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On convergent and divergent sequences of equilibrium 
distributions 

By HANS WALLIN 

l.  Introduction 

We shall deal with sets belonging to an m-dimensional Euclidean space R m 
and we suppose all the time that  the sets are bounded Borel sets. 

Let K=(r), n = 1, 2 . . . . .  and K(r) denote non-negative, non-increasing functions, 
defined for r >~ 0, which are continuous for r > 0. We also suppose that Kn(r)->K(r) 
when n - + ~ .  The problem which we shall discuss, is of the following type. 
Suppose that Kn(r), n = 1, 2 . . . . .  are such that  the equilibrium problem is pos- 
sible for every K~(r). 1 This is, for instance, the case if every Kn(r) is of the 
form r -~, m - 2 ~ z c < m .  When is it true that  the equilibrium distributions be- 
longing to the kernels K=(r) and a certain closed set /v converge, when n-> ~ ,  
on the assumption that the Kn-capacity 2 of the set F is positive? By con- 
vergence we always mean convergence in the weak sence. We shall here above 
all deal with the case when the K-capacity of F is zero. This question is of 
interest because a positive answer would, to sets of capacity zero, assign a 
distribution of mass which would be an analogue to the equilibrium distribution 
for sets of positive capacity. The case when the K-capacity of F is positive 
is easily settled. Namely, if the K-capacity of F is positive and Kn(r)SK(r)  
- - t h a t  is K=(r) tends non-decreasingly to K(r)-- i t  immediately follows that  
the equilibrium distributions belonging to K~(r) and the set E converge, when 
n--> c~, towards the equilibrium distribution belonging to K ( r ) a n d  F. This is 
proved by Frostman in [2] for kernels of the type r ~ and his proof remains 
valid for general kernels. An assumption like Kn(r)SK(r)  is essential which 
is seen by the following counter-example) There exists a closed linear set F 
with I-Iausdorff dimension 4 larger than a chosen number ~0, ao < 1, such that  
the equilibrium distributions belonging to the kernels r -~ and F fail to converge 
to the equilibrium distribution belonging to r -~~ and F, when :r + 0 - - t h a t  
is zr tends to ~0 from above. We give a proof of this in Theorem 7. 

I t  is possible to determine the equilibrium distribution exactly only in a few 
simple cases. This problem has been treated by Polya and Szeg5 [6], who have 

For  de f in i t ions  see [1]. 
2 As r ega rds  t he  de f in i t i on  of c a p a c i t y  see below. 
a This  coun t e r - exa m ple  has  been shown to me b y  Professor  Carleson.  
4 Fo r  the  de f in i t ion  see [1], p. 90. 
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de te rmined  the  equi l ibr ium d i s t r ibu t ion  belonging to  the  kernel  r -~, a < l ,  when 
the  set  is, for instance,  a l inear  in terval .  Their  resul t  shows t h a t  the  equi l ibr ium 
d is t r ibu t ions  converge to  the  d i s t r ibu t ion  of mass  which has  cons tan t  dens i ty  
in the  given in terva l ,  when a--~l .  An  analogous  resul t  is va l id  for a c ircular  
d isk  and  the  (3-dimensional)  sphere.  B y  mapp ing  a l inear  in te rva l  i sometr ica l ly  
on a rect i f iable  curve in the  plane,  F r o s t m a n  [2] has shown, using the  resul ts  
of Po lya  and  Szeg6, t h a t  the  equi l ibr ium d is t r ibu t ions  belonging to  r ~ and  a 
rect i f iable  p lane  curve converge, when a - > l ,  to  the  d i s t r ibu t ion  of mass,  where 
the  mass  which is s i tua ted  on an  arc is p ropor t iona l  to  the  length  of t h a t  arc.  
Ano the r  case has been t r e a t ed  b y  L i thne r  [3] using me thods  from Four ie r  ana-  
lysis.  He  has  p roved  t h a t  the  equi l ibr ium dis t r ibu t ions  belonging to  r ~ and  F 
converge,  when a - - > m - 0 ,  t owards  the  d i s t r ibu t ion  which has  cons tan t  dens i ty  on 
F ,  if F is a compac t  set in R m which has  posi t ive  m-dimens iona l  Lebesgue 
measure.  We shall  prove  (Theorem 1) - -us ing  qui te  o ther  me thods  t h a n  those 
of L i t h n e r - - t h a t  th is  resul t  remains  va l id  for much  more general  kernels  Kn(r) 
and  K(r). Thus  we get  an  analogous  resul t  even if we do no t  assume t h a t  the  
kernels  are  such t h a t  the  equi l ib r ium prob lem is possible. I n  th is  case there  
exis ts  no longer an  equi l ibr ium d is t r ibu t ion ,  b u t  we still  consider  a (not neces- 
sar i ly  un ique ly  de te rmined)  d i s t r ibu t ion  of unit ,  mass  on F ,  #n, which realizes 

infer f f Fr Kn(Ix-yl)dv(x)dv(Y)' 

where F is the  class of at] pos i t ive  d i s t r ibu t ions  of un i t  mass  on F .  The  con- 
clusion is then,  jus t  as before, t h a t  {/~n) converges to  the  d i s t r ibu t ion  which 
has cons tan t  dens i ty  on F .  This  is the  ma in  resul t  of the  paper .  

The m e t h o d  which we shall  use in the  proof  of Theorem 1 can also be used 
to  prove  the  following resul t  (Theorem 2). I f  2'  is a compac t  set in R m and  
C~,(F) denotes  the  a - capac i t y  of F and  re(F) the  m-dimensional  Lebesgue measure  
of F ,  we have  

l im C~(F) _ km(F), 
~ , - - , m - o  m - a 

where k is a cons tan t  which only depends  on the dimension m of the  space Rm. 1 
The  res t  of the  paper  chiefly consists of counter-examples .  The a im of these 

is to  show t h a t  the  resul t  in Theorem 1 is, in a cer ta in  sense, the  bes t  possible.  
Thus  there  is no n a t u r a l  analogue to  Theorem 1 for sets hav ing  Lebesgue measure  
zero. Due to  th is  somewhat  nega t ive  charac te r  of the  res t  of the  paper ,  we 
shall  somet imes  give only a sketch of the  proofs  of the  counter -examples .  I n  
order  to  keep the  calculat ions  as simple as possible we shall  also as a rule give 
the  counter -examples  for l inear  sets. 

I n  Theorem 3 we prove  t h a t  there  exists  a closed l inear  set F wi th  a pre- 
scr ibed Hausdorf f  d imension  a0, 0 <  a0-~< 1, so t h a t  the  equi l ibr ium d is t r ibu t ions  
belonging to the  kernels  r ~ and  F do no t  converge when a-->a 0 - 0 .  

The quest ion t h a t  is answered b y  Theorem 1 can in a na tu ra l  way  be gen- 
eral ized to  sets having  Hausdor f f  d imension less t h a n  1. Given an  a r b i t r a r y  

1 Compare [2] where a similar formula is proved when F is a rectifiable plane curve. 
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positive number  :c0, 0 <  :c0 < 1, and a closed linear set F which has positive and 
finite :c0-dimensional Hausdorff  measure, A~0(F), is it then  true tha t  the equi- 
librium distributions belonging to  the kernels r -~ and the set F converge, when 
:c-->ao-0,  to a distr ibution where the mass si tuated on a subset of F is propor-  
tional to the :c0-dimensional Hausdorff  measure of t ha t  subset? A negative an- 
swer to this question is given in Theorem 4. I t  should be noticed tha t  we must  
here assume tha t  :co < 1, because if a0 = 1 A~0(F) coincides with the Lebesgue 
measure of F ,  as F is a linear set, and then the answer to the question is in 
the affirmative according to Theorem 1. But  hence there appears, in a natura l  
way  the question whether it is possible to construct  a closed set F in the plane 
having positive and finite 1-dimensional Hausdorff  measure, 0 < A I ( F  ) < oo, so 
tha t  the equilibrium distributions belonging to r ~ and F do no t  converge to a 
constant  times the 1-dimensional Hausdorff  measure, when :c-->l - 0 .  I n  Theorem 5 
we prove tha t  this is possible. This result is thus  an instance of the well-known 
fact tha t  there exists a fundamenta l  difference in the s tructure of linear and 
plane sets with positive and finite 1-dimensional Hausdorff  measure. 

The above counter-examples show tha t  there is no result which is analogous 
to Theorem 1 if the set F has Lebesgue measure zero. I n  order to get  a posi- 
tive solution of the convergence problem for sets with Lebesgue measure zero, 
we mus t  consequently limit ourselves to sets which satisfy some suitable con- 
dition of regularity. We shall prove (Theorem 6) t ha t  if the set is a linear 
Cantor  z set, then we get a positive answer to  the convergence question. On 
the other  hand, there exist simple sets for which the answer is in the negative, 
which is illustrated by  the fact  t h a t  the sequence of equilibrium distributions 
does no t  necessarily converge if the set F is the union of two Cantor  sets. We 
sketch a proof of this in the remark to Theorem 6. 

A question which is related to the above is the following. Let  /zn be the 
distr ibution of the mass 1In in each of the n points (not necessarily uniquely 
determined) which realize 

1 ,  . . . ,  n 

5 g(Ix,-zjl) 
min ~<s _ K(D(K)), 

where F is a closed set. I f  the K-capac i ty  of F is positive and the equilibrium 
problem is possible for K(r), then it is true tha t  {/Ln} converges to the equi- 
librium distribution belonging to K(r) and F,  when n - - > ~ .  2 Does {/in} converge 
also if the K-capac i ty  of F is zero? The fact  t ha t  this is no t  necessarily the  
case is an immediate consequence of a result of Terasaka [8], who, in the case 
when K ( r ) = l / r ,  constructed a closed enumerable set, such tha t  the se- 

quence u~(x)= I K(Ix-yl)d/~n(y), n =  1, 2, . . . ,  does not  converge for every x be- 

longing to the complement  of F .  I t  is, however, possible to make Terasaka 's  

z For definitions see [4], pp. 152 ff. 
See [1], pp. 46 if, where this is proved for K(r)= r -~ . 
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construct ion for an  arbi t rary  kernel K(r) and hence we can, to every  kernel 
K(r), find an  enumerable set such t h a t  {/~n} does not  converge. Final ly we can 
note t ha t  the same negative resul t  also remains valid if instead of considering 
the n points which realize K(D(n ~)) we take the n points {y~}~ which realize 

?t 

K(R'~)=max min _1 ~. K([x_x~l)=mi n 1 ~ K(ix_y~l). 
xc~eF x ~ F  n i = l  xeF T6 4=1 

2. Def in i t ions  and notat ions  

x = (x t, x 2, . . . ,  x m) denotes a point  in R ~. B y  a closed m-dimensional interval  
we mean the set of points which satisfy the inequalities a, 4x*~ b,, where a~ 
and b, are any  numbers  such t h a t  a , <  bt, i = 1, 2 . . . .  , m. S(x0, r) denotes the 
closed sphere I x - x  o[ <~r. I(H, v; F) denotes the energy integral 

f f H(tx-yl)dv(x)dv(y). 
The H-capac i ty  of a set F ,  CH(F), we define as CH(F)= {inf I(H, v; F)} -1, where 

y e F  

F is the class of all positive distributions of uni t  mass on F,  i.e. the class of 
all completely additive, non-negative set functions taking the value 1 on F and 
vanishing outside F .  Part icularly,  we write the a-capaci ty  of F ,  i.e. the case 
when H(r)=r -~, as C~(F). 

A set E is said to be regular with respect to the distr ibution #, or shorter 
regular #, if # does not  distribute any  mass on the boundary  of E. The  com- 
plement  of E we denote by E' and for the m-dimensional Lebesgue measure 
of E we write m(E). H E 1 and E 2 are two sets, we denote by EI~,E ~ the set 
of points belonging to E 1 but  not  to E 2. If  E l s e  2 we write E ~ - E ~  instead 
of E l S E  2. 

. 

I n  this section we collect some inequalities which will be of constant  use 
when we prove the lemmas required for the proof of Theorem 1. Let  H(r) be 
defined for r~>0, continuous for r > 0 ,  non-increasing and non-negative.  Let  
lira H(r)=H(O)~< ~ .  Let  F be a closed set of positive H-capaci ty .  As F is 
r-->0 

closed there exists a not  necessarily uniquely determined distribution, 3, of uni t  
mass on F which realizes 

inf I(H, ~; F)= VH(F), 
~er" 

where F is the class of all positive distributions of unit  mass on F.  We thus have 

I(H, 3; F)=  V.(F)= {C~(F)} -1. 

We call ~ a capaci tary distr ibution belonging to H(r) and F.  Par t icular ly  if the 
equilibrium problem is possible for H(r), a capaci tary distr ibution is identical with 
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the  equilibrium distr ibution and accordingly unique. 1 We now form the potential  
belonging to the capaci tary distr ibution ~ and the kernel H(r) 

u(x) = fF H(Ix - y ] )  dr(y). 

Then the following inequalities are true: 

u(x) >~ VH(F) for all x E F except perhaps for a set with H-capac i ty  zero. (3.1) 

u(x) <~ VH(F) everywhere on the support  of 3. (3.2) 

u(x) <~ A .  VH(F) everywhere, where A is a constant  which only depends 
on the dimension m of the space R ~. (3.3) 

The inequalities (3.1) and (3.2) follow from the fact  t ha t  u(x) is lower semi- 
continuous by  using the "var ia t ion  method of Gauss". For  this we refer to  
F ros tman  [1], pp 35 ff. (3.3) eusily follows from the  fact  t ha t  H(r) is monot-  
onously decreasing. This is a result of Ugaheri  [9]. 

4. 

We now prove a lemma which we shall use in the proofs of all our theorems. 
First, however, we collect the conditions on our functions Kn(r)and K(r). 

K~(r), n = 1, 2 . . . .  , and K(r) are defined for r ~> 0, continuous for r > 0, ] 
are non-negat ive and non-increasing and satisfy l ~  Kn(r) = Kn(O) <<- 0% ~ (a) 

lim K(r)= 0% ] 
r--~0 

lim K~(r) = K(r). (b) 
n - - >  oo  

L e m m a  1. Suppose that K~(r), n =  1, 2 . . . . .  and K(r) satis/y conditions (a) 
and (b) and that F is a closed set satis/ying CK~(F)>0 and CK(F)=0. Let /~, 
be a capacitary distribution belonging to Kn(r) and F and suppose that {/zn} con. 
verges to a certain distribution 1~. Denoting by S an m-dimensional sphere it is 
true that 

CK~(S n F) 
/~(S N F)  = lim 

n-,~ CKn(F) 

i/ the sphere S is regular [~ and /a(S)>0. 3 

Proo/. We first prove tha t  

lim I(Kn,/~n; F) = ~ .  (4.1) 

We introduce the functions [Kn(r)]N and [K(r)]N, where [Kn(r)]N = Kn(r ) if K~(r) <~ IV 
and  [Kn(r)] = N  if K~(r)>N,  and where [K(r)]~ is defined in an analogous way.  

i I t  should be observed tha t ,  according to our  convention,  bo th  a eapaci tary  d is t r ibut ion  and  
the  equi l ibr ium dis t r ibut ion are dis t r ibut ions  of un i t  mass.  

2 This  l emma should be compared  to the  calculations in F r o s t m a n  [2]. 
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The fact that  [Kn(r)]N and [K(r)]N are non-increasing and tha t  [K(r)JN is con- 
tinuous implies tha t  [Kn(r)]N converges uniformly to [K(r)]~ in every compact 
interval. Hence 

lim I(Kn, ~an; F)>~ lim I([Kn]N, /an; F)=I([K]N,/a; F), 

for all N. But  since CK(F)=0  we have lim I([K]N, /a; F ) =  oo, and so (4.1) is 
proved. N-*~ 

We now suppose tha t  S has radius r where r is chosen so tha t  S is regular 
with respect to # and /a(S)>O. Choose a sphere S o with the same centre as 
S and with radius to, r o > r, so tha t  S o is regular #. Then the following esti- 
mate  holds 

>~ I(Kn, /an; S) >~ ! Kn(r o - r) (4.2) 
~an(S) ~ I(Kn--, ~an; F) #n(S) -/an(So - S) I(Kn, ~an; F) 

This is an easy consequence of the inequalities (3.1)and (3.2). In  fact, we have 

I (Kn, ~n; s) < f s f Kn(,x-Y,) d/an(x) d~n(Y) <<-l(Kn, /an; F) " f sd/an(x), 

according to (3.2). This gives one of the inequalities (4.2). We get the other 
by  the following division of the energy integral 

S F S S o - S  S F~\So 

I >1 I(Kn, ~an; F ) .  fsd/an(x), 

by (3.1), because /an does not distribute any mass on a set of Kn-capacity zero. 

>~ - I(Kn, /an; F) f d#n(x), I I  
J S o - S 

according to (3.2). 

I I I  ~> - Kn(r o - r). 

This gives the other inequality (4.2). Now letting n--> ~o in (4.2) we get by (4.1) 

I(Kn, #n; S ) >  lim I(Kn, ~an; S) >~ #(S) - # ( S o - S ) .  /a(S) >/lira 
n-~:r ( n,/~n; F) ~ I(Kn, ~an; F) 

If  ro--r is small # ( S o - S  ) is, however, arbitrarily small and hence we get 

I(Kn, ~an; S) 
/a(S) = n-*~lim I(Kn,/an; F) (4.3) 
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In  an analogous way  we realize t h a t  

I(K~, /~n; S') (4.4) 
#(S ' )  = n-~oolim l (Kn , /~ ;  F) 

I t  is easy to see t h a t  the  l imit  in (4.3) is exac t ly  

l im CK~(S N F) 
n-.oo CK,(F) 

Namely ,  if vn is d is t r ibuted on S O F with the  same relat ive densi ty  as a capac i ta ry  
dis tr ibut ion belonging to K~(r) and  S fl F and with the to ta l  mass  rn(S fl F)  
= / ~ ( S  n F)  = / ~ ( S ) ,  we get 

l im I(Kn, v~; S N F)  = 1. (4.5) 
n-~oo I(Kn, /~n; S) 

For, suppose t h a t  lim I(Kn, ~ ;  S fl F)  = h < 1. (4.6) 
~_~ I(Kn,  #~; S) 

As /~n is a d is t r ibut ion of uni t  mass  which realizes inf I(Kn, v; F), we get 

1 -  I(K~, /a~; F) 
~(g~, ~;  F) 

I(Kn, 

I(Kn, /~;J " F)'J ~ (4.7) 

But  if A is the cons tant  which occurs in (3.3), we have  

<. A . I(Kn, /an; F) " {~n(S)} -1"/~=(So - S) + K=(r o - r) 

which follows f rom the fact  t ha t  

sup I g=(Ix-- Yl) dye(x) <. A" {vn(S)}- ' '  I(g=, v~; S N F) 
y J S  

~< A .  {v=(S)}- ' .  I(gn,  /~,; S) < A {~n(S)} -~.  I(K~, i~=; F), 

where the  first  inequal i ty  is ob ta ined  f rom (3.3). I f  we use the  es t imate  which 
we have  just  obtained,  (4.7) gives b y  first le t t ing n-->c~ and  then  ro-->r, 
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1 ~< l im I(K~, v~; S N F) + l i m  I(K~,/~,; S') 
n-.~r I(K~, ~ ;  F) ~-~oo I(K~, /~, F) 

According  to  (4.3), (4.4) and  (4.6) th is  gives 

1 <~ h/~(S) + #(S'). 

But  as h < 1 a n d  #(S)  > 0 we have  1 ~< h#(S) +/~(S')  < 1, which gives a cont ra-  
d ic t ion.  The  re la t ion  (4.5) is hence true,  and  this ,  combined  wi th  (4.3), imme-  
d ia t e ly  gives 

CK,,(S n F) 
~(S) = # (S  N F )  = n-*~olim CK~(F) 

and  so the  l emma  is proved.  

Remark. The conclusion of the  l emma  remains  va l id  also if S denotes  cer- 
t a in  more  general  sets t h a n  spheres.  F o r  instance,  for S we can choose the  
in tersec t ion  be tween a sphere and  an  m-dimensional  in te rva l  (compare  L e m m a  2) 
or the  union of a f ini te  number  of m-dimensional  in te rva ls  (compare Theorem 2). 
Clearly, the  only  difference in the  proof  in these  cases is t h a t  we have  to  
choose S O in a somewha t  d i f ferent  way  t h a n  above.  F o r  S O we choose a set,  
conta in ing  S, which is s imi lar  to S, and  the  b o u n d a r y  of which has  a posi t ive  
d i s tance  from the  b o u n d a r y  of S. 

. 

Before we can prove  Theorem 1 we need some more  lemmas.  W e  f i rs t  prove  
a l emma  which is ident ica l  to Theorem 1 in the  special case when F is the  union 
of a f i n i t e  number  of closed in tervals .  

L e m m a  2. Suppose that Kn(r) and K(r) satis/y conditions (a) and (b), that 
f" l [*1 

t~K~(r)r '~-ldr< ~ /or n =  1 , 2  . . . . .  and that l~K(r)r 'n - ldr=c~.  Suppose also 
wd v 

that F is the union o/ a finite number o/ closed m-dimensional intervals. Let t~n 
be a capacitary distribution belonging to Kn(r) and F. Then it is true that/~-->a, 
when n---~cr where a(E)= m(E)/m(F)  /or every Borel set Eta--F. 

Proo/. The condi t ions  of the  l emma guaran tee  t h a t  CK~(F)> 0 for every  n 
and  t h a t  CK(F)=0. #~ exists  as Cx,(F)> 0 a n d  we suppose  t h a t  {#n} converges 
to  a cer ta in  d i s t r ibu t ion  #.  (If necessary,  we choose a convergent  subsequence.)  
W e  denote  b y  G the  in ter ior  of F .  

I t  is easy  to realize t h a t  #(S(x,  r ) ) > 0  for every  sphere S(x, r) where x EG 
and  r > 0 .  Namely ,  if #(S(x, r ) ) = 0  for some r > 0 ,  we could,  for large values  
of n, ob ta in  a smal ler  va lue  t h a n  I(Kn, #~; F) of the  energy i n t e g r a l  belonging 
to  K,~(r) and  F b y  a r ed i s t r ibu t ion  of / ~  on F so t h a t  more mass  were distr i-  
bu t ed  in S(x, r). 1 B u t  this  would be a con t rad ic t ion  to the  fact  t h a t  / ~  is a 
c a p a c i t a r y  d i s t r ibu t ion  belonging to  K~(r) and  F and  hence we have/~(S(x ,  r)) > 0 
if xEG and  r > 0 .  

W e  now t ake  two spheres S(xl, r) and  S(x2, r) which are  con ta ined  in G. As 
CK,(S(xl, r))=C~n(S(x2, r)) we have,  according to L e m m a  1 

1 Compare the redistribution of the mass in the proof of Lemma 4. 
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~(S(xi ,  r ) ) = f ( S ( x 2 ,  r)), (5.1) 

except possibly for an  enumerable set of values r. Consequently (5.1) is valid 
for all values of r such tha t  S(x,,  r ) = G ,  i =  1, 2. Two spheres belonging to G 
and  having the same radii are hence carrying the same quan t i ty  of mass /x, 
which means tha t  on G # is distr ibuted with constant  density.  Hence it only  
remains to prove tha t  the boundary  F - G  does no t  carry  any  mass. Let  the  
centre x 0 of the sphere 8(x0, r) belong to  F - G  and choose r so tha t  S ( x  o, r) 
is regular with respect to  /x. (If the boundary  of S ( x  o, r ) carr i e s  any  mass, this  
mass is si tuated on F - G . )  Choosing r small enough there is a subset of G 
which is congruent  to F N S (x  o, r) and the conclusion of Lemma 1 is, by  the  
remark following Lemma 1, valid also for this set. This set and F N S(xo, r) 
hence carry  the same quan t i ty  of mass. Bu t  this means tha t  the bounda ry  
F - G  does no t  carry  any  mass, and thus the lemma is proved.  

We now consider the interval  A, which is determined from the inequalities 
0-<, x * ~<a~, i = 1 . . . .  , m, and a positive distr ibution of mass, f ,  on A such tha t  
A is regular /~. We extend the domain  of definition of f by  making # periodic 
with periods a~, i.e. we pu t  

f[a~ + (n 1 a 1 . . . . .  nm am)] = pt(eo), 

for a rb i t rary  integers (ni}[ n and  intervals eo c A. r -[- (n  1 a 1 . . . . .  nm am) denotes  
the interval in which to is carried by  the t ranslat ion (n l a  1 . . . . .  nm am). We can 
now define a class of distributions of mass, {fx}, where fix denotes the distri- 
but ion which arises f rom f ,  when we translate the distr ibution f by  the vector  
x, i.e. 

fx(co) = f(~o - x), (5.2) 

for every  interval co. Then  the following lemma is valid. 

L e m m a  3. Let  f be a positive distribution o/ mass  with total mass  M or~ 
A = (x[0< x t <<.a~, i = 1 . . . . .  m} and let F be a closed subset o/ A having positive 
m-dimensional  Lebesgue measure. Then  there is a translation as above o / t h e  distri-  
bution f ,  f* ,  so tha t  

f * ( F )  >~ m(F)  �9 M .  
a 1 �9 a 2 ... a m 

Lemma 3 follows from the relation 

f~ ' ... f ~ m f x ( F  ) dx  1 ... dx m = M .  m(F) ,  

which is easily proved by  means of (5.2) for instance by  introducing the  char- 
acteristic funct ion of the set F in the integral and by  then using Fubini ' s  
theorem. 

Using Lemma 2 and Lemma 3 we now prove 
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Lerm~aa 4. Let F 1 and F 2 be closed sets such that F2-~ 2' 1 and re(F1)> O. Let 
2'~ be the union o/ a /inite number o/m-dimensional intervals. Suppose that K~(r) 
and K(r) satis/y the conditions (a) and (b) and that 

S~ Kn(r)rm-l dr < oo and S~ K(r)r'~-l dr= c~. 

Let /~tn be a capacitary distribution belonging to Kn(r) and F~, i = 1, 2, and suppose 
that /~1~--->(~1. Then it is true that 

m(E) 
al(E ) >~ m(F2), E c El, E Borel set. 

Proo/. Suppose tha t  the lemma is wrong. Then  there is an  interval A such tha t  

al(A) = h .  m(A N F1) m(F~) , h < l  and  m ( A N F 1 ) > 0 .  (5.3) 

The  idea of the proof is as follows. F 2 ~ F  1 implies t h a t  I(Kn,#ln;F1)>~ 
I(Kn,/~2n; 2'2) for all n. Bu t  this indicates t ha t  if the limit distr ibution of (ju2n} 
distributes more mass on A N F 1 than  the limit distr ibution of (#1~), then it 
should be possible to reduce the energy integral I(K~, juln; F 1 ) b e  redistributing 
the  pa r t  of the mass /~ln which falls in A so tha t  the relative densi ty  of the 
mass on A N F1 coincides with tha t  of ~u2~. As we cannot,  however,  gaurantee  
tha t  /~2n(A N F 1 ) > 0 - - w h i c h  is required for a redistribution of the above men- 
t ioned k i n d - - w e  first have to under take  a t ranslat ion of the distr ibution ~u2~ 
according to  Lemma 3 so tha t  the t ranslated distr ibution distributes mass on 
A N F 1. This t ranslat ion introduces, as we shall see, faults in our est imates which 
we can neglect. Now we tu rn  to  the details. 

We can suppose tha t  A is regular with respect to the distributions 01 and 
/~en, n = 1, 2 . . . . .  W e  can also suppose tha t  A is covered by  one interval  from 
F2, i.e. t h a t  A = F  2. 

Let  juan be the restriction of ~u2~ to A. For  every  n we can, according to 
Lemma 3, find a translation,  x~, of the distr ibution f~2n so tha t  the t ranslated 
distribution, /~*~, satisfies 

m(A n ~'1). 
* A ~2~( nF1)~>/~2n(A), m(5) 

This gives, by  Lemma 2 

l i r a / ~ ( A  N El) >~ m(A n F1). (5.4) 
n-~:r m(F~) 

(Actually i t  is t rue tha t  lira * #2~(A N F1) = m ( A  fl El)Ira(F2).) We now define a 

sequence (h~)~ r by  

~in(A) = hn~a~n( A N ~1), (5.5) 

and  introduce new distributions (ju~) of uni t  mass on F r 
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h i / ~  on A A F  1 
1, on F I \ A  

on $'~. 

To get a contradiction it is enough to prove tha t  

I(Kn, /~; /~1)  < I(Kn, /~n; F~) 

when n is sufficiently large. To prove this we shall use the inequalities 

I(Kn, #2,; F2) <~I(K,~, ~ul,~; F1) (5.6) 

and lim hn ~< h, (5.7) 
n--> oo 

the latter of which follows from (5.3), {5.4) and (5.5). 
We shall estimate the integral I(Kn,/~; F 1) by dividing up the domain of 

integration F~ and by  separating a certain res t  set, Ra = R(~ ) U R~ ), d > 0, which 
is defined in the following way. We first notice tha t  the translations by  x~, 
n = 1, 2 . . . . .  can be supposed to converge to a certain translation by x*. (If 
necessary, we choose a convergent subsequence.) We can also assume tha t  one 
of the corners of the interval A is situated in the origin and tha t  the point 
x* belongs to A. Then R~ ) shall consist of those points which are situated a t  
a distance ~<d from the intersection of A and the set which consists of the 
union of the ( m -  1)-dimensional planes which on one hand pass through the 
point x* and where, on the other hand, each plane is parallel to one of the 
edge planes to A. ~a~(2) shall consist of those points which are situated at  a 
distance ~<d from the boundary of A. 

f 
Put  un(x) = iF, Kn(Ix -- Yl) dttn(y). 

We shall estimate I(K~, #~; F1) by the following division. 

I(Kn, tt,~; F1)= f F u,dx)d/u,dx)= (fa\ad+ fR + f(av~),) u,dx)dlt,dY)= I + I I  + I I I .  

For x belonging to the intersection of A ~ R d  and the support of /~n we have, 
by 3.2, supposing n so large tha t  Ix,~-x*l<d/2 

d * 

and hence, by (5.6), for a fixed d 
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un(x) <~ hn I(K,, #in; F1) + O(1). 

For x belonging to the intersection Of (A U R,~)' and the support of / t in ,  we get 
in an analogous way 

un(x) <~ I(K,, jUln; FI) + 0(1), 

when d is fixed. 
Finally, for x ERa, we shall prove that  

fA d *  f Kn(lx-yl)dt~ln(y)< Un(X) =hn g~(]x-y]) tt2~(y) + 
fi F, A ' 

<~ h,~. A . 2 m. I(Kn, tt2n; F2) + A" I(Kn, ~ln; F1) = O(I(Kn, #1,; FI)), 

where A is the constant in (3.3). The estimate 

fa" g,~(]z - y]) <~ A.  I(Kn, F1) d#l~(y) /~1~; 

follows immediately from (3.3). In  order to show that  

f~  g,~(Ix-yl)dtt*n(y)<~A'2m'I(g,, tt2,~; f~), 
FIFL 

we proceed in the following way. Consider the domains into which A is sub- 
divided by the ( m -  1)-dimensional planes which, on the one hand, pass through 
the point xn and where, on the other hand, each plane is parallel to one of 
the edge planes to A. tt~n coincides, in each of these domains, with a transla- 
tion of the part of the capacitary distribution /~2~ which is situated in A, and 
as there are 2 m such domains the desired inequality follows by means of (3.3). 

(5.5) and the three estimates which we have obtained for u,(x) give after 
simplification 

I <~ hn I(Kn, rein; F~)./~I,(A) + 0(1). 

* R I I  ~< O(I(Kn,/tl,; F1)) [ p , , ( R ~ A )  + hn/t~( d N A)]. 

I I I  ~< O(1) + I(Kn, /u1,~; F~). #I~(A'). 

This gives 

I(KT,, /~.; FI) 
I(g~, ~uln; FI) <~ h,~ pl,(A) +/tl~(A') + 0(1).  {I(K~, ttln; F~))-I § 

+ o(1) [~I~(R~\A) + h~ ~ ( R ~  n A)]. 

By (5.7)and the fact that  
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we have  

* R m ( R ~ , N A )  1 
l im/~2.(  a f3 A) m(Fz ) , 

--lira I(K,,,I(K"' ~tl.; la'; F1)F 1) <~ hal(A) + a l (A ' )  + const.  �9 [ a l ( R d ~ A )  ~ m(Ram(F2)N A)lj,  
n - - > ~  

if d is chosen so t h a t  Rg is r egu la r  a l .  d - > 0  gives,  as  h <  1, 

l im I(K,~, /-tn; F 1) < 1, 
. - - , ~  I(Kn, ~tl.; F 1) 

in  the  case when a l (A ) > 0. Accord ing ly  we have  ob t a ined  a con t rad ic t ion  to  
(5.3) for th is  case. I f  we suppose  t h a t  a l ( A ) = 0  and  m(A N F 1) > 0 ,  we eas i ly  
o b t a i n  a con t rad ic t ion  by  moving  some mass  ~tl, to  A f3 F 1 and  there  dis t r i -  
bu t ing  i t  in the  same way  as #~n is d isbr ibuted and  b y  then  doing a n d  esti-  
m a t e  of the  energy in tegra l  which is ana logous  to  the  one we have  done above.  
B y  t h a t  L e m m a  4 is proved.  

We are  now in a pos i t ion  to  p rove  Theorem 1 b y  using L e m m a  2 and  
L e m m a  4. 

T h e o r e m  1. Suppose that K~(r), n = 1, 2 . . . . .  and K(r) are de/ined /or r>~O, 
continuous /or r > O, satis/y l im K~(r) = K~(O) <<, oo, are non-negative and non-in- 

r-->O 

creasing. Also suppose that l ira Kn(r)=K(r) ,  

K~(r) r m-1 dr < co and K(r) r 'n-1 dr = cr 
0 

Let ~t~ be a capacitary distribution belonging to Kn(r) and F, where F is a com- 
pact set o/ positive m-dimensional Lebesgue measure. Then {/~n} converges weakly 
to the distribution a which has constant density on F,  a ( E ) = m ( E ) / m ( F ) ,  E c F ,  
E Borel set. 

Proo/. Choose a sequence {F,}, where each F ,  is the  union of a f ini te  n u m b e r  
co 

of closed m-dimens iona l  in tervals ,  so t h a t  F 1 ~ F 2 ~ ... ~ F ,  ~ ... ~ F and  F = N F , .  
1 

Le t  /~n, be a c apac i t a ry  d i s t r ibu t ion  belonging to Kn(r) and  F , .  According t o  
L e m m a  2 {/zn,} converges,  when n-->oo, to  the  d i s t r ibu t ion  a~ which has  con- 
s t an t  dens i t y  on F , .  B y  L e m m a  4 we have  a,(E)~</z(E) for eve ry  E c F where 
/x denotes  the  l imi t  d i s t r ibu t ion  of a convergent  subsequence to  {/z~}. B u t  {a,} 
converges to  the  d i s t r i bu t ion  a wi th  cons tan t  dens i ty  on F .  T h i s  implies  
a(E) <~#(E), E c F .  But  as a ( F ) = # ( F ) =  1 there  mus t  be equal i ty ,  i.e. 

1 This equality easily follows if we recall that/~* is the translation of a distribution from a 
2~t 

sequence which converges to a constant times the Lebesgue measure and that RdOA is regular 
with respect to the Lebesgue measure. 
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m(E)  
#(E) = a(E) - m (F)' 

and  this  is t rue  for every  l imi t  d i s t r ibu t ion  /~. Hence {#n} converges to  a and  
the  theorem is proved.  

. 

L e m m a  1 can be p roved  in a general ized form which can be used to  prove the  
following theorem 

T h e o r e m  2. Let F be a compact set in R m. Then we have, i/  k =2-1:~-m/2F(m/2), 

l im C~(F)=km(F) .  (6.1) 
~-~m- o m - 

Proo/. W e  first  prowe the  theorem in the  case when F is a sphere,  
F = S ( x o ,  R ) = S .  F o r  th is  case M. Riesz ([7] , ,p.  16) has  given an expl ic i t  for- 
mula  for the  equi l ibr ium po ten t i a l  belonging to  the  kernel  r ~, m - 2  < ~ < m .  
Namely ,  le t  dm(y) denote  the  e lement  of volume and  p u t  

U(X)=-(�89 sin~( m-~)2 fs(R2 ]y__ XO,2)-(m a)/2]~_~dm(y). 

Then we have  u ( x ) = 1  for all x ES.  
This formula  gives 

2 
Ca(S) = - 7~ sin ze(m - a) fn  r2)-(m-~)12 2 ,10 (R 2 - -  r m-I dr 

2 sin ze(m - a) R~ ~1 
2 3o 

( 1  - -  r ~ )  - ( m - ~ ) l ~  r m - 1  d r .  

Hence 2-1~ rn/2F m(S), 
, ~ m  m - a m 

i.e. (6.1) is t rue  in th is  case. 
We now consider  the  general  case. I t  is c lear ly  enough to consider  the  case 

when m(F)>O.  We choose a sphere S = S ( x  0 ,R)  so t h a t  S D F .  Le t  / ~ b e  the  
equi l ibr ium d i s t r ibu t ion  belonging to  r -~ and  S. Then {/~} converges,  when 
:r to  the  d i s t r ibu t ion  which has  cons tan t  dens i ty  on S, and  the  following 
f o r m u l a - - w h i c h  is L e m m a  1 in the  requi red  general ized f o r m - - i s  va l id  

,. C.(F) < ~ C.(F) < re(F) 
l im/z~(F)  ~< nm - -  
~-~ ~_~,/c~(s) ~-~ ca(s) m(S) 

(6.2) 

I n  order  to prove (6.2), we choose, as in the  proof  of Theorem 1, a sequence 
{Fn} so t h a t  S D F n ~ F ~ + I ~ F ,  N F ~ = F ,  where every  F~ consists of a f ini te  
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number  of in tervals .  According  to  the  r emark  following L e m m a  1 the  conclu- 
sion of the  l emma remains  va l id  also in th is  more general  s i tuat ion,  i.e. we have  

l im C~(Fn) _ m(F~) 
~-.m C~(S) m(S) 

Hence  
C~,(Fn) m(Fn) l im C=(F) <~ l im 

and,  f inally,  l e t t ing  n-~c~ ,  we get  one of the  inequal i t ies  in (6.2). In  order  to  
prove the  o ther  i nequa l i t y  we observe t h a t  

. . . .  l ( r  -~, ~;  F) > C~(S). ~i(F), 

and  consequent ly  we have  ju~(F)<~C~(F)/C=(S), which gives the  o ther  i nequa l i t y  
in (6.2). 

Our  expl ic i t  fo rmula  for  /& makes  i t  possible to  show t h a t  

ira(F) 
1 

l im /z~(F)= �9 (6.3) 

Namely ,  

~ ( F , = 2 - 1 7 ~ - m / 2 R - a ~ ( 2 ) { ; ( 1 - r 2 ) - ( m - a ) / 2 r m - l d r } - l f F ( R 2 - J y - X o J 2 ) - ( m - ~ ) / 2 d m ( y ) ,  

which gives 
(~)  ,_, re(F) 

l im ~u~(F)=2-1~-m/2R-mp  . m . m t r ) = ~ )  �9 
~--->m 

(6.2) and  (6.3) give C~(F) m(F)  (6.4) 
l ira C~(S) - re(S) 
gc---> m 

Hence l im C:,(F) ,. C~(F) ,. C~(S) m(F)  - - - =  n m  - - .  n m - - -  km(S) = km(F),  
~ m  m - a ~-~m C~(S) ~-~m m - o~ m(S) 

and  (6.1) is p roved  also in the  general  case. 

Remark. Theorem 1 is an  easy  consequence of L e m m a  1 and  (6.4) in  t he  case 
when the  kernels  K~(r), n = l ,  2 . . . .  , a re  all  of the  form r -~ and  K ( r ) = r - " .  
For  genera l  kernels  K~(r) and  K(r) we cannot ,  however,  prove  a re la t ion  of 
the  form (6.4) since we do no t  have  an  expl ic i t  fo rmula  for a c a pa c i t a ry  dis tr i -  
but ion  belonging to  the  kerne l  K~(r) and  a sphere,  and  so we h a d  to  prove  
Theorem 1 b y  the  more  compl ica ted  m e t h o d  which we have  used. 

1 This formula is not a consequence of Theorem 1 as convergence in Theorem 1 means 
convergence in the weak sense. 
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We now tu rn  to  the  proofs of the  
The  discussion in th is  sect ion is 

n u m b e r  a, a <  1, there  exists  a closed 

C~(F) > 0 

a n d  C~(F) = 0 

o 

counter -examples .  
based  on the  fol lowing fact .  
l inear  set  F sat isfying 

for g~<a }. 

for ~ > a 

To a given 

(7.1) 

F o r  F i t  is even possible to  choose a Cantor  set. To see this,  we suppose  t h a t  
F is a Cantor  set  where the  n t h  s tep  in the  cons t ruc t ion  is a set which consists 
of 2 ~ in terva ls  where each in t e rva l  has length  l~. As F has  posi t ive  a - c a p a c i t y  

if and  only  if ~ 2 -n l ~ <  c~,1 (7.1) follows f rom the  fact  t h a t  we can c lear ly  
1 

choose {ln} so t h a t  
ar 

1 

a n d  ~ 2 -n l ;  (~+~)= ~ for eve ry  c > 0 .  
1 

T h e o r e m  3. To every given number ~0, 0 < ~0 ~< 1, there exists a closed linear 
set F such that C~(F)> 0 /or ~ < ~o and C ~ ( F ) = 0 ,  and such that the equi l ibrium 
distributions ~ belonging to r -~ and F do not converge when ~--->r 

Proo/. W e  choose two sequences {~n} and  (fin} where ~n/ : r  t inT  a0 and  
a l < f l l <  :r < . . . .  Our  set F is to be the  union of two sets A and  B which 

compete  for the  mass  of the  equi l ibr ium dis t r ibut ions ,  and  where A = U A ~  and  
0 

B = U Bn. W e  wan t  to  cons t ruc t  A and  B so t h a t  {/~} does not  converge when 
0 

~-->:r and  runs  th rough  the  sequences {~n} and  {fin}. We s t a r t  wi th  two closed, 
d i s jo in t  in tervals ,  I and  J, a n d  we shall cons t ruc t  A and  B in such a way  
t h a t  A c I  and  B c J .  W e  first  show t h a t  i t  is enough to f ind A and  B so 
t h a t  for ins tance  

Can(A) 2 n - l > 2  n C~,(A) 
C~,,(B) ~> ~> Cr (B)'  n = l ,  2 . . . . .  (7.2) 

:Namely, if i t  is t rue  t h a t  there  exists  a d i s t r ibu t ion  /~ so t h a t  the  equi l ibr ium 
d i s t r ibu t ions  / ~  belonging to  r -~ and  F = A 0 B converge to  # when a-->~0, then  
we have,  b y  L e m m a  1, if / ~ ( A ) > 0  a n d  # ( B ) > 0  

. C~(A) C~(I N F)  C~,(I N F) 
lm ~ -  l im = l im - - - -  

~--~m ~(B) ~-~m ~(J -NF )  , -~m C•(F) 
. l im C C~(F) = #(A.) 

~-~m ~( f3 F ) - / ~ ( I ) "  { # ( j ) } - I  ~t(B} 

which is a con t rad ic t ion  to  (7.2). I f  one of the  numbers  #(A) and  #(B) is zero, 
we get  a cont rad ic t ion  to (7.2) in a s imilar  way.  Consequent ly ,  i t  is enough 
to  f ind A and  B so t h a t  (7.2) holds.  

1 See for instance [5]. 
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We now construct  A and B,  A ~ I ,  B ~  J .  We subdivide I into three equal 
smaller intervals. The first interval  (counted from the left to  the r i g h t ) w e  

oO 

denote by  I i and we shall do the construct ion so tha t  L I A , ~ c I  r The second 
2 

interval is to  belong to the complement  of A and  the third  is to contain A r 
We choose A i in such a way  tha t  

C~,~(A1) > 0 and Ca(A1)  = 0 for :r > g r  (7.3) 

Start ing from J we now construct  J1 in the same way, 5 B,, ~ J1, and B l as 
s 

a subset of the third  subinterval of J .  We want  B 1 to  satisfy 

C~, (Bi) > 0 and Ca(B1)  = 0 for a > fli- (7.4) 

and C~,(B1) ~< C~,(A 0 �9 2 -1. (7.5) 

This can be realized, because if (7.5) is not  satisfied for a certain choice of B1, 
we can replace B~ by  a subset of the th i rd  subinterval  of J ,  a subset which 
is a t ranslat ion of k .B~ ,  k > 0 ,  where k . B  1 denotes the set consisting of the 
points k" x where x E B1, and choose k so small t h a t  k "B 1 satisfies (7.5). Condi- 
tion (7.4) is no t  dis turbed by  this. 

By  subdividing 11 into three equal smaller intervals, we get  I s, [ .JA, c I  s, 
a 

and we construct  A s analogously. The condition (7.3) is replaced by  

C~,(A2)>0 and C~(A2)=0 for g > ~ 2  

and C~,(A~) ~< 5~,(B1) �9 2 -2. 

The construction is now continued in the same way. The conditions on An are 

C~n(An)>0 and  C~(An)=0 for a>cr 

and C~k(A, ) < Ct~(Bk) " 2 -n, k = 1, 2 . . . .  , n - 1. 

The conditions on Bn are 

C~,(B,~)>O and C~,(Bn)=O for r 

and C~k(Bn) <~ C,,~(Ak)" 2 -n, k = 1, 2, . . . ,  n. 

Final ly we choose the left endpoints  of I and J as A 0 and B 0 respectively, 
which guarantees t ha t  A and B will be closed. 

We now have C=,(A) >1 C~,(An) 
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and C,.(B)  <~ ~ C~.(B~) = ~ C~.(B~)<~ ~ C~.(An) .2 -~ 
v--O V = n  ~)=?t 

= C ~ . ( A . ) .  2 - n + ~  ~< C~.(A). 2 -"+1.  

n = l ,  2, . . . ,  

I n  exactly the same way  we get 

n = l ,  2, . . . ,  

which is the other  inequality, and  hence Theorem 3 is proved. 

This implies C, , (A)  >1 2,_1, 
C~. (B) 

which is one of the inequalities in (7.2). 

C~-(A) < 2 - ,  ' 
Cz,(B) 

. 

By doing a construct ion similar to the one we have used in the proof of 
Theorem 3 we also get  the counter-example which is formulated in Theorem 4. 
However,  we first have to prove the existence of sets having somewhat  different 
qualities than  those which have been formulated in (7.1). We do this in the 
following lemma. 

L e m r ~ a  5, Suppose that two numbers l and ~o are given, where l > 0  and 
0 < ~o < 1. Then there exists a constant r(1, o~o) which only depends on l and ~o 
so that, to any given positive number oq satis/ying a 1 < a o, it is possible to con- 
struct a closed linear set F satis/ying 

F belongs to an interval with length I. 

C~,(F) > r(I, ao). 

The Hausdor//  dimension o/ F is less than o~ o. 

Proo/, The set F shall be a generalized Cantor set, 2 '  = N Fn. 
1 

(8.1) 

(8.2) 

(8.3) 

We star t  with 

a closed interval ~o with length l. Let  k be an arbi t rary  positive number  and a 
an  arb i t rary  positive integer. We divide the interval ~o into 2 a -  1 subintervals 
with lengths 

1 . ( a §  1, k l . ( a §  1 . ( a §  . . . .  k l . ( a §  

1 . ( a + a k - k )  1 

counted from the left to the right, and separate the a (closed) intervals with 
lengths l(a + a k - k )  1~ The union of the separated intervals consti tutes F r Every  
interval belonging to F~ is now subdivided in an analogous way  into 2 a - 1  
subintervals and a intervals are separated. I n  this way  we get F 2 which con- 
sists of a 2 intervals with length l ( a + a k - k )  -2 each. In  the n th  step of this pro- 
cedure we obtain Fn which hence consists of a n intervals with length l(a + ak - k) -~ 
each. �9 
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We begin b y  showing t h a t  the  Hausdor f f  d imens ion  of F is 

log a 1 
f l  - l o g  (a + ak  - k)" 

I t  is immed ia t e ly  real ized t h a t  the  Hausdor f f  d imension  of F canno t  be larger  
t h a n  fl and  in order  to  real ize t h a t  i t  is equal  to  fl, we can, for instance,  con- 
s t ruc t  a bounded  y-po ten t ia l ,  ~ < fl, belonging to  a d i s t r i bu t ion  of un i t  mass  
on F .  To  do this  we in t roduce  the  set funct ions  {#n}~ r where  /~n is the  un i t  
mass  un i fo rmly  d i s t r ibu ted  o n  F~. {/~n} converges to  a d i s t r ibu t ion  of the  un i t  
mass  on F and  we get  the  following es t imate ,  if ln = l ( a + a k - k )  -~, 

f v  1 [" 1 ,~ o,~ d#(Y) <~ l im lv, lx_:y], d (y) 
n - - >  oo 

< ~ 2 f l  "/~ ~ 2  ~_ ~ ! a + a k - k ) " "  
n=o l~ "a~ r-r dr=l"  (1 - y )  n=o a ~ 

2" a 
- l " ( 1 - ~ )  a - ( a  + a k - k )  ~< 0% 

if y < l o g  a / l o g  (a + a k -  k)=ft .  Hence  the  Hausdor f f  d imension  of F is ft. 
The es t imate  which we have  done also gives us the  following inequal i ty ,  if 

C,(F) > F(12 ~- y) . a - (a +aak - k)" _ M(y).  

Hence the  l emma  follows if we can f ind a cons tan t  r(l, a0) so t h a t  

< ~0 (8.4) 

and  M(~I) >1 r(1, O~o) , (8.5) 

where ~1 is the  number  which is g iven in the  lemma,  ~1 < ~0. However ,  a s imple 
calcula t ion shows t h a t  we can f ind a cons tan t  r(l, O~o) only  depending  on 1 and  
~0 so t h a t  (8.4) and  (8.5) are  sat isf ied if k and  a are  chosen in  a su i tab le  way  
and  large enough3 L e m m a  5 is hence p roved  and  we can now show 

T h e o r e m  4. Let ~o be an arbitrary number satis/ying 0 < ~o < 1. Then there 
exists a closed linear set F with positive and finite ~o-dimensional Hausdor// meas- 
ure, 0 < A ~ . ( F ) <  oo, so that the equilibrium distributions ~ belonging to the kernels 
r -~ and F do not converge, when ~-->~o- 0 to a distribution where the mass situ- 
ated on a subset o/ F is proportional to the ~o-dimensional Hausdor// measure of 
that subset. 

1 This is a consequence of a theorem by Ohtsuka [5] on the capacity of generalized Cantor 
sets. We give, however, a short direct proof which will also permit us to estimate C,(F), ~< ft. 

2 The choice of k and a will naturally depend on ~1. For r(l, oeo) we can for instance choose 
any number which is smaller than [/~(1 - ar 
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Proo/. Again  F shal l  be the  union of two sets A and  B, F = A  U B, where 
for B we choose an  a r b i t r a r y  compac t  set having  posi t ive  and  f in i te  ~0-dimen- 
sional  Hausdor f f  measure ,  0 < A~.(B)< co, and  where A shall  be cons t ruc ted  so 
t h a t  A~o(A)=0.  I n  order  to  cons t ruc t  A we choose d i s jo in t  in te rva ls  cot wi th  

5 l engths  l~, i = 1, 2, . . . ,  so t h a t  Z li < ~ ,  a n d  coi is a t  a posi t ive  d i s tance  from 
1 1 

B. W e  also assume t h a t  the  choice is such t h a t  the  in te rva l s  eo~ converge to  

one point .  W e  shall  cons t ruc t  A so t h a t  A =  5 At, where As is closed and  
0 

A~cw~ for  i = l ,  2 . . . . .  F o r  A 0 we choose the  po in t  to  wh ich  the  in te rva ls  cot 
converge which makes  A closed. 

As A ~ ( B ) <  ~ we have  C~,(B)=0 which implies  

l im C~(B)  = O. 

Hence  we can choose a sequence {a~}~ r ~ i f l a0  so t h a t  for ins tance  

C~I(B) < 2 -1" r(l~, ~ ) ,  i = 1, 2, . . . ,  

where r(l~, s0) is the  cons tan t  which occurs in L e m m a  5. The  l e m m a  then  guar-  
an tees  t h a t  we can cons t ruc t  A~ so t h a t  the  condi t ions  which we have  formu- 
l a t ed  above  are va l id  a n d  so t h a t  

C~(Az) > r(l~, so), i = 1, 2 . . . . .  

The  las t  two inequal i t ies  imp ly  t h a t  

C~,(A) > 2 .  C~,(B), i = 1, 2, . . . .  

Bu t  th is  means,  according to  L e m m a  1, t h a t  the  l imi t  d i s t r ibu t ion  of eve ry  
convergent  subsequence of {#~) d i s t r ibu tes  mass  on A.  As A ~ ( A ) = 0  we can  
hence conclude t h a t  {/~} does no t  converge to  a d i s t r ibu t ion  where  the  mass  
s i t ua t ed  on a subset  of F is p ropor t iona l  to  the  s0-dimensional  Hausdor f f  meas-  
ure  of t h a t  subset .  

. 

W e  shall  now prove  t h a t  there  is a correspondence to  Theorem 4 even when 
s 0 = 1. As has  been po in t ed  ou t  in the  in t roduc t ion ,  we have  to use p lane  sets  
to  ge t  such a correspondence.  

T h e o r e m  5. There exists a closed set F in the plane having positive and/ in i te  
1-dimensional Hausdor// measure, AI(F) ,  so that the equilibrium distributions be- 
longing to the kernels r -~ and F do not converge, when ~-->1-0 ,  to a distribution 
where the mass situated on a subset o/ F is proportional to the 1-dimensional 
Hausdor// measure o/ that subset. 

The proof  of th is  is ana logous  to  the  proof of Theorem 4. The difference is 
t h a t  in s t ead  of considering in te rva ls  o~i wi th  lengths  l~, we consider  squares  eo~ 
wi th  sides of lengths  l~, i = 1 ,  2, . . . .  I n  order  to  be able  to cons t ruc t  the  sets 
A~ we also have  to  re formula te  L e m m a  5 for p lane  sets and  the  case ce 0 = 1. 
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L e m m a  5' .  To a given positive number l there exists a constant r(1) so that, 
to any given positive number ~1 satis/ying :r < 1, it is possible to construct a 
closed plane s e r f  satis/ying 

F belongs to a square with side o/ length I. (9.1) 

C~I(F ) > r(1). (9.2) 

The Hausdor// dimension o/ F is less than 1. (9.3) 

P r o o / o / L e m m a  5'. Again we construct  F as a generalized Cantor  set, 2, = I'l 2,n. 
1 

We star t  with a square co with side of length 1 and with numbers  k and a as 
before. We der ide ~o into subsquares by  dividing every side of eo into 2a - 1 sub- 
intervals having the same lengths as before, i.e. the same lengths as in the 
proof of Lemma 5. We obtain F 1 by separating the a 2 squares with area l 2. (a + 
a k - k )  -2. Generally Fn consists of a 2n squares with area 1 2 . ( a + a k - k )  -2n each. 

By  doing calculations similar to those in the proof of Lemma 5, we can show 
tha t  F has Hausdorff  dimension 

2 log a 
fl = log (a + ak - k)" 

The estimate of Cr(F) becomes 

/~(2 - y )  a 2 - ( a  + a k  - k )  ~ 

C,,,(F) > 2r+l a2 - M(~), 

if y <ft .  This finally gives tha t  we can obtain  

fl < 1 and M(~I) >~ r(l), 

by  choosing k, a and r(1) suitably. By  this Lemma 5' and hence also Theorem 5 
is proved. 

Remark. Lemma 5' can of course be formulated  for an  arb i t rary  number  :r 
satisfying O < % < 2 and a closed plane set F.  This implies t ha t  Theorem 5 can 
also be formulated for sets F having positive and finite ~0-dimensional Haus-  
dorff measure, where a0 < 2. Similar extensions of the counter-examples to higher 
dimensions are of course also possible. 

10. 

The above counter-examples show tha t  the set F has to satisfy suitable 
conditions of regulari ty in order to  give convergence of the sequence of equi- 
librium distributions in the case when the Lebesgue measure of 2'  is zero. As 
an  example we prove the simple theorem tha t  the Cantor  sets are regular enough 
to  give convergence. 
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T h e o r e m  6. Let F be a linear Cantor set, F = N F~, where F.  consists o/ 2" 
1 

intervals with length l. each. Call the intervals which constitute F~ to~., i = 1, 2 . . . . .  2". 
Let K . ( r )  and K(r) satis/y the conditions (a) and (b) and suppose that CK.(F)> 0 
and CK(F)=O. Then it is true that a sequence o/ capacitary distributions, {/~.}, 
where # .  belongs to Kn(r) and F: converges, when n--> oo, to the distribution which 
distributes as much mass on to~. as on eoj. /or all i and j. 

As to the  proof  we only  observe t h a t  

C~.(F n ~o,.) = c ~ . ( F  n ~oj.) 

for al l  i, ~, v a n d  n and  hence the  theorem can be p roved  in a s imilar  w a y  
as L e m m a  2. 

Remark. There  exis t  sets  hav ing  a very  simple s t ruc ture  for which the  ques- 
t ion  of convergence is answered  in the  negat ive ,  a t  least  for cer ta in  types  of 
kernels.  This  is for ins tance  the  case for the  set F = A  U B where A N B = O  
and  where A = N .4. and  B = n B. are  the  Cantor  sets which are ob t a ined  from 
in terva ls  of lengths  1 and  2 respec t ive ly  b y  le t t ing  the  sets A .  and  B.  consist  
of 2" in te rva ls  wi th  lengths  4 " and  2 . 4 - "  respect ively.  To this  set F i t  is pos- 
sible to  cons t ruc t  a sequence of kernels  {K.(r)} such t h a t  CK.(F)>0,  n = 1, 2, . : . ,  
and  a kerne l  K(r) such t h a t  C ~ ( F ) = 0 ,  kernels  which al l  a re  such t h a t  the  equi- 
l ib r ium prob lem is possible  and  condi t ions  (a) and  (b) are  sat isf ied a n d  such 
t h a t  the  equi l ibr ium d is t r ibu t ions  /~. belonging to  K.(r)  and  F do no t  converge 
when n-->oo. The idea of the  cons t ruc t ion  is to  choose the  kernel  Kn(r)piece-  
wise l inear  for n = 1, 2 . . . . .  which makes  i t  possible a p p r o x i m a t i v e l y  to  deter-  
mine  the  equi l ibr ium d i s t r ibu t ion  /~. belonging to  K.(r)  and  F .  The  choice of 
d i f ferent  lengths  of t he  in te rva ls  bui ld ing  up  A.  and  B.  respect ively ,  v = 1, 2 . . . . .  
also makes  i t  possible to  choose K.(r)  so t h a t  the  ab i l i ty  of A to compete  for 
the  mass  /~. is max imized  for cer ta in  n a n d  the  ab i l i t y  of B is max imized  for 
o ther  values  of n. I n  th is  w a y  i t  is possible to  a r range  so t h a t  the  sequence 
of equi l ib r ium d is t r ibu t ions  does no t  converge. 

11. 

:Finally we give a coun te r -example  of a somewhat  different  kind.  

T h e o r e m  7. Let ~o be any positive number satis]ying ~o < 1. There exists a 
closed linear set F with Hausdor//  dimension larger than ~o which is o/ such a 
nature that the equilibrium distributions /~  belonging to r -~ and F do not converge 
towards the equilibrium distribution /~, belonging to r -~' and F when :r 

Proo/. L e t  F be the  union of two closed d is jo in t  sets F 1 and  F 2, F = F 1 U F~, 
$'1 fl F2 = O, where F 1 is chosen so t h a t  the  Hausdor f f  d imension  of F 1 is la rger  
t h a n  ~o and  F 2 is chosen so t h a t  C~o(F~)>O bu t  C~(F2)=0  for ~ > a o .  Then 
we have  /~(_F2)=0 if : r  a o and  / ~ , ( F ~ ) > 0 .  The conclusion t h a t  /~ . (F~)>  0 is 
a consequence of the  m a x i m u m  principle.  Namely ,  since C~,(F2)> 0 there  is a 

in F 2 where the  equi l ibr ium po ten t i a l  I F  Ix - yI-~. d/~,(y) t akes  i ts  m a x i m u m  po in t  

value  and  this  would  be a cont rad ic t ion  to  the  m a x i m u m  principle  i f /~~ = 0. 
Hence  /~.(F2) > 0 and  thus  {/~} does no t  converge t o / ~  and  Theorem 7 is proved.  
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