Remark to my previous paper on a bilateral Tauberian theorem

By AKE PLEIJEL

This remark is directly connected with paper [1] to which we refer for notations and theorems.

When s-h is an integer the conditions of the Abelian theorem $A(-\infty, +\infty)$ require more from $\sigma(\lambda)$ than is obtained in the conclusion of the Tauberian theorem $T(-\infty, +\infty)$. This makes it natural to ask whether $T(-\infty, +\infty)$ can be sharpened so as to give not only $\sigma(\lambda)$, $\sigma(-\lambda) \in I^s$ for positive values of λ but also

$$I^{-s}(\sigma(\lambda) + \sigma(-\lambda)) \in \omega^0$$
 when $s - h = \text{odd integer}$
 $I^{-s}(\sigma(\lambda) - \sigma(-\lambda)) \in \omega^0$ when $s - h = \text{even integer}$.

Results of this kind were obtained in section 8 of [1] for the so-called non-exceptional cases. However, in the exceptional cases these results did not follow from the considerations in [1] but are, as will be seen, consequences of a lemma due to Hardy and Littlewood.

The main asymptotic condition in $T(-\infty, +\infty)$ is split into relations (8), (9) of [1]. Assume for instance that s-h is an odd integer. According to the result of $T(-\infty, +\infty)$ we know that $\sigma(\lambda)$ and $\sigma(-\lambda) \in I^s$ so that also $S(\lambda) = \sigma(\lambda) + \sigma(-\lambda) \in I^s$ and $I^{-s/2}S(\sqrt{\Lambda}) \in I^0$. Relation (9) of [1] can be written

$$\int_{0}^{\infty} \Lambda^{-k} (\Lambda + T)^{-1} dI^{-s/2} S(\sqrt[k]{\Lambda}) = T^{-1} P_{2}(T^{-1}) + o(|T|^{-k-1}),$$

where $k = -\frac{1}{2}s + \frac{1}{2}(h-1)$ is a non-negative integer. In the way indicated in section 4 of [1] this relation can be replaced by

$$\int_{0}^{\infty} (\Lambda + T)^{-1} dI^{-s/2} S(\sqrt[l]{\Lambda}) = A T^{-1} + o(|T|^{-1}),$$

where A is a constant.

The lemma of Hardy and Littlewood reads (see [2], p. 198 for the simple proof) If $t \int_0^\infty (\lambda + t)^{-1} d\varphi(\lambda) \to A$ when $t \to +\infty$ and if $\varphi \in I^0$ then $\varphi \in \omega^0$ and $\varphi(\lambda) - \varphi(0) \to A$ when $\lambda \to +\infty$.

Application of this lemma shows that $I^{-s/2}S(\sqrt{\Lambda}) \in \omega^0$, i.e. $I^{-s}(\sigma(\lambda) + \sigma(-\lambda)) \in \omega^0$ for $\lambda \to +\infty$, provided s-h is an odd integer.

and

ÅKE PLEIJEL, Bilateral Tauberian theorem

The case when s-h is an even integer is similarly treated with the help of relation (8) in [1]. The result is, that in this case $I^{-s}(\sigma(\lambda) - \sigma(-\lambda)) \in \omega^0$ for $\lambda \to +\infty$.

I take the opportunity to mention gratefully that my study of bilateral Tauberian theorems was supported by National Science Foundation Grant G-10098 during a stay at the University of California at Berkeley.

REFERENCES

- 1. Pleijel, Å., A bilateral Tauberian theorem. Arkiv för Matematik, 4, 561-571 (1962).
- 2. WIDDER, D. V., The Laplace transform. Princeton University Press, 1946.

Tryckt den 23 november 1962