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Ona maximizing problem with several applications

in statistical theory

By Carr-ERIK SARNDAL

SUMMARY

For a certain distribution, the three problems of determining

(i) optimum spacings of observations in linear estimation of location and scale parameters
(ii) optimum strata limits in proportionate sampling
(iii) optimum interval boundaries in grouping a sample

are closely related to each other.

In section two of this paper, two basic lemmas are stated. Applied to problem (i) above,
these lemmas enable us to make conclusions about the rate at which the efficiency of linear
estimates increases with the number of observations used to form the estimate. Similarly, in
problem (ii), statements can be made concerning the gain in accuracy due to increasing the
number of strata.

Furthermore, the laborious procedure of calculating the optimum solutions of the above
mentioned problems is replaced by a simplified approximation technique which will cause
negligible loss of accuracy.

2. Two lemmas

Let H,(A), (r=1, 2), be real-valued functions, defined for 0<A<1, and form
the sums
“OH, () — He (A-2)] [Hy (&) — H, (Ai1)]

Krs (A'l; ey z'lc) = igl }' —}-i~1

s (T, s=1, 2): (1)

where 0= <A < - <A <Ar1=1
Two groups of conditions are imposed upon H, (1), (r=1, 2), and its deri-
vatives.

Al. The functions H,(A), (r=1, 2), are continuous for 0 <A<1 and tend to
zero as A—0 and A->1.

A2. The derivatives HY (A), (r=1, 2), of order 1, ..., 5 are continuous and
limited for 0<A<1.

A3. The integrals

1
e,s=f H; (t) Hy (t)d¢t, (r, s=1,2), 2)
0
exist and e;; e,y — €32 > 0.
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Ad4. ey [Hy (WP —2e, Hi' (A) Hy (A)+ ey [Hy ()P0
for all 4; 0<A<1.
A5. The integral

1
c= fo {eu [H;/ (t)]2 —2e, HY ®) Hy (8) +en [H{/ (t)]z}i di 3)

exists.

In the second group of conditions, the subscript r can take on either of the
values 1 and 2.

Bl. The function H, (A) is continuous for 0 <A< 1 and tends to zero as -0
and A->1.

B2. The derivatives H7 (1) or order 1, ..., 5 are continuous and limited for
O0<i<l.

B3. The integral
1
e,,=f (H, ()] dt
0

exists and e,,>0.
B4. H; (A)+0 for all 4; 0<i<1.
B5. The integral

1
¢ = f (H, (1))t dt 4)
0
exists.
Also, define
7
E+1

;= (2=0,1, ... k, k+1). (5)

We can now state the two lemmas (although the proofs are omitted here).

Lemma 1. If conditions A1-A5 ave fulfilled, then the determinant

K ()= [
attains a maximum for
A=Qm)+0(k+1)2 (i=1,..,k), (6)
where m; is defined by (5) and
Q=M

ts the inverse function of

]- ” 7 7 r2 4
M (y)= Efo {en [Hs ()1 — 2 ey, HY (¢) Hy' (8) + e [Hy (t)]2}§ dt,
where ¢ is given by (3).
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Furthermore, the mazimum value of K is

3
Kmax:en 822—3122“m€ﬁ)‘§+0(]€+1)_2. (7)
The value taken by K for

j'i=Q(7.[i)a (’L:l’ ey k): (8)

can also be written in the form (7).

Lemma 2. If conditions B1-B5 with r=1 or 2 are fulfilled, then the sum K,
(r=1 or 2), altains a maximum for

A=Q () +0(k+1)3 (i=1, ...,k r=1o0r2), 9)
where 7; is defined by (5) and

Q) =M;"(y)
is the inverse funclion of

1 v 154
M, ()= fo = (]} de,

where ¢, is given by (4).
The maximum value of K,, is

c

e -2 10
K.: max=¢ 12 (k+ 1)2+0 (k+1) (10)

The value of K,, for
}'ifo(ni)) (i=1’ ...,k;r==lor 2)’ (11)

can also be expressed in the form (10).

3. Optimum spacing in linear estimation
A large sample of n observations from a population with a continuous cdf
of type F[(z—a;)/x,] is available. The unknown parameters e, and o, are to
be estimated by linear estimates using only % out of the n observations namely
2y <Znyy < vvr < Zgugy. (12)
These are to be optimally selected. If x=(z—a,)/a, we have
Ezxpy=x,+0(n"}),
where ;=G (1), A=n/(n+1), and G (x)=F ' (x) is the inverse of F.
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Also define
H, (A)=1GA)]

(13)
H, (D) =G @) [¢ @A),
where f(x)=1F'(x) is the density function.

The general form of linear unbiased estimates o} and a3, based on the k
sample quantiles (12), was given by Ogawa [1]. We are now going to investigate
the asymptotic efficiencies of these estimates. Let K, and e, (r,s=1, 2), be
defined by (1) and (2), respectively, with H,(4), (r=1, 2), given by (13). Three
cases are distinguished.

Case 1. Both «; and «, unknown.
The joint asymptotic efficiency of ay and o is

E,= Ky Ky~ K%2_

— 3
€11 €22 — €12

The quantities 4; which maximize E,, will be called the joint optimum spacings
for o, and a,, and the corresponding estimates will be termed the joint optimum
linear estimates (JOLE) of &, and «,. By application of lemma 1, we have

Theorem 1. If H,(4), (r=1, 2), fulfills conditions A1-A5, then the joint optimum
spacings for o, and o, are given by (6), and the joint asymptotic efficiency of the
JOLE of ay and o, is

1 C o(k+1)?
(B+1)% ey epp— el .

E,=1-—
12 12
Cases 2a and 2b. Only one of the two parameters «,, (r=1 or 2), is un-
known; the remaining one is known.
The asymptotic efficiency of af, (r=1 or 2), is then

E,=I&', (r=1 or 2).
€y

The quantities A, which maximize E, will be called the optimum spacings for
o,, and the corresponding estimate will be calied the opfimum linear estimate
{OLE) of «,. From lemma 2 we conclude

Theorem 2. If H,(A), (r=1 or 2), fulfills conditions B1-B5, then the optimum
spacings for «, are given by (9) and the asymptotic efficiency of the OLE of «, is

3
! @ Lo(k+1) (r=1 or 2).

=1 ——_
E, 12(k+1)7 e,

Under conditions, slightly more rigorous than those needed in proving lemmas 1
and 2, one can also state
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Theorem 3. In order to obtain an asymptotically efficient estimate of ay (o
known) or a, (o known), or joint asymplotically efficient estimates of x, and oy,
it is sufficient to ubilize only k=k (n) out of the n observations available, where,
as n—>co, k(n)—>oo in the weakest possible way. (This means that, when n— oo,
the relative number of observations k(n)/n—0.)

For small values of k, optimum spacings were laboriously calculated by
Ogawa [2] and Sarhan, Greenberg and Ogawa [3] in the following estimation
cases :

(a) normal distribution, «; unknown, «, known,
(b) normal distribution, &, unknown, &, known,
(c) exponential distribution, «, unknown, o«; known.

A simplified method will be described here. Comparison of formulas (9) and
(11) suggests that an estimate which may be termed the nearly optimum linear
estimate (NOLE) of «, can be based on the spacings (11). These latter will be
called the nearly optimum spacings for «,. Likewise, the nearly joint optimum
estimates (NJOLE) of «;, and «, will be defined as the estimates which are
based on the nearly joint optimum spacings (8). (Asymptotically, the efficiencies
of the NJOLE and the NOLE behave according to the formulas of Theorems 1
and 2, respectively.)

To illustrate the advantage of the NOLE, we choose the estimation cases (a)
and (c) mentioned above. In fact, the nearly optimum spacings are:

case (a):

A=¢V3-¢7 @), (=1, ..., k),

|
where ()= f ——=c "2dt
¢ — V27
and ¢! its inverse;
case (c): A=1-(-m)P (@E=1,..,k),
where 7; is defined by (5).
The easily calculated nearly optimum spacings yield estimates slightly less

efficient than the OLE’s, a fact which is illustrated by Table 1. (The effi-
ciencies of the OLE are taken from [2] and [3].)

Table 1. Asymptotic efficiency of the OLE as compared to the NOLE.

Asymptotic efficiency

Estimation case k=5 k=10

OLE NOLE OLE NOLE

Normal, o; {ot; known) 0.9420 0.9387 0.9808 0.9800
Exponential, a, («; known) 0.9476 0.9448 0.9832 0.9826
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Still better results can be obtained, if we change the definition of the quantities
7, into

P—a

- I 14
k-a-b+1’ (14)

T
where the constants @ and b can be properly chosen in each estimation case.

4. Optimum stratification in proportionate sampling

Consider a population with the frequency function f(x), defined over the
interval A <2< B. The mean of z,

m=f3tf(t)dt,
A

is assumed to exist. The population is to be stratified into (k- 1) strata by
means of the points

A=zy<z, < < <2xn=B.

If proportionate allocation is used, and we omit the finite population cor-
rection factor, then the variance of the usual estimate

k+1
= 2 VX
i=1
can be written

B
va 1| [ e-mrrode- Ky ),

where 7 is the sample size and K, is given by (1) with

G

Hl(].)=f tf(E)dt—m A

A

Compared to the spacing problem dealt with in the preceding section, the
problem of this section is much simpler to handle. To meet conditions Bl,
B3 and B4, we need only presuppose that f(xz) is continuous and limited for
A<z<B, and that the variance of x exists. Under these assumptions we have

Theorem 4. If conditions B2 and B5 are fulfilled, then the minimum variance
of & is
1 et 2
Y I 1
V (€)min n[12(k+1)2+0(k+ ) ],
the optimum stratification points being
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7 =G (4), (15)
where 1, is given by (9).

For certain distributions and for small values of &, Dalenius [4] and Zindler [5]
have calculated optimum stratification points. One attempt to get reasonable
approximations was briefly outlined by Ekman [6].

Here we define nearly optimum stratification points according to (15) with
A; given by (11). For the population f(x)=e*, table 2 gives a comparison
between optimum and nearly optimum stratification points. These latter are
given by

and we have chosen to define n; according to (14) with =0, b= —0.5, cor-
rections which are appropriate in this case. (The resulting stratification points
may suitably be termed a, b-corrected nearly optimum.)

Table 2. Optimum and a, b-corrected nearly optimum stratification points for
f(x)=e"" and the corresponding variances.

Points of stratification
Number

of strata 2, @ 2z n V(@)
Optimum 1.594 0.3524

2 a, b-corrected
-nearly optimum 1.533 0.3530
Optimum 1.018 2.611 0.1797

3 a, b-corrected
nearly optimum 1.009 2.542 0.1800
Optimum 0.754 1.772 3.365 0.1090

4 a, b-corrected
nearly optimum 0.754 1.763 3.296 0.1091

Sometimes the spacing problem of section 3 and the stratification problem
of this section yield the same optimum solutions 4; (and also the same nearly
optimum solutions). These cases can be summarized as follows:

Distribution Spacing problem which is equivalent to the
stratification problem
1 —1{(e—-
Normal: o FUET et Estimation of «,; o, known
a,V2m
Gamma: T )[(z—ml)/mz]p_1 ¢ [Email Estimation of a,; o, known.
oaz I'(p

391



C.-E. SARNDAL, On a maximizing problem with several applications

5. Determination of optimum interval limits in grouping

Here the problem is to group a sample from a certain distribution by means
of optimally determined group limits.

Suppose first that the grouped sample is used for estimation purposes. Kull-
dorff [7], 8], [9], investigated the maximum likelihood estimates of o, (&, known)
and o, (e¢; known) in the normal distribution and of «, (¢, known) in the exponential
distribution. In these cases, the asymptotic efficiencies of the maximum likelihood
estimates are identical with the quantities E, for the corresponding spacing
problem. Therefore, nearly optimum group limits can be derived by use of the
technique described in section 3.

Cox [10], using a different approach, assumed that the grouping is done merely
for convenience of exposition. By means of a quadratic loss function, the total
loss of information due to grouping can be expressed. The problem of mini-
mizing this loss can be directly transferred into the stratification problem of
section 4, and the approximation technique used there can be applied for
determining nearly optimum group limits.

6. Remarks

A detailed discussion of the results given in this paper will be presented sub-
sequently. Special emphasis will be put on the spacing problem, and attention
will also be paid to those frequently occurring estimation cases, where one or
more of the conditions imposed in section 2 fail to be fulfilled.

This work was sponsored by the U.S. Army Research Office.
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