
A R K I V  F O R  M A T E M A T I K  B a n d  4 n r  33 

Communicated I1 October 1961 by T. NA(~ELL 

T h e  in tr ins ic  d iv i sors  o f  

L e h m e r  n u m b e r s  in  the  case  o f  n e g a t i v e  d i s c r i m i n a n t  

By A N D R Z E J  SCHINZEL 

A prime p is called an intrinsic divisor of the Lehmer number 

p =[(~n f l n ) / ( ~ _ f l ) , ~  nodd ,  
(1) 

[(~n_8n)/(~2_fl~-), n even, 

where (:t+fl)~ and ~r are integers, if p divides P~ but does not divide Pk for 
0 < k < n  (cf. [10]). M. Ward [10] and L. K. Durst [4] proved that  if :r /7 are 
real ((:t+8)~ , :<fl)=l and n:~6, 12 then P~ has an intrinsic divisor. According 
to [10] nothing appears to be known about the intrinsic divisors of Lehmer num- 
bers when a and fl are complex, except that there may be many indices n such 
that  P ,  has no intrinsic divisor. 

The aim of this paper is t o  prove the following 

Theorem. / /  • and 8 are complex and 8/a~ is not a root of unity, then, for 
n > no (r162 8), P~ has an intrinsic divisor. Number no (~, 8) can be effectively computed. 

This theorem is an easy consequence of some deep theorem of Gelfond ([5] 
p. 174), which we quote below with small changes in the notation. 

The inequality 

Ixl log a+x,~ log b I <e  -l~ Ix, I + lx ,  I = ~ > 0 ,  

where a and b are algebraic numbers, log a/log b is irrational, ~ > 0 is an arbitrary 
fixed number, does not have a solution in rational integers xx, x 2 with 

x > x 0 (a, b, log a/log b, z/), 

where x o is an effectively computable constant. 

Lemma. / / a  and 8 are complex and 8for is not a root o /un i ty ,  then/or  every e > 0 
and n > N ( a ,  8, e) 

ip.l>l l-:,o  (2) 
I Q. I = I1<~. (:r - e~""" 8) 1 > I~ [~(")-2"")'~ ", (3) 

(r, n)=l 

where qJ (n) denotes the Euler function, r (n) the number of prime factors o /n .  N (a, fl, ~) 
can be effectively computed. 

Proof. Let us put in the theorem quoted above a-~fl/cr b = 1, log b = 2~i .  
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Since f i / g  is not  a root  of un i ty  all the assumptions are fulfilled and for rational 
integers Xl, x 2 where x I > x o (fl/o:, 1, (log f l /o:)/2 re i, ~) > 0 we get 

where 

I xx log ~ + x~. 2 ~t i [/> e x p ( .  log 2+~ c Xl), 

c t-2. 
2~  

(4) 

Now l o p - 2 ~ k  I >~d (for all integral k) implies as can be easily seen 

I c o s ~ 0 + i s i n ~ 0 - 1 1 > ~ � 8 9  (~0real, 3>~d>~0). 

Inequal i ty  (4) gives therefore for positive x 1 > x .  

On the other hand,  by  (1) 

ip,,l> I~,"-/~"1 Io, l" [#'~"_ a I 
I ~ , ' - t ~ ' l  = I , , ~ - t ~ "  I ~,~,! " 

(5) 

(6) 

B y  a suitable choice of ~/ which can be done in a completely effective man-  
ner we get (2) from (5) and (6) for n > N o (a, fl, ~). Since (a - fl)~ = (~ + fl)~ - 4 gfl  
is an integer ~ 0 ,  we have also 

-Y ' l<~<21o~l- .  IP-I<l~_ffl (7) 

Now since Q. = 1-]P~ ("!d), i t  follows f rom (2) and (7), t h a t  
sin 

IQ.I > YI I~ld-'~ YI 21~1'. 
din din 

tt(nla)=l, d>No / . t ( n / d ) = - I  

Since fl/o~ is no t  a root  of unity,  i t  follows by  enumerat ion of cases t ha t  
fl * 1, hence [ cr >I 1/2" We then  get 

# ~ . d -  ~. log 2 + ' d - 2  ~ 1 
- o / t ( n / d ) =  - 1  i t ( n / d ) = - - I  

N O (N O + 1) 
>/~ (n) 2 2 "('~)-1 log~+% - v (n). 

Taking N > N O so large tha t  log 2 N > [N o (N O + 1)//2] + 1 we get for n > N = N (g, fl, e) 

log [Q-[ 
log [~1 >~~ l~ 

hence inequali ty (3) holds. 
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Proo] o/ the theorem. As can be easily seen (cf. [4a]) the assumption ((g+fl)3, 
~r = 1 leads to no loss of generality. Under  this assumption a sufficient condition 
t ha t  Pn (n + 6) have an intrinsic divisor is t ha t  ] Q, I > n. This was proved by  Ward  
([10] L e m m a  3.4) in connection with real ~, fl bu t  his proof applies to our case 
also. The necessary condition n # 6 was pointed out  by  Durs t  [4]. 

In  view of (3) which we apply  for e = 1, and since I zr [ i> V2 it  remains to find 
an n 0 > N ( ~  , fl, 1) such t ha t  for n > n  o 

2 log n 
(n) - 2 ~(n) log 3 n > log 2 " 

Now, ~ ( n ) > n / l o g  n for n > 2 . 1 0  3 ([10] L e m m a  4.1), 2~r 2l/n (obviously) and 
the inequali ty 

2 log n 
n 2 1/n log a n > - -  

log n log 2 

holds certainly for n > 102~ Taking n o = m a x  (N, 102~ we complete the proof. 
An open and interesting question is whether  the number  n o (cr fl) which occurs 

in the theorem can be taken  independent  of cr fl provided ((~+fl)2, a f t ) = 1 .  
B y  the way  of example  let us take a sequence Pn for ~ =  (1 + 1 / - 7 ) / 2 ,  fl = 

= ( 1 -  V - 7 ) / 2 .  This sequence was considered by  several authors,  inter alia by  
T. Nagell [6], [7], J .  Browkin, A. Schinzel [1], W. Sierpiflski [8], T. Skolem, 
S. Chowla, M. Dunton,  D. J .  Lewis [3], [9], P. Chowla [2] (who considered 
P3n/P~), often in connection wi th  the diophantine equat ion x 3 + 7 = 2 n. Principal 
results were as follows: 

1. The equat ion I n =  _ 1  has exact ly  five solutions n = l ,  2, 3, 5, 13 (first 
proved by  Nagell [6], also [1], [3], [7], [9]), 

2. The equat ion Pn=c  has a t  most  three solutions ([9]), 
3. The equat ion P~a/P~ =Psg+l/P3g has the only solution n = 2 ~, the equation 

P3n/P,  =c has a t  mos t  two solutions, 
and the question was left  open ([9] p. 668) how to determine a number  no(c ) such 

tha t  P~ # c for n > n o (c). 
I t  follows f rom the theorem proved in this paper  tha t  for c # + Pt (i = 1, 2 . . . . .  

n0(a, fl)) the equat ion P ~ =  + c  has a t  most  one solution, also if c #  +P2~/Pt 
(i = 1, 2 . . . . .  n o (g, fl)) the  equat ion P3,,/P,, = +_ c has a t  most  one solution. L e m m a  
1 in which h r (a, fl) is effectively computable  gives an implicit  answer to the 
question ment ioned above. However  an explicit answer can be obtained directly 
f rom s ta tements  1 - 2  and from known divisibility properties of Lehmer  numbers  
(el. [4] w 2). I n  fact, suppose t ha t  P~ = c. For  each ~[n  we mus t  have P~lc, in 
part icular  for each prime q l n, Pal  c. Thus either Pq = _+ 1 or Pq is divisible by  
some prime p[c. I n  the first case q = 2 ,  3, 5 or 13 by  1, in the second by  the 
so called law of appari t ion for Lehmer  numbers  ([2] Theorems 2.0 and 2.1) 

hence q ~ < p + l ~ < l c l + l .  Thus 

all prime factors of n are ~<[c I + 12. (8) 
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O n  t h e  o t h e r  h a n d  b y  2, t h e  e q u a t i o n  p~ = d h a s  f o r  e a c h  d lc a t  m o s t  t h r e e  
s o l u t i o n s .  T h i s  g i v e s  t h e  c o n d i t i o n  

d(n)<~6d(lc l ) ,  (9)  

w h e r e  d(k)  d e n o t e s  a s  u s u a l ,  t h e  n u m b e r  o f  p o s i t i v e  d i v i s o r s  o f  k. 
I t  f o l l o w s  f r o m  (8) a n d  (9) t h a t  i f  n > (I c I + 12) 6d(I ~ ~), t h e n  P n  ~ c, w h i c h  is  j u s t  

a n  a n s w e r  t o  t h e  q u e s t i o n  p o s e d .  

Note added in proo/. There  is some discordance in def in i t ions  of in t r ins ic  divisors.  Accord ing  to 
D. H.  Lehmer ,  a p r ime  p is called an  in t r ins ic  divisor of Pn if p d iv ides  Pn b u t  does no t  d iv ide  
e i ther  (~-/~)2 (a + fl)~ or Pk for 0 < k < n. I t  can  be easi ly seen t h a t  t he  t h e o r e m  p roved  in the  
paper  holds  also for in t r ins ic  divisors  def ined in th i s  manne r .  
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