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A t h e o r e m  o n  duality mappings  in Banach  spaces  

By ARNE BEURLING and A. E. LIVINGSTON 

l .  Introduction 

The problem considered in this paper originates in the theory of Fourier 
series of functions belonging to a Lebesgue space L ~, where L p denotes the 
space of measurable functions with period 2 g  and with norm 

2 ~  

II/11. = { f I /(~)I" d ~}". 
0 

For the Fourier coefficients of ], we shall use the notation 

2yg 

if c,, (t) = ~ e-'"" I (x) 
0 

dx.  

A classical theorem 
such tha t  

asserts tha t  if { a n } ~  is a given sequence of numbers 

la . [2< oo, 
n ~ - - O 0  

then there is a unique element /E  L ~ with the property tha t  

c .  (1) = a .  

for n = 0 ,  __1, --+2, . . . .  
The above theorem admits the following extension. Let S~, 0 < ~ <  oo, 

denote the operator t ak ing ' t he  complex number z into I zl a:a z. We have 

so that  the collection { Sa} forms a group. Furthermore,  Sa performs a one- 
to-one mapping of the finite complex plane onto itself. Applied to a space L v, 
we see tha t  Sa ] will take L ~ onto L p/a, 0 < a_< p. In  particular, Sv-1 ] will map 
L v onto its dual space L ~, q = p / ( p - 1 ) .  We then have 

T h e o r e m  t .  l e t  the integers be partitioned into two disjoint sets A and A' ,  
neither o/ which is empty. Let p be a given exponent such that 1 < p <  ~ .  Let 
{ a,  ; n E A } and (bn ; n E A '  } be given sets o/ numSers such that, /or some h E L ~ 
and /or some k E L  q, q = p / ( p - 1 ) ,  we have 
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ca (h) = an, n fi A ,  

cn (k) = b~, n 6 A ' .  

Then there is a unique element [ 6 L v such that 

c,~(f)=an, n e A ,  

c, ,(Sv_l])=b,~, n E A ' .  
(1) 

For p =  2, the above statement reduces to the cited classical result, since, in 
this case, S~_1 f = f. 

The proof of the uniqueness is quite easy. If  there were two solutions ~1 
and f3 of (1), then the difference F = [ 1 - [ 3  would be an element of L p and 
would have Fourier coefficients vanishing on A. Similarly, G= Sp-i ~1- Sv-1 [3 
would be in L e and have Fourier coefficients zero on A'. Consequently, the 
Fourier coefficients of the continuous function 

2n 

! ~'(x+t)O(t)~t, 
0 

which are given by c, (E)5n (G), are zero for each n. Therefore, 

2:z 21t 

~! fllv I N ' ~  dr. (2) 
~ f I ("-'3), ,1 ,3/ 

0 0 

Setting fl = ]fi I e'~ s = Is e'~ we find that  the real part of the integrand in 
(2) is 

Ihl ~ + 1/31"-(Ihl ]f3l n - l +  1/11 "-~ 1/31) cos (01-03)>_ (1111-1/31)(Ihl " - ~ -  1131"-1) >-0. 

The vanishing of (2) therefore requires that  almost everywhere ]h [ = I f3l and 
cos (01-  0~)= 1, and the uniqueness follows. 

The above proof of the uniqueness is satisfactory, but  it gives no indication 
of the nature of the problem. In particular, the role played by the operator 
Sp_l is not at all clear. We shall see in the next  section that  the operator 
Sp-1 is only one of a large class of operators on L v to L v/(v-1) which arise quite 
naturally from a consideration of what we call duality maps of a Banach space 
onto its first conjugate space. 

2. Duality mappings 

We will be dealing with a complex (or real) Banach space B and its conju- 
gate  space B*. The null element of B will be denoted by  0, of B* by  0". The 
norm of an element x E B  is IIxH--IIxIl., of u B* is Hull=lluiI~.. The unit- 
spheres in B and B* will be denoted by  S and S*, respectively. 

Let  (x, u) be the bilinear functional defined for x E B and u E B* and having 
the properties : 
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(a) I f  2 is a complex (or real) number, then 

(~ x, u) = (x, ~ u) = ~ (x, u) ; 

(b) (x 1 + x~, u) = (x 1, u) + (x, ,  u), 

(x, u 1 + u2) = (x, u l )  + (x, us)  ; 

(c) II ll.. = sup os I(x, 

Two elements x E S and x*E S* are said to be conjugate if (x, x*)= 1. The sets 
(;t x ; 0 _ ~ < o~ } and {/~ x* ; 0 _</z < oo } win then be called conjugate rays. 

Under the assumption tha t  each element on S (or S*) has a unique con- 
jugate on S* (or S), we will consider duality maps of B onto B* characterized 
by  the following properties: T is one-to-one and takes each ray in B onto the 
conjugate ray in B* and each sphere [[x[[=r in B onto a sphere [[u[[=Q in B* 
in such a way tha t  r 1 < r 2 implies Q1 < 0z. From this definition, it follows that  

T(~x)=~ (2)x*, 2>0, 

x and x* being conjugate elements on the respective unit spheres and ~ (~) a 
continuous function tha t  is strictly increasing from 0 to oo with 2. (A special 
type of duality map has previously been considered by  E. R. LORC~ [4].) 

With regard to such mappings, we have 

L e m n a a  i .  Let there exist a duality map o/ B onto B*. I /  x, y E B, then the 
relation 

( z - y ,  T x - T y ) = O  (3) 

implies that x = y. 

To prove this, we observe tha t  z EB  and u EB* will belong to conjugate 
rays if and only if (z, u)=[[zili[ul]. Consequently, the assumption x r  

> 0, will imply tha t  

Re (x, T y ) <  Itxll tiTyll,  

Re(y ,  Tx)<ilYII  IITxi], 

so tha t  upon taking the real par t  of (3), we will have 

0 > ( H x l l - H y I I )  ( l ITxi i - i iTy[I)>-o.  

Therefore x = ~y, and )t = 1. 
We want  next to find conditions on the space B in order that  a duality 

map shall exist. For this purpose, we need to recall certain definitions. 
The space B is said to be uniformly convex[ l ]  if there corresponds to each e, 

0 < e < l ,  a positive number O(e) tending to zero with e and such tha t  
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imply tha t  

In  uniformly convex Banaeh spaces, each closed convex subset possesses a unique 
element of minimal norm. 

We shall say tha t  B is differentiable if for any x E B, x r  0, and any  y E B 
there is a finite complex (or real) number D = D  (y, x) such tha t  

+ ty t l  - II  ll= { t D } + o (Itl) (4) 

as the complex (or real) number  t tends to zero. I t  is known [3] tha t  for 
differentiable spaces D (y, x) is a linear functional in y of norm unity. We 
observe tha t  (4) implies 

j D ( y ,   )l<llyll; D(x, x)-II ll; 
D(y,  X x ) = D ( y ,  x), 0 < 4 <  ~o. 

An important  consequence of uniform convexity and differentiability in a 
Banach space is the, in principle, known 

L e m n a a  2. I f  B is a uni/ormly convex and di//erentiable Banach space, then 
each element on S (or S*) has a unique conjugate element on S* (or S) .  

Assume first tha t  x E S  is given. We are to show the existence and the 
uniqueness of a linear functional L (y)= (y, x*) of norm unity and for which 
L (x)= 1. The existence of L (y) is clear, for we may  take L ( y ) = D  (y, x). As 
for the uniqueness, we observe tha t  for any y E B and for any complex (or real) 
scalar t, we have 

O<-]]x+ tyli - Re  {L(x  + ty ) }=i ix  + t y l [ - i ] x ] [ -  Re  {t L (y)}. 

Combining this relation with (4) yields 

O <_Re {t [i) (y, x) - L (y)]} + o (I t]) 

from which it follows tha t  L (y)= D (y, x). 
On the other hand, if x*E S* is given, its conjugate x E S can be characterized 

as the element of minimal norm in the closed and convex set {y; (y, x*)= 1} c B .  
Therefore, x exists and is unique. 

(We point out tha t  x*E S* can be shown to have a unique conjugate x E S 
if we assume only tha t  B is strictly convex and tha t  the set {y; y E B ,  
Ily]l_<l} is weakly compact. These two conditions are known to be weaker 
than the requirement that  B be uniformly convex.) 

In  the sequel, we will use the following definitions and notations: I f  A is a 
closed linear subset of B, then its orthogonal complement in B* is the set A x 
of u E B *  for which (x,u)---0 for every x E A .  I f  y is an element and C a set 
of elements, then C + y  will denote the set {x; x = y + z  for z E C  I. 

We are now ready to prove 
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T h e o r e m  2. Let B be a uni/ormly convex and di/[erentiable Banach space and 
T a duality map o/ B onto its conjugate B*. Let C be a closed, linear, and proper 
subset o/ B and C • its orthogonal complement in B*. 1] H E B and K C B* are 
given elements, then the sets C • + K and T (C + H) have one and only one element 
in  common. 

(Note tha t ,  by  vi r tue  of L e m m a  2, dua l i ty  maps  of B onto B* do indeed 
exis t  .) 

Recal l  t ha t  the  dua l i t y  m a p  T defines a cont inuous funct ion r (~), 0_< 2 < c~, 
which is s t r ic t ly  increasing from 0 to  c~ with 2. Set  

(~) = f ~ (u) du ,  
0 

and  consider the  func t iona l  

(5) = ~ (11 x II) - R e {(x,  K) }  

for x E C + H .  F o r  I lx l l= r ,  we have 

F (x) >__ ~b (r) - r II K liB.. 

The r igh t -hand  member  of this  inequa l i ty  is a s t r ie t ly  convex function of r, 
t ends  to  in f in i ty  as r -§  ~ ,  and  is bounded  from below for r >  0. Hence,  

M = inf { F  (x) ; x 6 C + H} 

is a f inite number .  Fur the rmore ,  F ( x ) _  m + 1 implies  t h a t  It x II < r0 < ~ -  
Let  {x,} c C + H be a minimizing sequence of F (x). Wi thou t  loss of general i ty ,  

w e  m a y  a s s u m e  t h a t  II~nll t e n d s  to  s o m e  f ini te  l imi t  ar (Actual ly,  we need 
not  make  this  assumpt ion,  for the  s t r ic t  convexi ty  of ~b (2), 0 _  2 <  c~, guaran-  
tees t h a t  II~nll t ends  to a finite l imit .)  Since C + H  is a convex set, we have 

Since r (r), r>_ O, is convex, we ob ta in  

~X m -}- Xn~ = 1 { F  (~m) + F (~n)} - F ~ - - V - / =  ~m n, 

where emn-~0 as m, n-->c~. Therefore 

lim O(ll ll)=O, , 
rn ~-~oo 
n--~oo 
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from which we deduce t h a t  

m--~ cr 

But  in a un i formly  convex space, this  implies  t ha t  (x ,}  is a Cauchy sequence. 
Since C + H  is a closed subset  of B, there  is an x o E C + H  such t h a t  I l x n - x o l l ~ O  
and  F (xo) = M. Consequently,  

F (x o + t x) - F (Xo) > 0 

for x EC and  t a complex (or real) scalar.  
Since ~b is a different iable function,  

r (ll xo + t x il) - r (ll xo ID = r  (ll xo lD R e { t D (x, xo) } + o (I t l) 

= ~ (11 Xo II) R e {t D (x, ~o)} + o (I t I). 
Thus 

R e (t [~ (H xo ]]) n (x, xo) - (x, K)])  + o (I t i) __ 0, 

from which we conclude t h a t  

([[ x o [[) D (x, Xo) - (x, K) = 0 (5) 

for xEC.  Since 6(HXoi})D(x, Xo) is a l inear  func t iona l  in x of norm ~b(Hxo] D, 
i t  m a y  be wr i t t en  in the  form (x, no), where u o is an  e lement  on the  sphere 
I lul ln.=~b (llXoH). Set t ing x = x  o gives 

(Xo, ~o) = + (11 Xo II) D (xo, Xo) = [I Xo II + (11 ~o II), 

from which i t  follows t h a t  no=  T x  o. Consequently,  (5) m a y  be wr i t t en  as 

(x, T x o -  K) = 0 (O) 

for x E C, which implies  t h a t  T x 0 E Cx + K.  
We have therefore  shown t h a t  T ( C + H )  and  C ~ + K have a t  least  one ele- 

men t  in common.  
I f  x E C + H  and  T x E C j . + K ,  then  (6) implies  t h a t  

(x o -  x, T x 0 - T x) = 0. 

An appl ica t ion  of L e m m a  1 shows t h a t  x = x  o and,  hence, t h a t  T ( C + H )  and  
C ~ + K have  a t  mos t  one e lement  in common.  

The proof  of the  theorem is  now complete.  
We  wish to  poin t  out  t h a t  the  conclusion of Theorem 2 remains  va l id  if we 

again assume only t h a t  B is s t r ic t ly  convex and t h a t  (y ;  y E B ,  HyH_<I} is 
weakly  compact .  

I n  order  to  deduce Theorem 1 from Theorem 2, we set B = L  ~', B * = L  ~, and  
let  C be the  set of funct ions  in L p wi th  Four i e r  coefficients vanishing for 
n E A .  I f  

410 



ARKIV FOR MATEMATIK. B d  4 nr  32  

2 ~  

(x, u)= f x(t) u(t)dt  
0 

for xEL p, uEL e, the  or thogonal  complement  C ~ of C consists of those uEL '~ 
for which ~ has  Four ie r  coefficients zero on A ' .  

I t  is known t h a t  L ~, 1 < p < ~ ,  is un i formly  convex [1] and  different iable [2], 
and  i t  is clear t h a t  Tx=Sp_l~=ixi~/x  is a dua l i t y  m a p  of L ~ onto L ~. The 
desired resul t  now follows from Theorem 2 if we set  H =  h and  K =  k. 
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