Read 6 December 1961

On the A-numbers in the quadratic fields $K(/\pm 37)$

By TRYGVE NAGELL

§ 1. Introduction

1. Every integer $\alpha \ (\neq 0)$ in the algebraic field Ω is said to be an *A*-number in Ω if it is representable as the sum of two integral squares in Ω . In a previous paper [1] we have determined the A-numbers in the quadratic fields $\mathbf{K}(\sqrt{D})$, where D = -1, $\pm 2, \pm 3, \pm 7, \pm 11, \pm 19, \pm 43, \pm 67$ and ± 163 . In another paper [2] we determined the A-numbers when $D = \pm 5$ and ± 13 . In the present paper we shall treat the cases $D = \pm 37$. The fields $\mathbf{K}(\sqrt{\pm 37})$ have in the main the same properties as the fields $\mathbf{K}(\sqrt{\pm 5})$ and $\mathbf{K}(\sqrt{\pm 13})$ treated in paper [2]. There is, however, an essential difference: The fundamental unit has the form $6 \pm \sqrt{37}$. Thus the equations $x^2 - 37y^2 = \pm 4$ have no solutions in odd (rational) integers. This fact necessitates a modification of the methods used in paper [2]. The following developments are in general analogous to those occurring in [1] and [2].

The number of ideal classes in the field $\mathbf{K}(\sqrt{37})$ is = 1 and in the field $\mathbf{K}(\sqrt{-37}) = 2$. In the Dirichlet field $\mathbf{K}(\sqrt{37}, \sqrt{-37})$ the number of ideal classes is =1. If $x + y\sqrt{-37}$ is an A-number in $\mathbf{K}(\sqrt{-37})$, x and y rational integers, then y is even. If α is an integer in $\mathbf{K}(\sqrt{37}, \sqrt{-37})$, the number 2α belongs to the ring $\mathbf{R}(1, \sqrt{-1}, \sqrt{37}, \sqrt{-37})$. For the proofs see [1], p. 8–9.

In the sequel we shall write θ instead of $\sqrt{37}$ and consequently $i\theta$ instead of $\sqrt{-37}$.

§ 2. The real field $K(\theta)$

2. Units and divisors of the rational primes 2 and 37. Every A-number in this field must be positive and have a positive norm. The fundamental unit ε is $6+\theta$. Since $N(\varepsilon) = -1$, ε is not an A-number. The *n*th power of ε is an A-number if and only if *n* is even. The number 2 is a prime in the field and, of course, an A-number.

Since the prime θ has the negative norm -37, it cannot be an A-number. The number -1 is a quadratic residue modulo θ . From the relation

$$(6+\theta)\theta = \frac{1}{4}(5+\theta)^2 + \frac{1}{4}(7+\theta)^2$$

it follows that the product $\varepsilon\theta$ is an A-number. Hence the number $\varepsilon^m\theta^n$, where *m* and *n* are rational integers, $n \ge 0$, is an A-number if and only if m+n is even.

3. The rational primes for which 37 is a quadratic non-residue. Let p be an odd rational prime such that, in $\mathbf{K}(1)$,

$$\left(\frac{-1}{p}\right) = +1$$
 and $\left(\frac{37}{p}\right) = -1$.

Then p is a prime in the field and since

 $p = u^2 + v^2,$

where u and v are rational integers, p is an A-prime.

Suppose next that p is an odd rational prime such that, in $\mathbf{K}(1)$,

$$\left(\frac{-1}{p}\right) = -1$$
 and $\left(\frac{37}{p}\right) = -1$.

Then p is a prime in $\mathbf{K}(\theta)$. Since $\left(\frac{-37}{p}\right) = +1$ we have, in $\mathbf{K}(i\theta)$,

$$(p) = \mathfrak{p}\mathfrak{p}',$$

where p and p' are different prime ideals. In this field we further have

$$\left(\frac{-1}{\mathfrak{p}}\right) = (-1)^{\frac{1}{2}(N\mathfrak{p}-1)} = -1.$$

The ideal p can never be principal. In fact, if we had $p = (x + yi\theta)$ with rational integers x and y, we should have

$$p = x^2 + 37 y^2$$
.

But this equation clearly implies $p \equiv +1 \pmod{4}$. In $\mathbf{K}(i\theta)$ we further have $(2) = q^2$, where q is a prime ideal that is not principal. Since the number of ideal classes in $\mathbf{K}(i\theta)$ is =2, the product $\mathfrak{p}\mathfrak{q}$ is a principal ideal. Hence

$$2p = x^2 + 37y^2,$$

where x and y are rational odd integers. Since this relation may be written

$$p = \frac{1}{4}(x+y\theta)^2 + \frac{1}{4}(x-y\theta)^2,$$

the number p is an A-prime in $\mathbf{K}(\theta)$. Thus the number -1 is a quadratic residue modulo p in this field.

4. The rational primes for which 37 is a quadratic residue. Let p be an odd rational prime such that, in K(1),

$$\left(\frac{-1}{p}\right) = -1$$
 and $\left(\frac{37}{p}\right) = +1$.

In this case we have

$$(p) = \omega \omega',$$

where ω and ω' are different primes. Since

$$\left(\frac{-1}{\omega}\right) = (-1)^{\frac{1}{2}(|N\omega|-1)} = -1,$$

the prime ω is not an A-number.

Finally, we consider an odd prime p such that, in $\mathbf{K}(1)$,

$$\left(\frac{-1}{p}\right) = +1$$
 and $\left(\frac{37}{p}\right) = +1$.

Since the field is simple, and since the norm of the fundamental unit ε is = -1, we have always

$$4p=u^2-37v^2,$$

where u and v are rational integers of the same parity. Then the numbers

$$\omega = \frac{1}{2}(u + v\theta)$$
 and $\omega' = \frac{1}{2}(u - v\theta)$

are conjugate prime factors of p in the field. If we suppose u > 0, the numbers ω and ω' are positive. Since the field $\mathbf{K}(\theta, i)$ is simple, we have

$$\omega = \pi_1 \pi_2 \eta,$$

where η is a unit and π_1 and π_2 are primes in that field. According to lemma 3 in [2], we may suppose that

$$\begin{aligned} \pi_1 &= \frac{1}{2}(a+c\theta) + \frac{1}{2}i(b+d\theta) \\ \pi_2 &= \frac{1}{2}(a+c\theta) - \frac{1}{2}i(b+d\theta), \end{aligned}$$

and

a, b, c and d being rational integers. The unit η belongs to the field $\mathbf{K}(\theta)$ since the product $\pi_1 \pi_2$ belongs to this field. Since ω is positive, η is so. The norm of ω is positive and the norm of $\pi_1 \pi_2$ is also positive. Hence the norm of η is positive. Thus we have

$$\psi_1 = \pi_1 \varepsilon^m \quad \text{and} \quad \psi_2 = \pi_2 \varepsilon^m,$$

we get

$$\omega = \psi_1 \psi_2,$$

where
$$\psi_1$$
 and ψ_2 are primes in $\mathbf{K}(\theta, i)$ such that ψ_1 is transformed into ψ_2 when *i* is substituted by $-i$ and vice versa. Consequently we may suppose that $\eta = 1$. Hence

$$\omega = \frac{1}{4}(a+c\theta)^2 + \frac{1}{4}(b+d\theta)^2, \tag{1}$$

which involves the relations

$$2u = a^2 + b^2 + 37(c^2 + d^2) \tag{2}$$

and

$$v = ac + bd. \tag{3}$$

$$\eta = arepsilon^{2m}$$
.

If the numbers a, b, c, d are all odd or all even, it is clear that ω is an A-number. Suppose next that a and c are both even or both odd. Then it follows from (1) that $\frac{1}{2}(b+d\theta)$ is an integer and consequently ω is an A-number. Analogously when b and d are both even or both odd. Hence it remains to examine the following case: one of the numbers a and c is even and the other one odd, one of the numbers b and d is even and the other one odd. Then it follows from (3) that v is even. Hence u is also even, and we get from (2)

$$a^{2}+b^{2}+37(c^{2}+d^{2}) \equiv a^{2}+b^{2}+c^{2}+d^{2} \equiv 0 \pmod{4}$$

But the sum of four squares is divisible by 4 only when the squares are all even or all odd. Thus we have proved that ω is always an A-number.

5. Summary and proof of the main result. As a consequence of the discussions in the preceding sections we may state the following result

Theorem 1. The prime ω in $\mathbf{K}(\theta)$ is an A-number only in the following cases: (i) $\omega = 2\varepsilon^{2m}$; (ii) $\omega = \theta\varepsilon^{2m+1}$; (iii) $\omega = p\varepsilon^{2m}$, when p is an odd rational prime such that $\left(\frac{37}{p}\right) = -1$; (iv) ω is of the form $\frac{1}{2}(u+v\theta)$, where u and v are rational integers such that $\frac{1}{4}(u^2 - 37v^2)$ is a rational prime $\equiv 1 \pmod{4}$.

We are now in a position to establish our main result.

Theorem 2. The integer α in the field $\mathbf{K}(\theta)$ is an A-number if and only if

$$\alpha = \beta \gamma^2 \theta^m \varepsilon^n,$$

where β and γ are integers in the field with the following properties: β and γ are prime to θ ; β is either = 1 or = a product of A-primes, different or not; γ is either a unit or = a product of primes π such that, in $\mathbf{K}(\theta)$,

$$\left(\frac{-1}{\pi}\right) = -1. \tag{4}$$

m and n are rational integers, m > 0, such that m + n is even. ε is the fundamental unit, chosen > 1.

Proof. It is evident that the conditions are sufficient. Suppose that α is an A-number and that

$$\alpha = \xi \eta \theta^m,$$

where ξ and η are integers in the field with the following properties: they are prime to θ ; η is either =1 or =a product of primes π satisfying the relation (4) in $\mathbf{K}(\theta)$; ξ is either =1 or =a product of A-primes; m is a rational integer ≥ 0 . Then we must have $\eta = \varrho \gamma^2$, where γ is an integer in the field and ϱ a unit. Thus the number α / γ^2 is an A-number. Now applying lemma 4 in [2] a certain number of times to the prime factors π of ξ , we find that the number

$$\frac{\alpha}{\gamma^2 \xi} = \varrho \theta^m$$

must be an A-number. Finally, applying a result in section 2 we achieve the proof.

§ 3. The imaginary field $K(i\theta)$

6. Units and divisors of the rational primes 2 and 37. The number -1 is an A-number in the field since

$$-1 = 6^2 + (i\theta)^2.$$

Thus the numbers α and $-\alpha$ are simultaneously A-numbers or not.

The prime $i\theta$ is clearly not an A-number, and $(i\theta)^m$ is an A-number only when m is even. The number -1 is a quadratic residue modulo $i\theta$. The number $u+vi\theta$, where u and v are rational integers, is never an A-number when v is odd. In virtue of the relation

$$2i\theta = 6^2 + (1 + i\theta)^2$$

we state: the number $2i\theta$ is an A-number. We have

$$(2) = \mathfrak{q}^2 = (1^2 + 1^2),$$

where the prime ideal q is not principal. The number -1 is a quadratic residue modulo q.

7. The rational primes for which -37 is a quadratic non-residue. Let p be an odd rational prime such that, in $\mathbf{K}(1)$,

$$\left(\frac{-1}{p}\right) = +1$$
 and $\left(\frac{-37}{p}\right) = -1$.

Then (p) is a prime ideal in the field and since

$$p=u^2+v^2,$$

where u and v are rational integers, p is an A-prime.

Suppose next that p is an odd rational prime such that, in K(1),

$$\left(\frac{-1}{p}\right) = -1$$
 and $\left(\frac{-37}{p}\right) = -1$.

Then (p) is a prime ideal in the field $\mathbf{K}(i\theta)$. Since 37 is a quadratic residue of p, and since the field $\mathbf{K}(\theta)$ is simple, the equation

$$4p = x^2 - 37y^2$$

is solvable in rational integers x and y.

If x and y are both even, we get

$$p = x_1^2 - 37y_1^2 = x_1^2 + (i\theta y_1)^2,$$

where $x_1 = \frac{1}{2}x$ and $y_1 = \frac{1}{2}y$. Hence p is an A-prime.

If x and y are both odd, we shall show that p is not an A-number. In fact we have, for every rational integer m,

$$\frac{1}{2}(x+y\theta)(6+\theta)^m = \frac{1}{2}(u+v\theta),$$

where the rational integers u and v are clearly odd when x and y are odd. Hence, in this case, the equation

$$p = u^2 - 37v^2$$

is not possible in rational integers u and v. Suppose next that

$$p = (a + ci\theta)^2 + (b + di\theta)^2,$$

where a, b, c and d are rational integers. This relation implies

$$p = a^2 + b^2 - 37(c^2 + d^2), ac = -bd.$$

If d=0 we must have a=0. Hence we should have $p=b^2-37c^2$ which is impossible as was shown above. If $d\neq 0$ we get $b=-acd^{-1}$ and by elimination of b

$$pd^2 = (c^2 + d^2)(a^2 - 37d^2)$$

Put $c = fc_1$ and $d = fd_1$ where $(c_1, d_1) = 1$. Then we get

$$p = (c_1^2 + d_1^2) (a^2 d_1^{-2} - 37f^2).$$

Hence a is divisible by d_1 . Putting $a = gd_1$ we must have either

or

$$p = g^2 - 37f^2.$$

 $p = c_1^2 + d_1^2$

But these equations are both impossible. Hence p is not an A-number. We say that the rational prime p is a B-prime when p has the following properties: $p \equiv -1 \pmod{4}$, 37 is a quadratic residue modulo p; the equation $p = x^2 - 37y^2$ has no solutions in rational integers x and y. Hence we have proved that a B-prime is not an A-number. By the same method we may show that the equation

$$2p = (a + ci\theta)^2 + (b + di\theta)^2,$$

where p is a B-prime, is not possible in rational integers a, b, c and d. In fact, if d=0 we get $2p=b^2-37c^2$, which is impossible modulo 4. If $d\neq 0$ we get in the same way as above

$$2p = (c_1^2 + d_1^2) (g^2 - 37f^2).$$

Hence $c_1^2 = d_1^2 = 1$ and $p = g^2 - 37f^2$. Since p is a B-prime the latter equation is impossible. Thus we have proved

Lemma 1. When p is a B-prime none of the numbers p or 2p is an A-number.

We further prove

Lemma 2. The product of two B-primes is an A-number. Proof. Let p and p_1 be two B-primes

$$p = \frac{1}{4} [x^2 + (yi\theta)^2]$$
 and $p_1 = \frac{1}{4} [x_1^2 + (y_1i\theta)^2],$

where x, y, x_1 and y_1 are odd rational integers. Then

$$16pp_1 = [xx_1 \pm 37yy_1]^2 + [(xy_1 \pm x_1y)i\theta]^2.$$

Here the sign may be chosen such that the number $xx_1 \pm 37yy_1$ is divisible by 4. Then $xy_1 \pm x_1y$ is also divisible by 4. This proves the lemma.

8. The rational primes $p \equiv -1 \pmod{4}$ for which -37 is a quadratic residue. Let p be an odd rational prime such that, in $\mathbf{K}(1)$,

$$\left(\frac{-1}{p}\right) = -1$$
 and $\left(\frac{-37}{p}\right) = +1$.

Then we have

$$(p) = \mathfrak{p}\mathfrak{p}',$$

where \mathfrak{p} and \mathfrak{p}' are different prime ideals in the field $\mathbf{K}(i\theta)$. In this field we further have

$$\left(\frac{-1}{\mathfrak{p}}\right) = (-1)^{\frac{1}{\mathfrak{p}}(N\mathfrak{p}-1)} = -1.$$
(5)

The ideal \mathfrak{p} can never be principal. In fact, if we had $\mathfrak{p} = (x + yi\theta)$ with rational integers x and y, we should have

 $p = x^2 + 37y^2.$

But this equation clearly implies $p \equiv \pm 1 \pmod{4}$.

Lemma 3. Let α and β be integers in $\mathbf{K}(i\theta)$, not both equal to zero. Further, let \mathfrak{p} be a prime ideal in the field satisfying relation (5). If the sum $\alpha^2 + \beta^2$ is divisible by the power \mathfrak{p}^m , we must have

$$\alpha \equiv \beta \equiv 0 \pmod{\mathfrak{p}^{\nu}},$$

where $v = [\frac{1}{2}(m+1)].$

The proof is the same as that of lemma 6 in paper [2].

The following results may be obtained in the same manner as the lemmata 7-10 in paper [2].

Lemma 4. Let \mathfrak{p} be a prime ideal in the field satisfying relation (5). Then \mathfrak{p}^2 is a principal ideal = $(u + vi\theta)$, u and v being rational integers, u even and v odd. Further, the numbers $2(u + vi\theta)$ and $i\theta(u + vi\theta)$ are A-numbers.

Let \mathfrak{p}_1 be another prime ideal satisfying relation (5). Then $\mathfrak{p}\mathfrak{p}_1$ is a principal ideal = (α), where the integer α is not an A-number.

9. The rational primes $p \equiv \pm 1 \pmod{4}$ for which -37 is a quadratic residue. Consider finally the case

$$\left(\frac{-1}{p}\right) = +1$$
 and $\left(\frac{-37}{p}\right) = +1$,

where p is an odd rational prime. Here we have

$$(p) = \mathfrak{p}\mathfrak{p}',$$

where \mathfrak{p} and \mathfrak{p}' are different prime ideals in the field. Exactly as in paper [2], p. 272, it may be shown that these ideals are principal. Hence

$$p=u^2+37v^2,$$

where u and v are rational integers. Then the numbers

$$\omega = u + vi\theta$$
 and $\omega' = u - vi\theta$

are conjugate prime factors of p in $\mathbf{K}(i\theta)$. Since the field $\mathbf{K}(\theta, i\theta)$ is simple, we have

$$\omega = \pi_1 \pi_2,$$

where π_1 and π_2 are primes in the latter field. Since $2\pi_1$ and $2\pi_2$ belong to the ring $\mathbf{R}(1, i, \theta, i\theta)$ (cf. the introduction), we may suppose that

$$\pi_1 = \frac{1}{2}(a+ci\theta) + i\frac{1}{2}(b+di\theta)$$

and

$$\pi_2 = \frac{1}{2}(a+ci\theta) - i\frac{1}{2}(b+di\theta),$$

a, b, c and d being rational integers. Hence

$$\omega = \frac{1}{4}(a+ci\theta)^2 + \frac{1}{4}(b+di\theta)^2, \qquad (6)$$

which involves the equations

$$4u = a^2 + b^2 - 37(c^2 + d^2) \tag{7}$$

and

$$2v = ac + bd. \tag{8}$$

If u is even and v odd the prime ω can never be an A-number. In this case we call ω a C-prime.

Suppose next that u is odd and v even. If the numbers a, b, c and d are all even, ω is an A-number. If they are all odd, we get from (7) $4u \equiv 0 \pmod{8}$, thus u is even and ω is a C-prime. Exactly as in paper [2], p. 273, it may be shown that the only remaining possibility is that a and d are both even and b and c are both odd. (It is, of course, unnecessary to treat the case with b and c even and a and d odd). In this case we get from (7)

$$a^2 + d^2 \equiv 0 \pmod{8}.$$

It follows from this congruence that $\frac{1}{2}a$ and $\frac{1}{2}d$ are either both odd or both even. If ω were an A-number, it is evident that it should exist a unit E in $\mathbf{K}(\theta, i\theta)$ such that

$$E\pi_1 = a_1 + c_1 i\theta + i(b_1 + d_1 i\theta), \tag{9}$$

 a_1, b_1, c_1 and d_1 being rational integers. It suffices to consider the case that E is the fundamental unit in $\mathbf{K}(\theta, i\theta)$. In this field one may choose the fundamental unit $= 6 + \theta$, cf. paper [3], p. 11-15. Hence

$$E\pi_1 = \frac{1}{2}(6+\theta) [a+ci\theta+i(b+di\theta)] =$$

= $\frac{1}{2}[6a-37d+(6c+b)i\theta+(6b+37c)i+(a-6d)\theta].$

Since the number 6c+b is odd we see that $E\pi_1$ is not of the form (9) with rational integers a_1, b_1, c_1, d_1 . Thus we conclude that ω is not an A-number in this case. We say that the prime ω is an *F*-prime, when ω is of the form (6), where a, b, c and d are rational integers, such that one of the numbers a^2+d^2 and b^2+c^2 is divisible by 8 and the other one only by 2.

In the above proof the numbers 6a - 37d and a - 6d are even, and the numbers 6c + b and 6b + 37c are odd. Hence we may state

Lemma 5. In all the representations of an F-prime ω ,

$$\omega = \frac{1}{4}(a + ci\theta)^2 + \frac{1}{4}(b + di\theta)^2$$

with rational integers a, b, c and d, one of the numbers $a^2 + d^2$ and $b^2 + c^2$ is divisible by 8 and the other one only by 2.

Lemma 6. The product of two F-primes is an A-number. Proof. Let ω and ω_1 be two F-primes,

$$\omega = \frac{1}{4}(a+ci\theta)^2 + \frac{1}{4}(b+di\theta)^2,$$

$$\omega_1 = \frac{1}{4}(a_1+c_1i\theta)^2 + \frac{1}{4}(b_1+d_1i\theta)^2,$$

where $a, b, c, d, a_1, b_1, c_1$ and d_1 are rational integers, such that a, d, a_1 and d_1 are even and b, c, b_1 and c_1 are odd. Then we get

$$\begin{split} \mathbf{16} &\omega _{1} = [aa_{1} - 37cc_{1} \pm bb_{1} \mp 37dd_{1} + (ac_{1} + a_{1}c \pm bd_{1} \pm b_{1}d)i\theta]^{2} + \\ & [ab_{1} - 37cd_{1} \mp a_{1}b \pm 37c_{1}d + (b_{1}c + ad_{1} \mp a_{1}d \mp bc_{1})i\theta]^{2}. \end{split}$$

Since $a \pm d$ and $a_1 \pm d_1$ are always divisible by 4, we have, as well for the upper as for the lower sign,

$$ac_1 + a_1c \pm (bd_1 + b_1d) \equiv 0 \pmod{4}$$

and

$$ab_1 - 37cd_1 + (a_1b - 37c_1d) \equiv 0 \pmod{4}$$

Let us choose the sign such that the number $cc_1 + bb_1$ is divisible by 4. Then we clearly obtain

 $aa_1 - 37cc_1 \pm (bb_1 - 37dd_1) \equiv 0 \pmod{4}$

and

$$b_1c + ad_1 \mp (a_1d + bc_1) \equiv 0 \pmod{4}.$$

This proves the lemma.

Lemma 7. If ω is an F-prime, 2ω is not an A-number. Proof. Suppose ω given by (6), where a and d are even, b and c odd. Then we have

$$8\omega = 4\omega(1^2 + 1^2) = [a + b + (c + d)i\theta]^2 + [a - b + (c - d)i\theta]^2.$$

If 2ω were an A-number, it should exist a unit E in $\mathbf{K}(\theta, i\theta)$ such that

$$E[a+b+(c+d)i\theta+i(a-b)-(c-d)\theta] = a_1+c_1i\theta+i(b_1+d_1i\theta),$$

where the rational integers a_1 , b_1 , c_1 and d_1 were all even. It is sufficient to take $E = 6 + \theta$. Then we get $a_1 = 6a + 6b - 37(c - d)$. Hence a_1 is odd, and 2ω is not an A-number.

10. Summary. As a consequence of the discussions in the preceding sections, we may state the following results.

Theorem 3. All the prime ideals in $\mathbf{K}(i\theta)$ are principal except the prime ideal divisors of 2 and of the odd rational primes p satisfying the relations, in $\mathbf{K}(1)$,

$$\left(\frac{-1}{p}\right) = -1, \quad \left(\frac{-37}{p}\right) = +1.$$

Theorem 4. The prime ω in $\mathbf{K}(i\theta)$ is an A-number only in the following cases: (i) $w = \pm p$ where p is an odd rational prime such that, in $\mathbf{K}(1)$,

$$\left(\frac{-37}{p}\right)=-1,$$

except when $p \equiv -1 \pmod{4}$ and the equation $p = x^2 - 37y^2$ has no solutions in rational integers x and y.

(ii) ω is of the form $u + vi\theta$, where u and v are rational integers, u odd, v even, such that $u^2 + 37v^2$ is a rational prime, except when the A-number 4 ω has a representation of the form

$$4\omega = (a + ci\theta)^2 + (b + di\theta)^2, \tag{10}$$

a, b, c and d being rational integers such that one of the numbers a^2+d^2 and b^2+c^2 is divisible by 9 and the other one only by 2.

By means of this theorem it may always be decided if a given prime is an A-prime or not. This is evident in the first case. In the second case it follows from section 5 that equation (10) is always solvable when ω is a prime of the type in question. Thus a solution of (10) may be found by trial.

It is now possible to determine the necessary and sufficient conditions for a given integer α in the field to be an A-number. To arrive at a result of that sort it should, however, be necessary to develop a great number of lemmata on certain products of the type

$$\omega_1 \omega_2 \omega_3 \dots \omega_{\nu},$$

where ω_i is either a B-prime, or a C-prime, or an F-prime, or a number $u + vi\theta$ defined in lemma 4, and finally ω_i may also be = 2 or = $i\theta$. It should furthermore be necessary to distinguish two kinds of C-primes. (The lemmata 1, 2, 4, 6 and 7 are of the type in question.) Since the discussions in that matter should be too extensive we terminate with these remarks.

11. Numerical examples in $\mathbf{K}(i\theta)$. The numbers 3 and 11 are B-primes since

$$3 = \frac{1}{4}(7^2 - 37 \cdot 1^2)$$
 and $11 = \frac{1}{4}(9^2 - 37 \cdot 1^2)$.

The number $2+3i\theta$ is a C-prime since

$$2 + 3i\theta = \frac{1}{4}[3^2 + (6 + i\theta)^2],$$

and since $N(2+3i\theta) = 337$ is a prime.

The number $-16 + i\theta$ is a C-prime of another kind since

$$-16 + i\theta = \frac{1}{4}[(3 + i\theta)^2 + (1 - i\theta)]^2,$$

and since $N(-16+i\theta) = 293$ is a prime.

The number $-3+2i\theta$ is an F-prime since

$$-3+2i\theta=\frac{1}{4}[4+i\theta)^2+3^2],$$

and since $N(-3+2i\theta) = 157$ is a prime.

The number $-13+2i\theta$ is an A-prime since

$$-13+2i\theta = (6+i\theta)^2 + (5-i\theta)^2,$$

and since $N(-13+2i\theta) = 313$ is a prime.

REFERENCES

- 1. NAGELL, T., On the representations of integers as the sum of two integral squares in algebraic, mainly quadratic fields, Nova Acta Soc. Sci. upsal., Ser. IV, Vol. 15, No. 11, Uppsala 1953.
- NAGELL, T., On the sum of two integral squares in certain quadratic fields, Arkiv f. matematik, Bd. 4, nr. 20, Uppsala 1960.
- NAGELL, T., Sur quelques questions dans la théorie des corps biquadratiques, Arkiv f. matematik, Bd. 4, nr. 26, Uppsala 1961.

Tryckt den 13 juni 1962

Uppsala 1962. Almqvist & Wiksells Boktryckeri AB