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An iterative method for conformal mappings of 
multiply-connected domains 

By INGEMAR LIND 

Preliminary remarks 

Let D be a connected domain in the z-plane containing the points z = 0 and z = oo. 
Suppose tha t  there exists a function w = F (z), analytic and univalent in D such tha t  
F (co) = 0% F '  (oo) = 1 and F (0) = 0, eonformally mapping D onto a domain of 
prescribed canonical type. There are four fundamental,  harmonic functions in D in 
certain meanings measuring a point 's deviation from its original position under the 
mapping: 

Re {F (z) - z}, I m  {F (z) - z}, log F (z) and arg F (z) 
Z Z 

By studying the behaviour of these very simple types of functions under iterative 
mapping processes, described in detail below, existence proofs can be obtained for 
the simplest types of canonical domains - -  the parallel slit domain, the circular slit 
domain, the radial slit domain and the logarithmic spiral slit domain. 

There are of course several simple proofs of these results. The iterative proof given 
here may  have a certain value; it is in certain cases suitable for actual calculation 
of the mapping function, and it gives an explanation to the simplicity of these 
mappings. 

The uniqueness proofs - -  as exemplified in [1], p. 57 (the second proof) for a paral- 
lel slit domain - -  are also based on simple properties of the named types of har- 
monic functions. 

Preparations and denotations 

The following paper demonstrates in detail an existence proof for conformal map- 
ping onto a parallel slit domain where the slits are parallel to the imaginary axis. 
To be precise the following well-known theorem is reformulated: 

Every domain D in the z-plane o/connectivity k can be con]ormally "mapped onto a 
parallel slit domain in the w-plane, where the k slits are parallel to the imaginary axis. 
Two arbitrary points ~ and fl o / D  can be carried into the origin and the point o] in- 
/inity, respectively. 1/ w = F (z) denotes the mapping/unction in question, F (z) may 
be normalized by the requirement that its residue at z = fi be equal to 1. This normali- 
zation determines the ]unction uniquely. 
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D (n) : 
k 

L (~)= U F(~): 
v = l  

:For the uniqueness proof one is referred to [1]. The existence proof is based on 
induction. The above theorem is t rue for k = 1 (Riemann) and hereafter it is assumed 
true for k - 1. Wi th  this assumption there is no loss of generali ty to assume tha t  the 
given k-connected domain is bounded by  k -  1 rectilinear slits parallel to  the imagi- 
na ry  axis and another  non-rectilinear, analytic slit, and tha t  a is chosen as the ori- 
gin and  fl as the point  of infinity. The following notat ions are used: 

a domain of the above described type  in the zn-plane; 

the boundary  of D(~); F(~ ~), v = 1, 2 ... k, denote the separate boun- 

dary  components  one of which is non-rectilinear. Occasionally this 
component  will be denoted by  F (n) (lower index omitted) and its 
corresponding rectilinear boundary  component  in the z~.l-plane (see 
below) by  y(~-l); 

D [F~ ~)] or D~):  tha t  domain of connectivi ty k - 1 in the zn-plane, which boundary  
can be wri t ten L <~) - 1~ n) (1 ~< ~ ~< k). 

The iterative process 

Assume i. e. t ha t  F (1) = F(21). Map eonformally D(1 ~) in the zl-plane onto D~ 2) in the z2- 
plane where all the boundary  slits F(~ ), v = 2, 3 .. .k are rectilinear slits parallel to  
the imaginary  axis. The possibility of this mapping is assured by  the induction 
assumption. ~(1)= F(11) in D~ 1) is hereby carried into a non-rectilinear, analyt ic  slit 
F(12)= F (2) in D(12). Nex t  map in the  same way  D(2 2) in the z2-plane onto D(2 ~) in the 

l r~ (k+ l )  z3-plane, then D(3 a) onto D(a 4) and so on. The k : th  step is to map  D(k ~) onto ~k �9 
Next,  map  D(1 k+l) onto D(1 k+2), then  D(2 k+2) onto D(2 ~+3) and so on. The mapping  pro- 
cess is now iterated infinitely in the suggested cyclic manner.  The analytic funct ion 
performing the described mapping between the actual  domain in the Z~_l-plane and  
tha t  in the z~-plane is denoted by  z~ = F~ (Z~-l), and it is required t h a t  Fn (0) = 0, 
F~ (cr = ~ and 2'~ ( ~ )  = 1 (n = 2, 3 ...), the possibility of this again being assured 
by  the induction assumption. Let  y~(zl) = F~ { F ~ - I  ( �9 �9 (Zl) �9 .)} denote the composed 
function, analyt ic  in D (~) and mapping  D (D conformally onto D (~). 

Induction statement and proof 

yJ(zl) =~i=m ~n(zl) exists, is analytic in D <1), maps D ~> con/ormally onto a parallel 

slit domain with k rectilinear slits parallel to the imaginary axis, and v(O) = O, ~ ( ~ )  
= ~ ,  ~ ' ( ~ )  = 1. 

Proo/: The functions 

un(z~)=Re {F~+l(z~)-z~},  n =  1, 2 ... (1) 

are harmonic in D [y(n)], u~ (0)=  0, and since F . + l ( Z ~ ) -  z~ is analytic and bounded 
in D [~,(n)], u~ (z~) at tains its max imum and minimum values on F (~). Wi th  the nota t ion 

J~ = sup ]Re {z~ - z~'}[ = sup [un (z~ ) -  u~(z~')[ 

it thus follows for all z~ tha t  

l un (zn) I ~< J~. (2) 
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Since u,~(z,) is not  constant ,  it follows from the max imum principle t ha t  there 
exists a number  qn, 0 < q, < 1, so tha t  

sup lU.(Z~)--U.(Z~*)[<~Jnq,. 
* ** c F ( n )  z n , z 

Combining [4], lemma 1, p. 282 with [2], "Verzerrungssats  V",  p. 235 it mos t  
easily follows tha t  it is possible to fix a number  q, 0 < q < 1, so tha t  q, can be chosen 
~< q for all n. Thus 

sup [u,~(z~)-u,~(z;*)[ <J~q.  

But  this is equivalent  to 

J , + l  = sup [Re (z~ +x - z~'+l} [ ~< J~ q. 
~:,+r z~'+l~r(" +1) 

Thus 

Jn ~ J l q  n-i for all n. (3) 

The functions Um (z.) = Re {Z.+m -- Z.} are harmonic in D (n) and 

m 1 

Um (Zn) = ~ U.§ (4) 

is valid. F rom (3) it follows for every point  z~ tha t  

q n - 1  

[Um(zn)[ ~<J1 1 _ q < e  if n>n~. (5) 

Thus Re {y)n (zl) - zl} converges uniformly to a harmonic function in D (1), and, since 
the conjugate functions are single-valued and  well determined, the convergence is 
easily extended to the sequence of analyt ic  functions {y)n (Zl) - zl}. Fur ther  (3) states 
t h a t  the limit domain is of the desired type.  Obviously ~p(0)=0, 7)(oo)= oo and 
v 2' (oo) = 1 are valid. The induct ion s ta tement  is proved. 

C o m p l e m e n t a r y  remarks  

I t  has just  been proved tha t  w = ~0 (zl) maps D (1) eonformally onto a parallel slit 
domain where u -- c., ~ = 1, 2 ... k, on the separate slits (w = u + iv = Re~~ c. are cer- 
ta in  real constants). Obvious modifications of the given proof yield the existence of 
the following mapping functions: 

a) w=~p,~(Zl); o~u+flv=c~ on the slits, tg  v a =  -~--- 8' 
b) w = P (zl); R = c~ on the slits, (circular slit domain); 
e) w = Q (zx); 0 = c, on the slits (radial slit domain); 
d) w = R (Zl); ~ log R + 80 = c~ on the slits (logathmie spiral slit domain), ~, 8 ~= 0. 

Various kinds of i terative processes were a. o. studied by  Koebe. An  interesting 
example giving the existence of a conformal mapping  onto the circle domain is found 
in [3]. 
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