
ARKIV FOR MATEMATIK Band 4 nr 37 

R e a d  8 N o v e m b e r  1961 

O n  t h e  n u m b e r  o f  r e p r e s e n t a t i o n s  o f  a n  A - n u m b e r  

i n  a n  a l g e b r a i c  f ie ld  

By TRYGVE NAGELL 

w 1. Introduction 

1. Let a be an integer =~ 0 in the algebraic field ~ .  If  :r is representable as 
the sum of two integral squares in ~ ,  we say, for the sake of brevity, tha t  
is an A-number in g'~. We say tha t  

where ~ and ~] are integers in ~ ,  is a primitive representation if the ideal (~,~) 
is the unit  ideal, and otherwise an imprimitive representation. In  the following 
we shall use the terms A.prime and A-unit. The representations ~ = x  2 +y2 with 
x = •  y=-4-  7 and x=-4-~ ,  y = •  are considered to be one and the same. 
When the degree of ~ is ~> 2 the integer zt is said to be a prime when (~r) is a 
prime ideal. The relation 1 = 12 + 02 is called the trivial representation of the number  1. 

Design by G an infinite (abelian) group of units belonging to ~ (composition = 
multiplication). B y  the rank of G we understand the maximal  number  of inde- 
pendent  units (of infinite order) in G. The rank of the group consisting of all 
the units in ~ is r = r  l + r ~ -  1, where r 1 is the number  of real conjugated fields 
and 2r~ the number  of imaginary conjugated fields. 

Design by I t  a ring of integers contained in ~ but  not in any  sub-field of ~ .  
If  R contains the number  1, it contains an infinity of units and it is well-known 
tha t  the unit-group of R has the rank r. 

w 2. The representations of A-units and A-primes 

2. We first prove 

Theorem 1. When there are more representations o/ the number 1 than the trivial 
one, then there are in/initely many representations. 

Proo/. Suppose tha t  
1 =~2+~2, 

where ~ and ~ are integers in ~ and ~ 4 0 .  Pu t  for n =  1 ,2 ,3 , . . . ,  

~n + ~ni = (~ + ~i) n, 
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where 

and 

Then we clearly have 

and 

Hence 

(& + v.i)  (~. - ~.i) = (~ + ~i) ~ (~ - ~i)" = (~2 + v~).. 

Thus the Diophantine equation 

x 2 + y2 = 1 

has the integral solutions 

x =~ , ,  y = ~ .  

I t  is easy to prove tha t  these solutions are all different. 

I n  fact, if we have (for n # m ) ,  

we get 
(~ + i~) m = (~ + i @ ,  

(U 

(2) 

(3) 

Hence ~ + i~ is a root  of unity.  Suppose tha t  

~ + i ~  =~  

is a primitive N t h  root  of unity.  Since 

we get 
1 1 

~ = ~ ( e +  -1), ~ = ~ ( ~ _ ~ - 1 ) .  

I t  is easy to show tha t  these numbers  are not  integers if N # 4 ,  4=2 and # 1. 
Suppose first tha t  N is a powder of 2 and >=8. If  ~ ( ~ - 1 )  were an integer, 

the number  
N 

should also be an integer. Bu t  this is not  the case. 



ARKIV F()R MATEMATIK. B d  4 nr 37 

Suppose next  tha t  N is divisible by the odd prime p. If  -~(o 2 -  1) were an 
integer, the number  

2N 
~(e ~ - 1) 

should also be an integer. Hence, if x is an arbi t rary  primitive p th  root  of unity, 
the number  y = ~ (x - 1) should be an integer. But  the numbers  y clearly are the 
roots of the irreducible algebraic equation 

1 

~ y  

with integral coefficients. Hence they  are not  integers. 
Since the values N = 4, 2 or 1 imply either ~ = 0 or ~ =: 0, theorem 1 is proved. 

3. We next  prove 

T h e o r e m  2. There is exactly one representation o~ every A-prime, i/ the number 
1 has only the trivial representation. Otherwise there is an infinity o/representations. 
This result also holds /or every A-unit .  

Proo/. Suppose tha t  the number  1 has only the trivial representation. Let  
be an A-prime with the two representati6ns 

and 
= ~ + ~ ,  

where ~t, fl, al and fll are integers in the field. F rom these representations we get  

/ f  - t~, ~) = ~ t~  * - ~ * ~ .  

Since z is a prime, either of the numbers  alfl + aft1 a n d  : q f l -  aft1 mus t  be di- 
visible by  ~. We m a y  choose the sign of fll such tha t  we obtain 

o~lfl~ocfll (rood zO. 

Multiplying together the two representations of ~t, we get  

~ = ( ~  + P ~ ?  + ( ~ -  ~ ) ~ .  

Since ~lfl-~tfll  is divisible by  zt, the number  ~t~ 1 +tiff1 is so. I f  we put  

*t~ + tiff1 = zt~l and ~d ~ - ~tfll = ~ 1 ,  

where ~ and ~h are integers, we get  

1 = rj 2 + ~ .  
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By hypothesis this equation is possible only for ~ = 0  or ~h=0.  For  ~ = 0  and 
7 1 = - - - l w e  get 

~ 1 = - 8 8 1  and ~ l f l - ~ f l l = •  

whence by elimination of 81, 

~ 1 _ ~ ( ~ + 8 2 ) = ~  = +~"  0fif~ ~- ~ ~ __ 

Hence g l =  +--8 and 81 = • a. 
For  ~h = 0  and ~7 = -  1 we get 

gift = ~81 and aal  + 881 = +--:~, 

whence by elimination of ~1 

a~i + ~ a ~  = a ~  (a~ + f ) = a ~  = + ~ .  

Hence (~1 = -~ g and 81 = • fl" Thus there is only a single representation of the 
prime. The proof also holds when g is a unit. 

Suppose next  t ha t  the equation (3) has an infinity of solutions x = ~ ,  y = ~  
given by (1) and (2). Let  eo be an A-number with the representation 

CO = ~ 2 - ~  8 2 , 

:r and 8 being integers in ~ .  Pu t  for n = 1, 2, 3 ..... 

where 

Then we have 

and 

Hence 

~n = ~ - 8~- and 8~ = ~ n  + 8~"  

(~n + 8hi) (an - 8~i) = ( ~  + V~)" ( as + 8 ~) = ~" 

I t  is easy to see that ,  in this way, we get an infinity of representations of m. 
In  fact, supposing 

we get 

But  in the proof of theorem 1 we showed tha t  this relation is possible only for 
m =n .  Thus we have proved theorem 2. Moreover we have proved the more 
general result: I f  the number  1 has an infinity of representations, there is an 
infinity of representations of every A-number. 
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w 3. The representat ions o f  an arbitrary A - n u m b e r  

4. Owing to the above proof we have a l ready established the result expressed 
in the second par t  of 

Theorem 3. I /  the number 1 has only the trivial representation, the number o/ 
representations o/ every A-number is finite. Otherwise there is an infinity o/ rep- 
resentations. 

Proo/. Suppose t ha t  the  number  1 has only the trivial  representation. Let  0) 
be an A-number  having an infinity of different representat ions 

0) =a~  +fl~, (n = 1 , 2 , 3  .... ) 

an and fin being integers, with anfl~ + 0. Then we have for all indices m and n 
( m ~ n ) :  a , ~  •  fl~:t: • ang = • and f l ~  _+am. 

Among these representat ions of 0) there mus t  exist a t  least two different rep- 
resentations 

2 2 
am+tim and a~+fl~,  (4) 

which satisfy the  congruence conditions 

amman (mod 0)) and flm~fl~ (mod 0)). (5) 

In  fact, the number  of residue classes modulo co is [No) I , and thus the remainders 
of the four numbers  an, tim, a~ and fl~ m a y  be combined in a t  most  IN0)[ 4 ways. 
Multiplying the two representat ions 

0) = a~ + fl~ and  0) = a~ + fl~, 
we get 

0) 2 = ( a m f l  n - -  ~ m a n )  2 + area  n -~- f lmf ln)  2. 

I t  follows from (5) tha t  the two numbers  

amZ.-- ~ a .  and  area. + fire/3. 

are divisible by  0). Hence we m a y  pu t  

a,~Sn -- flman = 0)~ and aman + flmfln = C0~1, (6) 

where ~/ and ~h are integers. Then we get 

1 = ~/2 + ~/12. 

Thus by  our hypothesis  we mus t  have either ~ = 0  or ~/1 =0 .  I f  ~/=0, it fol- 
lows from (6) 

a m f l  n = f l m a n  and O~mOf. n .qt_ ~ m f l n  = "q- tO, 

whence by  elimination of fin, 
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~ ~ + 8 ~  ~ (~+/3~): ~ 
- - 0 3 :  ~_(D, 

~m ~m ~m 

Hence ~ = + ~  and ~ = •  For ~1=+-1  we get from (6): 

whence by elimination of 8m, 

~ m  ~m ~rn 

Hence ~ =  + ~  and fi~= + ~ .  
From this we conclude tha t  the representations (4) cannot be different. Con- 

sequently, the number of representations must be finite. 

w 4. The totally real fields and the imaginary quadratic fields 

5. We next prove 

Theorem 4. In  the totally real field ~ there is only a finite number o/ represen. 
ta, tions of a given A-number. There is exactly on representation of the number 1 
and likewise of every A-pr ime and of every A-unit .  A unit  is an A-number only 
when it is a square. 

Proof. A real field is called totally real when all the conjugate fields are real. 
Let  s be an A-number in ~ with the representation 

=~+~, 

where ~ and fl are integers in ff~. Then the conjugate equations 

also hold, Since the conjugater arc al! real, we ge~ 

I~,k,I < IV_Z,k,i 

for every value of k. Hence there is only a finite number of Possibilities for ~ when 
is given. 
Consider in particular the ease ~ = 1 .  If  we suppose 8 = 0 ,  we get I~ik)[<l, 

hence ~ = 0 .  
When ~ is a prime or a unit, we may  apply theorem 2. 
Finally, suppose tha t  e is a unit with the representation 

E=~2+f, 

and fl being integers in ~ .  Then we get by squaring 
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whence 
e~ = (a~ _ ~ ) 2  + (2afl)~, 

/~2 _/32~ 2 

Since the number 1 has only the trivial representation, this implies either 
a2 ~2 = 0  or ~fl =0;  but it is clear that  ~z_fl2 = 0  is impossible when ~ is a unit. 

6. We add the following result: 

Theorem 5. In  the [ield K ( ~ - ~ )  there is only a / in i t e  number o/representations 
o / a  given A-number. There is exactly one representation o / the  number 1 and likewise 
o/ every A-prime. 

Proo[. By theorems 2 and 3 it is sufficient to show that  the number i has 
only the trivial representation. The equation 

1 = :r +/32, 

where ~ and /3 are integers in K (]/~ 1) leads to either of the following systems: 

o r  

~ + f l i = l ,  o~- fl i = l 

o~ + fl i = i, ~ -- fl i = - i. 

But the first system implies that  f l = 0  and the second that  ~ = 0 .  This proves 
theorem 5. 

I t  is easy to prove 

Theorem 6. In  the imaginary quadratic/ield K ( ~ - D )  there is an in/inity o/ rep- 

resentations o/every A-number, except when the/ield is K (V---l). 

Proo/. According to theorem 3 it suffices to show that  the number 1 has a 
non trivial representation, In  fact, since the equation 

x 2 - Dy  2 = 1 

has solutions in rational integers x and y, y # 0, the number 1 has the non ~riv- 
ial representation 

1 = x ~ + (yV-~) 2. 

w 5. The m a i n  result  on the  representat ions  

7. Theorems 4, 5, and 6 are contained in the following general result: 

Theorem 7. There is an in/inity o/ representations o/ every A-number in a~ : al- 
gebraic field ~ except in the /oUowing cases: 
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1 ~ ~'~ is the Gaussian field K ( V - l ) .  
2 ~ ~ is totally real. 

Proo/. I n  v i r tue  of theorem 3 i t  is sufficient to prove t h a t  there  is an inf in i ty  
of representa t ions  of the  number  1, p rovided  t ha t  ~ is no t  one of the  excep- 
t ional  fields in theorem 7. B y  theorem 1 i t  suffices to show t h a t  there  is a non- 
t r iv ia l  representa t ion  of the  number  1. 

Denote  by  n the  degree of the  field ~ ;  b y  r 1 the  number  of real  conjugate  
fields ~(h~, by  r 2 the  number  of pairs  of imag inary  conjugate  fields and  by  
r = r 1 + r~ - 1 the  number  of uni ts  in a fundamenta l  sys tem of units  in the  field ~ .  

W e  first  consider the  case t h a t  ~'~ contains  the  number  ~ / - ~ .  I n  th is  case we 
have  n >~ 4. Since r >/1, there  exists in ~ a uni t  E which is not  a root, of uni ty .  

Then the equat ion 
1 = ~2 + f12 

is sat isfied by  the following numbers:  

a = l ( E m  + E-~) 

and  

1 
fl:= ~i (Em- E-"), 

where m is an  a r b i t r a r y  ra t ional  :nteger.  Le t  us choose the  number  m as a mul-  
t ip le  of q (2), where fi~ (2) denotes  the  number  of residue classes modulo  2 in 
which are pr ime to 2. Then we h t v e  for any  integer 7 in ~'~ which is pr ime to 2, 

7 ~ 1  (mod 2). 

Hence the  numbers  a and  /~ are i l tegers in ~ ;  for m # 0  we have  a f t # 0 .  

Consider nex t  the  case t ha t  ~ does not  contain the  number  ~/~ 1. Adjoin ing  

this  number  to  ~ we get  the  field ~ ( l / -  1) = ~1. This field has the  degree 2n. 
Denote  by  R 1 the  number  of real conjugate fields ~ ) ,  by  R~ the number  of 
pairs  of imag inary  conjugate  fields and  by  R = R  1 + R 2 - 1  the  number  of uni ts  
in a fundamenta l  system of units  il. the  field s 

I f  ~ is a generat ing number  of ~ ,  one m a y  f ind a ra t iona l  u such t h a t  the  
2n conjugate  fields ~'~(1 k) (k = 1, 2, 3 . . . . .  2n) are  genera ted  b y  the  2n numbers  

co = ~(h) __ u ~/-- 1, 

where ~(h) runs th rough  the sys tem of n numbers  conjugate  to  ~ (see f. ex. 
Hecke [4], p. 67). I f  ~(hl is real, i t  is ev ident  t h a t  co is imaginary ,  since u # 0 .  
I f  ~(n) is imaginary,  i t  is ev ident  t ha t  co m a y  be real  for a t  most  two special 
values of u, fcr  all o ther  values of u the  number  eo is imaginary .  Hence,  all  the  
2n conjugate  fields ~(1 k) are imaginary.  Thus we have  RI='O, R~=rl+2r  ~ and 

R = R I  + R 2 - 1  = r x +  2 r 2 - 1  =r +r~. 

Since ~ is not  to t a l ly  real, we have r~> 1 and  thus  
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R > r .  

R is the  r ank  of the  group of all the  units  in ~1,  and  r is the  r ank  of the  
group of all  the  uni ts  ~ .  Le t  us consider the  r ing consist ing of the numbers  in 
~1  having the  form c + di, where c and  d are integers in ~ .  The uni t -group G 
of this  r ing has the  r ank  R. The sub-group G 1 consisting of the  squares of the  
uni ts  in G clearly has the  same rank  R. The uni ts  in G 1 cannot  all be equal  
to the  p roduc t  of a uni t  in ~ and  a root  of un i ty  since r < R .  Hence we con- 
elude t h a t  there  exists  a uni t  E = a + b i  in the  ring, a and  b integers in ~'~, 
such t ha t  ab ~= O, and  such t h a t  E 2 is not  equal  to the  p roduc t  of a uni t  in s 
and  a root  of uni ty .  Then the number  E 1 = a -  bi is also a uni t  in ~1- Hence 
a2+b ~ is a uni t  in ~ .  Then the equat ion  

1 ~ a2 ~_ ~2 

is sat isf ied by  the following numbers:  

and  

E ~z + E~ a 
= 2 ( a  ~ + b2) a 

E ~  _ E~, = 
fi 2 i ( a  2+b2) m' 

where m is a na tu ra l  number .  I t  is ev ident  t ha t  :r and  fl are integers in ~ ,  
since a and  b are so. The hypothes is  ~ = 0  leads to 

E4m = E~ m. 

Hence EEs  1 should be a root  of u n i t y  =E2,  and  we should have 

E 2 = (a S + b 2) E~. 

Bu t  this  is con t ra ry  to  our assumpt ion  on E. Thus, for m # 0, we have aft # 0, 
and  the proof  of theorem 7 is complete.  

Remarks  on previous papers on A-numbers .  

I n  two previous papers ,  [1] and  [2], we have  a l r eady  es tabl ished a number  of 
theorems on A-numbers .  The proof  of theorem 21 in paper  [1] was not  complete  
as we d id  no t  show t h a t  m m a y  be chosen such t h a t  a f t # 0 .  This lacuna was 
repai red  in the  above  proof  of theorem 7. Theorems 2 and  3 in this  paper  cor- 
respond  to  theorems 16 and  17 in pape r  [1] wi th  a cer ta in  correct ion in the  
proof. 

I n  theorem 2 in [1] i t  is necessary to add  the  following condit ion:  The ideal 
(a, fl) is e i ther  the  uni t  ideal  or the  power of a pr ime ideal  p which does not  
d ivide  2. Thus the  theorem ought  to  be pronounced as follows: 

Let o~ and fl be A-numbers in the field ~ with the primitive representations in 
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o~ = a 2 A- b 2 

and 

fl = c 2 + d 2. 

I /  (~,fl)=pro, m>~O, where the prime ideal p is prime to (2), then the product aft has 
a 2,~'imitive representation o / t h e / o r m  

aft = (ac • bd) s + (ad ~ bc) 2, 

either/or the upper or /or  the lower sign. 

This restriction in the theorem does not make necessary any alterations in the 
proofs of theorems 29-31 in [1]. 

The following misprints in paper [1] ought to be noticed: Page 24, in line 
14 replace e by ~1 in the right-hand side of the equation. Page 33, in line 7 the 

first equation shall be ( ~ ) = + 1 .  Page 41, in l ine  11 from betow add, after 

tile word even, >~ 2. Page 46, in the last line replace db 1 by r 1. Page 50, in 
line 5 from below replace ~ by ft. Page 58, in line 11 from below add, after E, 

the square of which. Page 68, in line 9 the first factor shall be (~/2+ 1). 
The last 11 lines on page 34 in [1] ought to be replaced by: This congruence 

is possible only when one of the numbers b'and c is divisible by 4 and the other 
one is ----=2 (rood 4). Since 2 v = a c + b d ,  where v is even, we get ac =- - b d  (rood 4). 
Thus, a and d being odd, both b and c should be divisible by 4. Since this is 
impossible we conclude that, the numbers a, b, c and d are all even. 

In paper [2] on pape 279, line 12, read q instead of 5. 

w 6. The complete solution of  ~s + ~i2 = 1 in a quadratic field 

8. According to theorems 4 and 5 it suffices to consider the imaginary quad- 
ratic fields K (~/-D),  where D is a square-free natural number > 1. 

First  case. - D -- 2 or =--- 3 (rood 4). 

The equation in question is 

(a + c V ~ )  2 + (b + d V---D) s = 1, (7) 

where a, b, c and d are rational i~tegers. Hence we get the system 

aS + b S -  D(cS + d 2) =1,  a c =  -bd .  

If c =0  we must have b = 0  (d =0  gives the trivial solution). Hence 

a s - Dd s = 1. (8) 

Suppose next cd#0 .  By elimination of a we obtain 
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l = b2d2c -2 % b 2 - D (c 2 § d2). 
Then  we get 

c 2 = (c 2 -~- d 2) (b 2 - Dc2), 

which is impossible since d~=0. 

Conclusion: We obta in  all the solutions of (7) when b = c = 0  and a and  d 
satisfy equat ion (8). 

Second case. - D ~ 1 (rood 4). 
Then the equat ion is 

(a + c V - D) ~ + (b + d V - D )  ~ =4 ,  (9) 

where a, b, c and d are ra t ional  integers, a and  c are of the same pari ty,  and  
so are b and  d. Hence we get the system 

a 2 + b e - D (c ~ + d 2) = 4, ac = - bd. 

If  c = 0  we mus t  have b = 0 .  Thus we get 

a ~ - Dd  2 = 4. (10) 

Suppose next  c d * O .  By el iminat ion of a we obta in  

4c ~ = (c ~ + d ~) (b ~ - Dc~). ( l I )  

P u t  ( c , d ) = g ,  c = g c l ,  d = g d  1 and  (cl, d l ) = I  , where g, c 1 and  d 1 are rat ional  inte- 
gers. Then  we get from (11) 

4Cl ~ = (Cl 2 + d~) (b 2 - Dg~c~). 

Hence b is divisible by  c r P u t t i n g  b =c l ]  we get 

4 = (c~ + d b  (/~ - Dg~). 

This is possible only for c~ = ~  = 1. Hence 

/~ - D a  ~ = 2 .  ( 1 2 )  

I n  this r e l a t i o n  / and  g are clearly odd numbers .  Hence we mus t  have D - - ~ -  1 
(mod 8). 

Conclusion: We obta in  all the solutions of (9) from the formula 

a '  + (a V:--D)'  = 4, 

and,  if equat ion  (12) is solvable, from the formula 

(/ + g V - - D ) S  + ( / - g V - D ) 2 = 4 .  

Equa t ion  (12) is no t  always solvable for D - - -  1 (mod 8). Thus  it  is solvable 
for D = 7  bu t  not  for D ~ 1 5 .  
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Our resul ts  in th is  sect ion m a y  be  i n t e r p r e t e d  in t he  Di r ich le t - f ie ld  K (i, I / - D )  
in t h e  fo l lowing manne r .  Des ign  by  s t he  f u n d a m e n t a l  un i t  in K (VD), s > 1, and  

by  E the  f u n d a m e n t a l  un i t  in K (i, V - D ) ,  ]El > 1 a n d  S > 1, if E is real .  T h e n  

we have ,  for D > 3, e i the r  E = ~ or  E = l/ei. The  necessary  a n d  suff ic ient  cond i t ion  
for t he  l a t t e r  case is t h a t  t he  ideal  (2) is t he  square  of a principal ideal  in 

K (VD). F o r  t he  proof  see [3], p. 11-15. H e n c e  we m a y  conclude:  The  solut ions  
of ~ 2 + ~ 2 = 1  are  g iven  by  •  + ~ M a c c o r d i n g a s N ( ~ ) i s  = + l o r  = - 1 .  
I n  th is  w a y  we get  all  t he  solu t ions  e x c e p t  when  D ~  - 1 (rood 8) and  the  ideal  

(2) is t he  square  of a p r inc ipa l  ideal  in K 0/D) in which  case we h a v e  the  fu r the r  
so lu t ions  • E~ M. The  e x p o n e n t  M is an  a r b i t r a r y  r a t iona l  in teger .  
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