Quadratic set-valued functions

By Dagmar Renate Henney

A real-valued function $L(x)$ which is defined on a real linear space R will be called in accordance with S. Kurepa [2] a quadratic functional if

$$
L(x+y)+L(x-y)=2 L(x)+2 L(y)
$$

holds true for every pair x, y in R.
The main objective of this note will be to investigate cases in which for setvalued functionals the relation $M(t+s)+M(t-s)=2 M(t)+2 M(s)$ will be equivalent to $M(t)=t^{2} M(1)$ where t, s are any real numbers.

Let E^{n} denote an n-dimensional linear space, $A, B, C, M \ldots$ are subsets of E^{n}. By $A+B$ we denote the sumset of A and B, i.e. the set of all vectors $a+b$ with a in A and b in B. By $t M$ we denote the set of all $t m$ where m is in M.

We will now proceed to prove a theorem which is related to results obtained by H. Rådström [1]. The notion of continuity for set-valued functions will be used in the sense defined in that paper.

Theorem. Let $M(t)$ be a function which to each real number assigns a compact set in E^{n} in such a way that

$$
\begin{equation*}
M(t+s)+M(t-s)=2 M(t)+2 M(s) . \tag{1}
\end{equation*}
$$

If $M(t)$ is a continuous function of t, then the function $M(t)$ has the form $M(t)=t^{2} M(1)$.

If $M(t)$ in addition is assumed to be convex the converse is also true.
Proof. The sufficient condition will be proven by use of induction.
Let $s=t=0$ in $M(t+s)+M(t-s)=2 M(t)+2 M(s)$. It follows that $M(0)$ $+M(0)=2[M(0)+M(0)]$ which shows that $M(0)+M(0)$, being bounded, is equal to $\{0\}$. Hence $\boldsymbol{M}(0)=\{0\}$.

Next let $s=0$. Then $M(t)+M(t)=2 M(t)$ which shows that $M(t)$ is convex since it is closed.

The relation $M(n t)=n^{2} M(t)$ is therefore true for $n=0$ and is trivially true for $n=1$. Assume now that $M(n t)=n^{2} M(t)$ holds for all $n \leqslant m$. We will show that the relation holds also for $n=m+1$. We make use of the fact that if M is any convex set in a lipear space R and α, β are non-negative real numbers then

$$
(\alpha+\beta) M=\alpha M+\beta M
$$

Lat twin (1): then $M[(m+1) s] ; M|(m-1) \times| \cdots M(m s)+2 M(s)$. This An: $M \mid(m-1) s] \cdots\left[2 m^{2}+2 \cdots(m-1)^{2}\right] M(. s) \cdots(m \cdots 1)^{2} M(s)$. Therefore $M(n t)$
 \therefore nitain $M(t) \cdots n^{2} M(t i n)$. Thus

$$
M[(n / m) t]=n^{2} M(1, m)=(n m)^{2} M(t) .
$$

Since, an we shall see below, $M(t)=M(-t)$ it follows that for every real number t and for every rational mumber r

$$
M(r f)-r^{2} M(l)
$$

Wan $M(y)-y^{2} M(1)$ for any real number ! Since $M(t)$ is a continuous func(i,n by hypotheses then $r_{n \rightarrow!} \rightarrow$ and

$$
M(!)=\lim M\left(r_{n}\right)=\lim r_{n}^{2} M(1)=y^{2} M(1)
$$

Wi. prove $M(s)=M(-s)$ by putting $t=0$ in (1). Then $M(s)+M(-s)=2 M(s)$. Huw the left member does not change if s is replaced by $-s$. Therefore the sufficioucy of the theorem is proven.

For the converse, assume $M(t)=t^{2} M$ wher M is convex. Then

$$
\begin{aligned}
M(t-s)+M(t-s) & =(t+s)^{2} M-(t \cdots-s)^{2} M \\
& =\left[(t+s)^{2}+(t-s)^{2}\right] M \\
& =\left(2 t^{2}+2 s^{2}\right) 3-2 M(t)+2 M(s) \quad \text { Q.E.D. }
\end{aligned}
$$

REFERENCES

1. H. Rädström, One-parameter semigroups of subsets of a real linear space.
\because S. Kurepa, On the functional equation $f(x+y) \cdot f(x) /(y) \cdot g(x) g(y)$.
