On a property of the minimal universal exponent, $\lambda(x)$

By Hans Riesel

The purpose of this note is to answer the following question: For which numbers x does $\lambda(x)$ divide the given number k ? The answer is: For all divisors x of a certain number X, which will be constructed in the note.

In constructing X one uses the following
Theorem. All "quadratfrei" solutions q of the equation

$$
\begin{equation*}
\lambda(q) \mid k \quad(\lambda(q) \text { divides } k) \tag{1}
\end{equation*}
$$

are the divisors of the denominator Q of the Bernoullian number B_{k}, given in its lowest terms.

The first step will be to prove the theorem. To begin with, the definition of $\lambda(n)$ and of the Bernoullian numbers B_{k} will be recalled, $\lambda(n)$ being the so-called minimal universal exponent, i.e. the least positive exponent λ, for which the congruence $a^{\lambda} \equiv 1(\bmod n)$ holds for all a for which the g.c.d. (a, n) of a and n equals 1. As is well known, $\lambda(n)$ is calculated in the following manner: Let $\varphi(n)$ denote Euler's φ-function

$$
\varphi(n)=n \prod_{i}\left(1-\frac{1}{p_{i}}\right) \quad \text { if } \quad n=\prod_{i} p_{i}^{\alpha_{i}}
$$

where all p_{i} are different primes. Furthermore, let $\lambda\left(p_{i}^{\alpha_{i}}\right)=r_{i} \varphi\left(p_{i}^{\alpha_{i}}\right)$. Here, $r_{i}=\frac{1}{2}$, if $p_{i}=2$ and $\alpha_{i} \geqslant 3$, otherwise $r_{i}=1$. Then

$$
\lambda(n)=\left[\lambda\left(p_{i}^{\alpha_{i}}\right)\right]_{i}
$$

(the l.c.m. of all numbers $\lambda\left(p_{i}^{\alpha_{i}}\right)$), which may be written

$$
\begin{equation*}
\lambda(n)=\left[r_{i} \varphi\left(p_{i}^{\alpha_{i}}\right)\right]_{i}=\left[r_{i} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right)\right]_{i} . \tag{2}
\end{equation*}
$$

From (2), it immediately follows that

$$
\begin{equation*}
\lambda(d) \mid \lambda(n) \quad \text { if } \quad d \mid n \tag{3}
\end{equation*}
$$

The Bernoullian numbers B_{k} are defined by the equation

$$
\frac{x}{e^{x}-1}=\sum_{m=0}^{\infty} \frac{x^{m}}{m!} B_{m},
$$

which gives
hans riesel, On a property of the minimal universal exponent, $\lambda(x)$

$$
\begin{aligned}
& B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{4}=-\frac{1}{30} \\
& B_{6}=\frac{1}{42}, B_{8}=-\frac{1}{30}, B_{10}=\frac{5}{66}, B_{12}=-\frac{691}{2730}, \ldots \\
& B_{3}=B_{5}=B_{7}=\ldots=0
\end{aligned}
$$

The proof of the theorem proceeds as follows: If q is "quadratfrei" $q=\prod_{i} p_{i}$, and

$$
\lambda(q)=\left[p_{i}-1\right]_{i},
$$

which divides k if and only if $\left(p_{i}-1\right) \mid k$ for all i. The greatest "quadratfrei" solution Q is thus obtained as the product of all primes p_{i} for which $\left(p_{i}-1\right) \mid k$. According to (3) and because of the fact that every factor of a "quadratfrei" number Q is a "quadratfrei" number, it is clear that all "quadratfrei" solutions of (1) are the divisors of Q.

Now from the theorem by von Staudt and Clausen:

$$
B_{k} \equiv-\sum_{i} \frac{1}{p_{i}}(\bmod 1)
$$

where the summation is extended over all primes p_{i} such that $\left(p_{i}-1\right) \mid k$, it follows that the denominator of B_{k}, given in its lowest terms, is the above number Q. This proves the theorem.

Example. $k=10$ gives $\left(p_{i}-1\right) \mid k$, if $p_{i}=2,3$ or 11. $Q=\prod p_{i}=2 \cdot 3 \cdot 11=66$. $B_{10}=\frac{5}{66}$. The "quadratfrei" solutions of $\lambda(q) \mid 10$ are the 8 divisors of 66 , for which one has

$$
\begin{aligned}
& \lambda(1)=1, \lambda(2)=1, \lambda(3)=2, \lambda(6)=2, \\
& \lambda(11)=10, \lambda(22)=10, \lambda(33)=10, \lambda(66)=10 .
\end{aligned}
$$

For odd numbers $k,\left(p_{i}-1\right) \mid k$ if and only if $p_{i}=2$. In this case $Q=2$, and the solutions $q=1$ and $q=2$ alone exist. Thus in this connection all Bernoullian numbers with odd indices $>1, B_{3}=B_{5}=\ldots=0$ should be provided with the denominator 2, as is already the case with $B_{1}=-\frac{1}{2}$. However, because of the simple nature of this special case we do not want to introduce such a convention.

It is, however, possible to get not only all "quadratfrei" solutions q to (1), but all solutions x. One must first determine the number Q and then examine for each prime p_{i} in Q which is the greatest exponent α_{i}, such that

$$
\lambda\left(p_{i}^{a_{i}}\right) \mid k
$$

The number X will be obtained as $\Pi p_{i}^{\alpha_{i}}$. According to (3), as before, all divisors x of X will be the solutions of

$$
\lambda(x) \mid k
$$

Example. $k=2 \cdot 3^{3} \cdot 19, Q=2 \cdot 3 \cdot 7 \cdot 19$

$$
\begin{aligned}
& \lambda\left(2^{\alpha}\right) \mid k \text { gives } \alpha \leqslant 3, \\
& \lambda\left(3^{\alpha}\right) \mid k \text { gives } \alpha \leqslant 4, \\
& \lambda\left(7^{\alpha}\right) \mid k \text { gives } \alpha \leqslant 1, \\
& \lambda\left(19^{\alpha}\right) \mid k \text { gives } \alpha \leqslant 2,
\end{aligned}
$$

which gives $X=2^{3} \cdot 3^{4} \cdot 7 \cdot 19^{2}$.
The formula for constructing X might also be written

$$
X=2 Q \cdot \max _{n}\left(Q^{n}, k\right)
$$

