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S U M M A R Y  

For a certain distribution, the three problems of determining 

(i) optimum spacings of observations in linear estimation of location and scale p~rameters 
(ii) optimum strata limits in proportionate sampling 
(iii) optimum interval boundaries in grouping a sample 

are closely related to each other. 

In section two of this paper, two basic lemmas are stated. Applied to problem (i) above, 
these lemmas enable us to make conclusions about the rate at which the efficiency of linear 
estimates increases with the number of observations used to form the estimate. Similarly, in 
problem (ii), statements can be made concerning the gain in accuracy due to increasing the 
number of strata. 

Furthermore, the laborious procedure of calculating the optimum solutions of the above 
mentioned problems is replaced by a simplified approximation technique which will cause 
negligible loss of accuracy. 

2. T w o  l e m m a s  

L e t  Hr  (2), (r = 1, 2), be r ea l -va lued  funct ions ,  def ined  for  0 ~ 2 ~ 1, and  f o r m  
t h e  sums 

k+l [H,  (2,) - H ,  (2,_1)] [H,  (2,) - H ,  (25-1)] 
K, (21, ..., 2~)-- Y~ ~=x ~ - ~ - 1  , (r, s =  1, 2), (1) 

where  0 = 2 0 < 2 1 <  "'" < 2 k < 2 ~ + ,  = 1. 
T w o  groups  of condi t ions  are  imposed  u p o n  Hr  (2), (r = 1, 2), and  i ts  deri-  

va t ives .  
A1. The  func t ions  Hr  (2), ( r =  1, 2), a re  con t inuous  for  0 ~<2-~< 1 and  tend  to  

zero as 2 - + 0  and  2->1.  
A2. The  de r iva t i ve s  H v (2), ( r =  1, 2), of o rder  1 . . . . .  5 a re  con t inuous  a n d  

l im i t ed  for  0 < 2 < 1. 
A3. T h e  in tegra l s  

f l H '  e~ = H ; (  0 s ( 0 d t ,  (r, s ; 1 ,  2), (2) 
o 

ex is t  and  e n e29. - e~2 > 0. 
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A4. e~x [H~' (2)] 2 - 2 el~ ' HI" (2) H~' (2) + e~ [H~" (2)3 2 =P 0 

for all 2; 0 < 2 < 1 .  

A5. The integral 

c = f~  {exl [H~' (t)] * - 2 el, H i '  (t) H~' (t) + e~ [Hi '  (t)]2} } d t (3) 

exists. 
I n  the  second group of conditions, the subscript  r can take  on either of the 

values 1 and 2. 
B1. The function H ,  (2) is  continuous for 0~<2~< 1 and tends to zero as 2-->0 

and 2--> 1. 
B2. The derivat ives H~ (2) or order 1 . . . .  , 5  are continuous and l imited for  

0 < 2 < 1 .  
]33. The integral 

e .  = jo" [H~ (0] 2 d t 

exists and err > O. 

B4. H ~ ' ( 2 ) # 0  for all 2; 0 < 2 < 1 .  
]35. The integral 

c~ = I ~ [Hr '  (t)]t dt (4) 
Jo  

exists. 
Also, define 

i 
z r ~ - k +  1, ( i = 0 ,  1 . . . .  k , k + l ) .  (5) 

We can now state  the two lemmas (although the proofs are omit ted  here). 

b m m a  1. I /  conditions A1-A5  are /ul/illed, then the determinant 

= Kl l  K12 
K (21 . . . . .  2k) /~21 K22 

attains a maximum /or 

2 , = Q ( e r , ) + O ( k + I )  2, ( i = l ,  . . . , k ) ,  (6) 

where ~ is defined by (5) and 

Q (y) = M -1 (y) 

is the inverse /unction o/ 

1 ( ~ [ 2 ( t )]~-2el2H1 (t)H~ M (Y)=c,3o (ell H . . . . . .  (t)-4-e2~[H'l" (t)]~}t dt, 

where c is given by (3). 
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Furthermore, the max imum value o/ K is 

Kraax ~ e l l  e22 -- e122 -- 
c 3 

12 (k + I) ~ 

The value taken by K /or 

+ o (k + 1) -~. (7) 

~, = Q ( ~ ) ,  (i = 1 . . . . .  k),  (8) 

can also be written in the /orm (7). 

Lemma 2. I /  conditions B 1 - B 5  with r =  1 or 2 are /ul/illed, then the sum K , ,  
( r =  1 or 2), attains a max imum /or 

2 , = Q , ( ~ ) + 0 ( k + l )  -a, ( i = 1  . . . . .  k ; r = l  or2) ,  (9) 

where ze~ is defined by (5) and 

is the inverse /unction o/ 

Qr (y) = M ;  1 (y) 

M~(y) = 1  f~  [H'r' (t)]' dt ,  

where Cr is given by (4). 
The max imum value o/ Krr is 

grr, max : err 

The value o/ Kr,  /or 

d 
1,~+) o (k + 1) -2. (10) 

12 (k + 

2~ = Qr (rot), (i = 1 . . . . .  k; r -~ 1 or 2), 

can also be expressed in the form (10). 

( l l )  

3. Opt imum spacing in l inear es t imat ion  

A large sample of n observations from a population with a continuous c d f  
of type F [ ( z -  ~l) / :q]  is available. The unknown parameters ~1 and ~ are to 
be est imated by  linear estimates using only k out  of the n observation~ namely 

z(~0 <z(~,) < ... <z(~). (12) 

These are to be optimally selected. I f  x = ( z -~ l ) / a2 ,  we have 

E x(.,) = x~ + 0 (n- t), 

where x~=G(2~), 2~=n~//(n+l) ,  and G ( x ) = F - l ( x )  is the inverse of F.  
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Also define 

HI (4) = / [G (~)], 

H~ (4) = G (4) / [G (4)], 
(13) 

where / ( x ) =  F '  (x) is the density function. 
The general form of linear unbiased estimates al and a2, based on the k 

sample quantiles (12), was given by 0gawa [1]. We are now going to investigate 
the asymptotic efficiencies of these estimates. Let Kr~ and er~, (r, s =  1, 2), be 
defined by  (1) and (2), respectively, with Hr (2), (r= 1, 2), given by  (13). Three 
cases are distinguished. 

Case 1. B o t h  0~ 1 and c~ 2 unknown. 
The joint asymptotic efficiency of a~ and ~ is 

K11K2~. - K122 
E12 

e l l  e22 - e122 �9 

The quantities ~. which maximize El2 will be called the joint optimum spacings 
for ~1 and ~2, and the corresponding estimates will be termed the joint optimum 
linear estimates (JOLE) of ~1 and ~2. By application of lemma 1, we have 

Theorem 1. I] Hr (2), (r = 1, 2),/ul/ills conditions A1-A5, then the joint optimum 
spacings /or ~1 and o~ are given by (6), and the joint asymptotic e//iciency o/the 
JOLE o/ o~ 1 and o~ 2 is 

1 c 3 

EI~=I 12(k+ 1)~ elt %2_ e~ + ~ (k+  1) -~" 

Cases 2 a  and 2b. 0nly  one of the two parameters at, ( r=  1 or 2), is un- 
known; the remaining one is known. 

The asymptotic efficiency of a*, (r= 1 or 2), is then 

Er =Kr-~, (r= l or 2). 
err 

The quantities )~ which maximize Er will be called the optimum spacings for 
~r, and the corresponding estimate will be called the optimum linear estimate 
(OLE) of ~T- From lemma 2 we conclude 

Theorem 2. I /  Hr (~t), (r = 1 or 2), /ullills conditions B1-B5, then the optimum 
spacings /or o~ r are given by (9) and the asymptotic e//iciency o/ the OLE o/ar is 

E r = l  1 c~ ~_o(k+l)_2, ( r = l  or 2). 
12 (k + 1) 2 err 

Under conditions, slightly more rigorous than those needed in proving lemmas 1 
and 2, one can also state 
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Theorem 3. In  order to obtain an asymptotically e/ficient estimate o/ ~1 (~2 
known) or 0% (~I known), or joint asymptotically e/]icient estimates o] ~1 and ~ ,  
it is su]/icient to utilize only k = k (n) out o/ the n observations available, where, 
as n--->oo, k(n)->oo in the weakest possible way. (This means that, when n-->oo, 
the relative number o[ observations k (n)/n-->O.) 

For small values of k, optimum spacings were laboriously calculated by 
Ogawa [2] and Sarhan, Greenberg and Ogawa [3] in the following estimation 
cases : 

(a) normal distribution, a 1 unknown, ~2 known, 
(b) normal distribution, ~2 unknown, ~1 known, 
(c) exponential distribution, g2 unknown, a 1 known. 

A simplified method will be described here. Comparison of formulas (9) and 
(11) suggests that  an estimate which may  be termed the nearly optimum linear 
estimate (NOLE) of ar can be based on the spacings (11). These latter will be 
called the nearly optimum spacings for at. Likewise, the nearly joint optimum 
estimates (NJOLE) of a 1 and a 2 will be defined as the estimates which are 
based on the nearly joint optimum spacings (8). (Asymptotically, the efficiencies 
of the NJOLE and the NOLE behave according to the formulas of Theorems 1 
and 2, respectively.) 

To illustrate the advantage of the NOLE, we choose the estimation cases (a) 
and (c) mentioned above. In  fact, the nearly optimum spacings are: 

case (a): 

; t ,=r162 ( i=1  . . . .  , k), 

where 

and r its inverse; 

(x) = ( : ~  e-t'/2dt 
J _ ~  V2 :~ 

case (c): A~ = 1 - (1 -n~) a, (i = 1, . . . ,  k), 

where g~ is defined by (5). 
The easily calculated nearly optimum spacings yield estimates slightly less 

efficient than the OLE's, a fact which is illustrated by Table 1. (The effi- 
eiencies of the OLE are taken from [2] and [3].) 

Table 1. Asymptotic efficiency of the OLE as compared to the NOLE. 

Estimation case 

Asymptotic efficiency 

k = 5  k=10  

OLE NOLE OLE NOLE 

Normal, ~i (~2 known) ] 0.9420 0.9387 0.9808 0.9800 

t 

Exponential, a~ (al known) [ 0.9476 0.9448 0.9832 0.9826 
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Still better results can be obtained, if we change the definition of the quantities 
~ into 

i - a  
~ =  k - a - b +  1' (14) 

where the constants a and b can be properly chosen in each estimation case. 

4. Optimum stratification in proportionate sampling 

Consider a population with the frequency function /(x), defined over the 
interval A < x ~< B. The mean of x, 

m = f ~ t / ( t ) d t ,  

is assumed to exist. 
means of the points 

The population is to be stratified into ( k + l )  strata by 

A =xo < xl < . . .  <Xk<Xk+I=B. 

I f  proportionate allocation is used, and we omit the finite population cor- 
rection factor, then the variance of the usual estimate 

can be written 

k + l  

~ =  ~ P~ ~ 
~=1 

v (~) = ~ . . . .  

where n is the sample size and Kli  is given by  (1) with 

H I (2) = t / (t) d t - m 2. 

Compared to the spacing problem dealt with in the preceding section, the 
problem of this section is much simpler to handle. To meet conditions B1, 
B3 and B4, we need only presuppose that  /(x) is continuous and limited for 
A ~< x ~< B, and tha t  the variance of x exists. Under these assumptions we have 

Theorem 4. 
o~ �9 is 

I /  conditions B2 and B5 are /ul/illed, then the minimum variance 

V ( ~ ) ~  = 1 [12 ( - - ~  1)~ + o (k + 1)-2], 

the optimum strati/ication points being 
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where 2~ is given by (9). 

x, = a (~t~), (15) 

F o r  cer ta in  d is t r ibut ions  and for small  values of k, Dalenius  [4] and  Zindler  [5] 
have ca lcula ted  op t imum s t ra t i f ica t ion  points .  One a t t e m p t  to  get  reasonable 
approx ima t ions  was br ief ly  out l ined b y  E k m a n  [6]�9 

Here  we define nea r ly  op t imum s t ra t i f ica t ion  poin ts  according to  (15) wi th  
hi given b y  (11). Fo r  the  popula t ion  / ( x )= e  -~, tab le  2 gives a comparison 
between op t imum and near ly  op t imum s t ra t i f ica t ion  points.  These l a t t e r  are 
g iven b y  

1 
x~ = 3 log 1 - ~ '  

and  we have chosen to  define g~ according to  (14) wi th  a=O, b = - 0 . 5 ,  cor- 
rections which are appropr ia t e  in this  case. (The result ing s t ra t i f ica t ion  points  
m a y  su i tab ly  be t e rmed  a, b-corrected nea r ly  optimum�9 

Table 2. Opt imum and a, b-corrected near ly  op t imum s t ra t i f ica t ion points  for 
/(x) =e -~ and the  corresponding variances.  

Number 
of strata 

O p t i m u m  

a,  b - c o r r e c t e d  
�9 n e a r l y  o p t i m u m  

X 1 

1�9 

1.533 

Optimum 1.018 
a, b-corrected 

nearly optimum 1.009 

Optimum 0�9 
a, b-corrected 

nearly optimum 0�9 

Points of stratification 

X2 ~3 

2.611 

2.542 

1.772 3.365 

1.763 3.296 

n v (~) 

0�9 

0�9 

0�9 

0.1800 

0.1090 

0.1091 

Sometimes the  spacing problem of sect ion 3 and the s t ra t i f ica t ion  problem 
of this  section y ie ld  the  same op t imum solutions 2~ (and also the  same near ly  
op t imum solutions)�9 These cases can be summarized  as follows: 

Distribution 

1 
Normal: ~ e -�89 {(z-~,)/~,]l 

~2 V2 

Spacing problem which is equivalent to the 
stratification problem 

Estimation of ~1; c% known 

G a m m a :  - -  
1 

~ F ( p )  
[(Z -- ~1)/0~2] p - 1  e -[< . . . .  )]g,] Estimation of ~2; ~ known�9 
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5. Determination of optimum interval limits in grouping 

Here the problem is to group a sample from a certain distribution by means 
o f  optimally determined group limits. 

Suppose first that  the grouped sample is used for estimation purposes. Kull- 
dorff [7], [8], [9], investigated the maximum likelihood estimates of al (:r known) 
and a2 (al known) in the normal distribution and of as (~1 known) in the exponential 
distribution. In  these cases, the asymptotic efficiencies of the maximum likelihood 
estimates are identical with the quantities E~ for the corresponding spacing 
problem. Therefore, nearly optimum group limits can be derived by use of the 
technique described in section 3. 

Cox [10], using a different approach, assumed that  the grouping is done merely 
for convenience of exposition. By means of a quadratic loss function, the total  
loss of information due to grouping can be expressed. The problem of mini- 
mizing this loss can be directly transferred into the stratification problem of 
section 4, and the approximation technique used there can be applied for 
determining nearly optimum group limits. 

6. Remarks 

A detailed discussion of the results given in this paper will be presented sub- 
sequently. Special emphasis will be put on the spacing problem, and attention 
will also be paid to those frequently occurring estimation cases, where one or 
more of the conditions imposed in section 2 fail to be fulfilled. 

This work was sponsored by the U.S. Army Research Office. 
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