z), where U (g) is an ir-
reducible, unitary representation of G. But then

Lp (@)dQ(g)=0,

which implies @ =0 (see the previous section).

(¢) Let P~ denote the probability distribution of g, P—(E)=P(E1). Then the
adjoint (@pf)* is equal to the Fourier transform ¢f~ of P-. In particular ¢ is self-
adjoint if and only if P is a symmetric measure. It is normal if and only if P~% P = P%P-,

Proof. We have the obvious relations

pF = LU (@)d P (9)= LU @ hHdP(g)= LU* @) dP(g)=(@")"

The last two statements follow from the uniqueness property {(b). Unfortunately this
makes application of spectral theory difficult except in special cases.

(d) If P=P,%P, then ¥ =" ¢™.

This is proved just as on the real line.

(e) If a sequence of probability measures P, converges weakly to P then @™ converges
strongly to ¢°.

This statement is known (see R. Godement [1]). In order that the Fourier transform
should be really useful for the study of limit theorems we would need some sort of
converse of (e). A solution to this problem will be given for groups of type 8: the
constant function 1 can be uniformly approximated on every compact subset ¢
by positive definite functions vanishing outside compact sets.

To find positive definite functions approximating to 1 in the way described, we
could try functions of the form cx¢(g) or more particularly functions of the form

1
u(C)
where I,(g) is the indicator function of a compact set C and ¢(g) =é(g™").

(£) Given probability measures Py, P,, ... and P on a locally compact group G of type

8. If the Fourier transforms @™, o™, ... converge strongly to @F, then P, converges
weakly to P.

plg) = Ic*Ic(g),
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Proof. We can always choose a subsequence P, converging weakly to a measure

@, Q(G) <1. To show that @Q(G) =1 we consider a positive definite function p{g)
vanishing outside of a compact set C. The unitary representation U (g) corresponding

to p(g) can be decomposed into irreducible representations U (g) =J.D@ Uf(g). But
for almost every f€D we have

|rwir,o-[ veire

with strong convergence. Hence we get

LP (9)dQ(g)=lim | p(g)d P, (9)= fap (9)dP(g).

r—>R0 J G

But now we can approximate the function 1 by functions like p(g) so that we must
have Q(G) =P(G) =1.

To complete the proof we observe that @ = P and since this will hold for any con-
vergent subsequence the result follows.

6.3. Now let us return for a moment to the group of linear transformations of the
real line. Consider for simplicity the probability distribution P over G with all its
mass on o =} and a distribution D for the values of 8. Then the Fourier transform
associated with the U+(g) representation takes the form

qof(/l)=D(z)f(’21)V§=Df7,

where D (1) is the characteristic function belonging to D, and where the opera-
tors D and J are defined by

Df(A)=D@A) @)

grn-1(5) |

To show that this group is of type S let us consider the indicator function
¢(g) of the compact set

S={gl% <a<B, —A<ﬂ<A}.

The convolution of ¢(g) with ¢(g) with respect to right invariant measure », d(,
B) =dadpfjx is clearly a positive definite function. Introduce the normed positive

definite function p(g) = c%c(g), p(e) =1. For any fixed g it can be shown that

»(8)
p(9)—>1 when A— oo with B=0(4). This proves the assertion.
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Multiplying independent stochastic group elements.g;, gy, ... having the same
distribution P, we get the product y, =g, g, ... ¢, The Fourier transform of the
distribution of y, is then

¢"f=DIDT..DT}.

n times

If 2 is the group element with «=2, f=0 the Fourier transform of y,A" is
O, f(A=DIDT..DIT ")

=pDe (%) -‘-q)(;—n)/‘(l)-

If the mean value of D exists, the infinite product
= A
oN=Il¢ (57)
n=0 \

converges and @,f(1)—>® (4)f(A)=Pf(A). It is not difficult to show that ® is the
Fourier transform of a probability distribution Q. Hence the stochastic group ele-
ment y,h" converges distribution-wise.

While this example is very simple and can be treated by a direct method (see Part
4) it may give some hints of what ean be expected in more complicated situations.

6.4. In a quite general stochastic group we can obviously not have an analogue
of the law of large numbers. On the real line (or in B* or in a Banach space) the law
of large numbers tells us that (1/n)x, + (1/n)x, + -+ - +(1/n)x, converges in some
probabilistic sense. For a general group we do not necessarily have operations
corresponding to multiplications by the factor 1/#. In order to get any further in
this direction we must therefore assume that n-th roots are uniquely defined on G:
for any group element g there is one and only one element y such that y™ = ¢; we then
write y = g1'". Such groups are sometimes called divisible R-groups.

Then we can speak of the powers ¢g” where r is any rational number. Assuming that
g —e if r—0, we can extend the defnition to arbitrary exponents. We will therefore
start from the following

Assumption. To any real t and element g€ there is an element g*€G with the
following properties:

(i) " =e g =y,
(ii) ¢*is a continuous function of ¢ and ¢,

(i) gt =gg".
Our first task is to define in an adequate way the mean value of a probability
distribution over G. To do so let us note that for a fixed g and (#, U (g)) the operators

Vt=U(gt)’ — oo <f<oo,

form a continuous group of unitary transformations. According to a well-known
theorem of Stone, there then exists a resolution of the identity, B (1); — co <4 <o,
such that
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V= J ¢t AR, (4).

We can then write U(g")y =exp itH,,

where H, is the self-adjoint, possibly unbounded operator associated with the
spectral representation

Hg=f AdE,(A).

If 95, 95, ..., g, are stochastically independent elements from our group, let us form

the “average” y, =a"zy"...x/"; note that this “‘average” in general depends

upon the order of the g’s. The Fourier transform of y, is
Pn = E U(yn) = [E g (g)]n,

and we have to study its behavior for large values of n.
Heuristics. Since approximately

U (g)=1+ H (g),

we have EUY™ gy~ + % H,

where the new operator H is defined by

H=fGH(g)dP(9)-

As n tends to infinity we should then expect that
p,—>expiH,

and if there is an element p such that U{y)=exp¢H for all irreducible, unitary
representations, then y, converges in probability, to the fixed element y. This
leads us to define mean value as follows.-

Definition. Suppose that for €D, where D is everywhere dense in H, the operators
H(g) are defined and that

fJIH(g)zIIdP(g) < o0}
then the operator H= f H(g)dP (9)
¢

ts defined in D. If there exists an element §€G such that
U(g)=exptH
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for all unitary, irreducible representations {M, U(g)}, then § is said to be the mean
value of the stochastic group.

Because of the lack of commutativity we should not expect too much similarity
to the ordinary mean value operation. The following properties are easily proved
though.

(i) If P has all its mass in g,, then its mean value is g,.
(ii)) Let g be the element of a stochastic group; then

(iii) If the two operators H;= { H(g)d P;(g), ¢ =1, 2, are such that they com-
mute, have mean values g; and p, + p, =1, p, >0, then the mean value
of the distribution p, P; + p, P, is g7*¢%".

In the definition of mean value we could have used instead the defining relation
H (g) = H, which should be valid for any H (g) associated with an irreducible, unitary
representation.

To transform the above heuristic discussion into a theorem, one must impose some
conditions on the stochastic group. This is done below, but the author suspects that
the theorem holds in much greater generality than our very restrictive conditions
might lead one to believe. To remove these restrictions seems to be an important
task in future work on stochastic groups of this type.

Theorem. Let there be given an increasing sequence of subspaces D; < D, < Dy ... < H,
together forming an everywhere dense subset of H. Suppose that for z€D,, the element
H(g)H(g,) ... H(g,)z 1s defined and of a norm of the order O(ch,). Here ¢, is a constant
and the statement should hold for all positive and integral m and p.

The operator

H=LH(g)dP(g)

is then well defined in D,. Suppose that there is a group element § (which is
then the uniquely defined mean value of the stochastic qroup) such that U (§) =exp ¢ H.

Then the average
1/n

Y=

1/n

g7

1/n
2 .

g

converges wn probability to g.
The strong assumptions make the proof of this convergence quite easy for us.
Let z € D,; then writing

7: n
(pn—- (I+;H+An) 3

we have (pnz=(1+3H) 2+ 0n
n
n-1 P LMD
with < n SN o
leall< 3 (2) (1+5) s~

as n— oo, But
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i n . n n 1 1 . o0 (iH)Z’
I+-H)z= Hz+ — =G HY 2 z
( n ) expriE ZZO [(1’) n? pl] W H) 72:1 p!

and both the two sums have norms tending to zero. Hence
@nz—>expiHz

for 2’s forming an everywhere dense set in 3. But the operators ¢, and exp ¢ H are
of bounded norm (at most one), so that convergence holds throughout H. Now we
just have to appeal to (f) of 6.2 not forgetting, of course, that the group should be
of the type described in (f).

6.5. Let us return to our example. It is easy to verify that nth roots exist and
have the properties required. For an element g = («, 8) €EG we have g* = (a;, ;) with

t

oG =0
1-of
ﬂt_ﬂl~cx
#f a+1 and
OCr‘—l}
Bi=pt
if =1.

To determine the operators H (g) (see last section), we consider the group of
unitary representations, ¢ real,

U () f(A) =exp (A8 (1 —o)/(1 —a)) f (A o) a2,

To find the infinitesimal operator of this group, we study the above expression
for small values of ¢ and obtain

$H(g)f (A)= [uﬁ%ﬁ"gﬂ F(A)+Alog o f (A),

say for f€D = the set of all functions vanishing outside of finite intervals to-
gether with their derivative.
Let P be a probability measure over @ such that o and f are independent and

LlﬂldP(g) < oo, f6|10g x| dP(g) < oo.

J logxdP(g)=a
G

Introduce .
ogoc
S IP ()=
| %o
so that zf H(g)dP(g)=ibM+g—I+aMD,
[£3
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where M is the operator consisting of multiplication by 1 and D is the differ-
entiation operator. Then it is easily seen that

i[ Hwarg =it
if we choose y=(£,7) as

E=¢
ef—1
=b
n a
for a+=0 and as
E=1
n==a

for a=0. This element y is hence the mean value of G with respect to the
given distribution.

For this simple case we can verify directly that the average converges to the
mean value y. We have, putting y,= (¢, ™), 9, = (o, ).

a™ = (o, &g .. n)"
lm 1 1/n
— oy
=gl g, "
1- 1—a,
l/n
xAn 1/n 1/n Iin
+ [3" — o 0(2/ v On 1.

n

It is immediately clear that «™ — £=¢* in probability. Put

O
12 log o

m _ 1 v

b2 ngﬁvav_l

Of course, b§” —b in probability. But

1
exp (1/nlog a,) — 1 i log a,
B - b =3 4, —

xy

1
exp (1/nloga)—~1 — log «

so that E|6 b |<E|f|nE (@—1) —0

so that b{” —b in probability. To complete the argument, we split up the sum
defining ™ into many long blocks, such that the factors (a; a, ... &) are nearly
constant in each block, == exp (v/na), and apply the above to each block; this
proves the convergence statement.
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We have seen in Part 4 that for this particular group we also know that another
“average”, (g, ¢, ... ¢,)''"", converges distribution wise. The limit is not a constant
element but a non-degenerate distribution. This leads us further to ask if such a
convergence can be proved more generally, but the author has not succeeded in doing
this so far.

6.6, Let us study a limit problem with a different norming. If the mean value of
P is y, the “reduced’’ distribution ¢ = 1P + %ay_l has mean value zero. By £y We

mean the degenerate distribution assigning the probability 1 to the element p—1.
This follows from what was said in 6.4 and the fact that H, of course, commutes with
~H.

Let Ay, by, ..., b, be independent, stochastic group elements drawn from the
“reduced” distribution . Introduce the normed variable

P ALY YA SLED
We have a version of the central limit theorem.

Theorem. Assume the same conditions as in 6.4 and that there is a distribution 11
such that its Fourier transform

¢H=LU(g)dH (9)=exp — } H,,
where H,=| H*(9)d Q(9).
G

Then the distribution of 8, converges to Il as n tends to infinity.
The proof is carried out almost in the same way as for the previous theorem;
we now have the Fourier transform for the distribution of 4,

v H2 n
(B @y = (1- - +B.) .

and we get the desired result by expansion.

As an illustration we study what happens in our example. For simplicity let us
deal with the ease where « and § are independent and ES = 0. Then the mean value
y =e. Further let us put

E (log a)?=

Eg (lOg T) =¢< oo,
We have

—H*(g) | (A)= { g x loga+llogocD}{'

x loga
Ty

: }f W

(@, ) (A) + B (o, B) [ (A)+C (o, B) 7 (A)
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202
A 2+@l/3+

(x—1)" a—1

|

A (o, ) = (log &)* [—

i

with Y B, B) = (log 2" [2: le’f +2 A] ,

| C(a, B)=2%(log &)’

Hence —H2=—sz(g)dP(g)=AI+BD+OD2,
[e]
A=a, ) +a;A+a,
where B=0b,A*+b,4
O =c¢, 22
o=} E (log a)*
a,=i E (log o)® afl
2
_ 2 (_F
with t =~ B (log ) (oc— 1)
b,=2 E (log )
b2=2iE'(logoz)2a_1
¢, =E (log o)?
so that with our choice of constants
A=—cA*+1
B=24
c=1%

For a sufficiently well-behaved f(1) we put

t
0= exp (=5 ) 1
5o that we have the parabolic equation
of _,, €. 2 gy
R I LARR 1 AAE

The operator f(A)—f(4, 1) should be expressed in terms of the unitary representa-
tions to give the required limit distribution.
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However, in this simple case we know, with a minPr modi_fication of what was
done in Part 5, that the limit distribution of ¢gi* " g3/"™ ... ¢, ", t =v/n, is governed
by the equation

D

p

t

62
2o

-1

&* 0
2+l (o2 p)—1— = L
(o p) Czaﬂz(‘x ) 2805(“7)) s

it should be noted that the first order term corresponding to the infinitesimal mean
value does not vanish. Introduce the Fourier transforms

%=LU(g)dp(g, £,

which obviously form 'a semigroup with

pe—1

tim 222 )= [ 1 U @) 1 e @)

where ¢(g) is the probability measure with all its probability in the unit element
(1,0). But this reduces to the same second order differential operator as given above
for 6f/9¢. This verifies that the limit distribution is the one stated.
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