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O n  l a c u n a r y  p o w e r  ser ies  

By J.-P. KAHANE, MARY WEISS and GUIDO WEISS 

w 1. Introduction 

I n  this paper  we shall s tudy  the behavior  of certain lacunary  power series 
oo 

S(x) = ~. ck e i~kx, where the frequencies nk form a sequence of positive real numbers  
k = l  

satisfying n~+l /nk>q>l ,  k = l ,  2, 3 . . . . .  I t  has been shown b y  R. Sa lem and 
A. Zygmund  (see [2]) t ha t  if q is large enough and  certain conditions are im- 
posed on the coefficients cg, then  there exists an  interval  on which the values 
S(x) fill an open set; t h a t  is, S(x) gives us an  example of a Peano curve. If  

oo 

other  conditions are imposed, to  wit, ~ [ ck[ = ~ and  lira ck = 0, then a theorem 
k = 1 k-*~ 

of R.  E.  A. C. Pa ley  says t h a t  every  complex number  C can be obtained as a 
sum S(x) (see [3]). 

, I t  will be our aim to extend these two results in several directions. I n  the 
first case we shall show t h a t  the  result of Salem and Zygmund  is valid for all 
q > 1. I n  the second case we shall show tha t  b y  considering the sets of limit 
points of the partial  sums of S(x), as x varies th roughout  a large enough inter- 
val, we obtain  exact ly the family of all closed connected subsets of the  extended 
plane (or, as we shall show to  be equivalent,  all sets t h a t  arise as the collec- 

oo 

t ion of limit points of the  part ial  sums of a series ~ ~ with lim ~k = 0). Further-  
1 k-~oo 

more, we shall show that ,  in bo th  cases, this behaviour takes place in certain 
sets of measure zero t h a t  are constructed by  a process similar to  t h a t  which 
gives us the Cantor  set. 

Let  us first consider the  behaviour  of S(x) on the  above ment ioned intervals. 
Before announcing the  precise s ta tements  of the theorems we have just  described, 
however, let us point  ou t  t ha t  their proofs will be based on the  following result, 
which is of interest in itself: 

~hr 

Theorem I. Suppose Q(x) = ~ eke ~n~x, where nk+l > q > 1, then there exist two con- 
1 nk 

stants A =Aq and A,' =A'q, depending only on q, such that, whenever an interval 
I has length } I I >~ A / n  1 then 
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N 

I ck I < A sup ~ (Q(x)}.~ 
1 x e l  

(1.1) 

The  resul t  deal ing wi th  Peano  curves is t he  following: 

Theorem II .  Suppose S(x) = ~ cke ~nkz, nk +l/nk > q > 1, is an absolutely convergent 
1 

lacur~ry power series. Then there exist constants ~,, ~ and ~,, depending only on q, such that 

i / I c ~ l  <-r 2 I c, I, ~ =  1, 2, . . ,  i is a n  interval o/ length at least ~/n 1 and w a 
l f f i k + l  

complex number satisfying I w I <~ ~ ~ I c~ I then there exists x e E such that S(x) = w. 
1 

F o r  example ,  i t  follows f rom this  theorem t h a t  t he  series 

~ einkz 
S(x) = k~ 

k = l  

defines such a Peano  curve for al l  q >  1 a n d  p > 1. A no the r  s imple example  of 
a series sat isfying the  hypothes is  of theorem I I  is the  Weiers t rass  funct ion  

S(x) = ~ e - ~  e "~x 

whenever  ~ <  log (1 + ~ ) .  
Pe rhaps  the  s imples t  fo rmula t ion  of t he  above-men t ioned  genera l iza t ion  of t h e  

theorem of Pa l ey  is t he  following: 

Theorem I I I .  Su~rpose S(x) = ~ cke in-x, n~ + l/n~ > q > I ,  is a lacunary power series 
1 

satis/ying ~ [ ck I = oo and l im c~ = 0. Then there exists a constant A = A q such that, 
1 k.--->oo 

i/ ~ = ~ ~k is any numerical series with (complex) terms tending to 0 and I any 
1 

interval o/ length A /n1 ,  we can then ]ind x E I so that the set o t limit points of 
the partial sums o/ S(x) coincides with the set o/ limit points o/ the partial sums 
o/~. 

W e  shall  show t h a t  for, no t  only  the  l as t  two, b u t  for all  t h ree  of these  
theorems  the  behav iou r  exh ib i t ed  b y  the  l a c u n a r y  po lynomia l  or  series in ques- 
t ion  ac tua l ly  t akes  place  on cer ta in  Can to r - t ype  sets. The  s imples t  of these  t y p e  
of sets are  cons t ruc ted  in t he  following way:  L e t  us f ix an  in te rva l  I (which 
shall  be called the  support of our  set) a n d  a cons tan t  K smal ler  t h a n  ~ (which 
shall  be called the  removal ratio of our set). 2 L e t  us now remove  f rom I a sub- 

1 If z = u + iv is a complex number then ~ (z} = u will denote the real part of z. 
2 An example showing that this restriction is necessary, at least for the generalization of 

theorem I, can be found in w VI of [1]. 
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interval si tuated in its middle and such tha t  the ratio of its length to tha t  of 
I is smaller than  K. This leaves us with two similar intervals with each of 
which we can repeat this procedure (the ratio of the length of the removed to 
tha t  of the previously remaining interval need not  be the same as before, as 
long as it is smaller than K). Keeping up this process we obtain a certain set E ~ I .  
We shall refer to the removed intervals as black intervals, while the intervals from 
which a black interval is removed shall be called white intervals. More generally, our 
methods for proving these theorems will not require tha t  the black intervals be 
taken away from the middle of white intervals; however, we shall be forced to 
assume tha t  at  each stage the length of the smaller remaining white interval 
divided by  the length of the  larger one majorizes some fixed positive number 
tha t  depends on the removal ratio. We shall call these sets supertriadie (for a 
previous s tudy connecting these type of sets with lacunary series see [1].) 

The organization of this paper follows tha t  of this outline. We shall devote 
the next  section to the proofs of theorems I,  I I  and I I I .  Theorem I is not new 
(see [3]) but  the proof we shall give is different from the original one. This 
proof is a refinement of an argument  given in [4] (see pages 247-249)which is 
there used to obtain a somewhat weaker result. In  the third, and last, section 
we extend these three theorems to the case of the Cantor-type sets just de- 
scribed. The proofs of these more general theorems are considerably more com- 
plicated than  those of the theorems announced above which concern the behavior 
of our lacunary series on intervals. I t  should be pointed out tha t  the method 
of Salem and Zygmund, as mentioned in their paper, can be used  to show that ,  
for q large enough, we can substitute certain sets of measure zero for the inter- 
val I in. the statement of theorem II .  These sets, however, are supertriadic sets 
of the type used in our generalization of theorem II .  

w 2. T h e  interval  case  

(i) Let  us first observe tha t  theorem I is an immediate consequence of the 
following fact: 

Given real numbers n z < n 2 < ... < nN satis/ying nk+_ 1 > q > 1 and /requencies q~z, 
nk 

99.: ".-,q~N then there exists a constant A'o such that /or each interval I o/ length 
III >JAq/n z we can /ind a /inite non-negative measure #, with support included 
*n I ,  whose Fourier trans/orm 

M ( u ) =  fze~UXdlz(x)= f~ooe'UXd#(x) 

satis]ies ~ {M(nk) e~k} >I 1/C a, 

where Cq is some positive constant depending only on q. 

For, letting ~0k be defined by  ck = l c~l e ~  and T ( x ) =  ~(Q(x)}, we have 

(2.1) 



J.-P. KAHANE et al. ,  On lacunary power  series 

which gives us (1.1) with A = Aq >i Cq I~(I). 
In the sequel we shall be dealing with power polynomials obtained by taking 

finite sums of the form :~ e ~'kz= P(x). We shall call the set of frequencies (vk} 
the spectrum of this polynomial and shall denote it by Sp(P). The number 
~=  rain {Irk-vii} will then be called the step of this spectrum. 

Having made these definitions, let us begin our proof of theorem I. By the 
observation we have just made, this proof reduces to constructing the measure/~. 
This construction will depend on two lemmas concerning the F. Riesz products: 

N N 

PN(x) = I-I (1 + cos Ink x + ~k]) = 1-I (1 + ~ [e ~'k~ e ~k + e- ~'k~e-~k]) 
1 1 

N 

= 1 + ~ e  -~k e-i~k~ + . . . .  
1 

The first lemma, which can be easily proved by induction on N, collects several 
well known facts (see [4], pages 247-249): 

Lemma (2.1). I[ q> 3 then PN(x) has coefficients o/ modulus not greater than 
1; in particular, the coe//icients associated with the /requencies 0 and - n k  are 1 

and �89 - ~  respectively. Furthermore, Sp(PN) has step no smaller than q-_33 and nlq - 1 

is contained, with the exception o[ O, within the segments 

1 1 

The second lemma (also essentially contained in the same passage of [4]) is an 
easy consequence of the first: 

Lemma (2.2). Suppose q> 1 and let p be a positive integer satis/ying q~> qp-l + 2. 
Define 

P,(x)= 1-I (1 + cos [nj+~px+qgj+kp]) ~= 1, 2 . . . . .  p. 
k=O 

Then the sets Sp (P j ) -  (0} are disjoint, their union has step >~ (5 =aq nl, where aq 
p 

is a positive constant that depends only on q, and O(x)= ~ Pj(x) has the /orm 
t=1  

N 
Q(x) = p + �89 ~ e -irk e -t'~z + 2 aj e-~ s ~, 

1 

where <. 1 A /o~tiori, Sp(Q) - {0} has step >1 r 

1 I f  a < b, + [a,  b] s h a l l  d e n o t e  t h e  i n t e r v a l  [ a ,  b]  w h i l e  - [a ,  b l  d e n o t e s  t h e  i n t e r v a l  [ - b, - a] .  

4 
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For our hypothesis on p implies qV>3. Thus, we can apply lemma (2.1) to 
each of the polynomials Pj. Hence, S p ( P j ) -  {0} is contained within the inter- 
vals (2.2) (with q replaced by  qV). Lemma (2.2) will then certainly he true if the 
intervals associated with Ps and Pr, J # J', are disjoint and a t  a distance at  least (~ 
f rom each other (~ shall be determined presently). But  this is easily seen to 
be the case, since, assuming, say, tha t  a = j + kp > j' + ~ p = fl, 

a.  1 qV qV~ qp(k--2) - n ~  1 . . . +  �9 "" + q-~ + qV-~ + 

1 _/~ qV - 2 

,'] [,,," ," 
>1 n l [  qV _ 1 = nl qV _ 1 

~qV+X _ qV _ 2q qV _ 3l We note that,  according to our proof, a~ = rain [ ~ - - i  ' ~ - ~ J "  

The construction of # is now straight forward. We first remark tha t  it is 
:sufficient to consider an interval I centered about  the origin, since the general 
case would then follow by  a translation of the variable x. Thus, we shall as- 
sume tha t  I =  [ - 2 ~ ,  2~], where a lower bound on Q shall he given presently 
(thus giving us a value for A~). Let  a(x) be the triangular function 

" x 1 -2e.<x.<0 

a(x)=  1 x 0~<x~<20 
2~ 4~ ~' 

0 , I x l > 2 Q .  

Thus, A(u) = f ~  ~ux sin 2 ~x e a(x) d x = - ~ i x ~  and, in 

d~t 
We define # by  letting ~xx = Q(x)a(x). Thus, 

particular, f~_~ a(x) dx  = A(O) = 1 

N 

e "x d~(x) = p A(z)  + ~ ~ e - ~  A ( x -  nk) + ~ aj A(x - ~j). 
1 

But, in general, if v o, v 1, v2 . . . .  is a sequence with step ~> (~ and {bk} is any 
sequence of real numbers, we have 

I P bhA(vm--Vh) ~<suplbt~ [ ~ A ( " , , - " , ) < { s u p I b ~ I }  ~Ar 
h * m  h * m  

Thus, letting the vk's be the frequencies and the bk's the coefficients of Q(x) 
we obtain 
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I M(nk) -- �89 e-'~k I = ] p A(nk) + �89 ~ e-'~' A(nk-- nJ) + ~. ~j A(nk-- 1,)1<~ 

<'P 1 n 2 3d 2~2 (2.3) 

~gY~ J l  where ~ =aqn r Hence, if we choose Q such that  ~ ~.~, inequality (2.3) can 

be written in the form 

I M(nk)  et~k - ~l < 1, 

which clearly implies ~ {M(nk) e i~k} >I -~. Hence, inequality (2.1) is satisfied with 
Cq=4. The lower bound on A~ obtained by this method is easily seen to be 
4 I -  

V p ~  Theorem I is thus proved. 
a q r  3 " 

In the sequel we shall apply theorem I in slightly different, but  equivalent, 
forms. The following three corollaries are the restatements of this result we 
shall use. 

N 

Corollary (2.1). Suppgse Q(x) = ~ cke in-x, where nk+l > q> 1, then there exist two 
1 n k  

constants, a=aq, 0 < a < . ~ / 2 ,  and A'=A'q,  depending only on q, such that when- 
A N 

ever a complex number Z has modulus I ZI = - - ,  where A = ~]ckl, and an inter- 
COS ~ 1 

val I has length I I l>~A' /n  I then there exists x E 1  such that 

I Q(x) - Z I < A tg ~. (2 .4)  

By multiplying both Q(x) and Z by e -~argz we can reduce the problem to 
the case when Z is real. To see that  theorem I implies corollary (2.1) (the di- 
rection we need) is now immediate. For, letting A' be the constant of theorem I, 
we know by that  theorem (see inequality (1.1)) that  there exists an x E I  such 
that  Q(x) lies to the right of the vertical line Q passing through the point 
(A/A, 0). On the other hand, clearly IQ(x) l<~ A, which implies tha t  Q(x) must 
lie in the intersection of the half-plane to the right of Q and the disc about 0 of 
radius A (the shaded region in fig. 1). Defining a by the equation cos a = 1/A,  
inequality (2.4) follows from the observation that  the distance between a point 
of this region and Z cannot exceed w = A tan r162 (see fig. 1). 

N 

Corollary (2.2). Suppose Q(x) = ~ ck e ~n kx, where nk + l > q > 1, then there exist two 
1 n k  

constants A "  =A'q" and B =Bq ~ 1, depending only on q, such that each interval I 
2 

of length 111>7 A " / n  1 contains a subinterval g o/ length ~ such that 

N 

]ck I ~< B ~ {Q(y)} (2.5) 
1 

/or each y E J. 
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Fig. I. 

For, if I '  is an interval of length at  least A' /n l ,  where A'  is the constant 
of theorem I, then, by tha t  theorem we know that  there exists x E I'  such that  N 
~[ck [ ~< A R {Q(x)}. But, if y is any other point, using the mean value theorem, 
1 

we obtain 
N N 

IQ(x)-Q(y)l<-Ix-yl2n~lckl<-nNlx-ylY~lc~l. 
1 1 

Thus, 

R {Q(y)} = R {Q(x)} - R {Q(x) - Q(y)}/> I ck [ - nN Ix - y[ 2 [ck[. 
1 

1 + 1 ] 
Hence, letting B = 2 A  and y E J =  x BnN' x ~ we obtain 

1 ~ ]Ck[ =2-A1 ~ l c k , = ( 1 1  2A~'~nNN)~]Ck'<<'(~--nN[x--Y])~]Ck]I 1 B 1  
<R(Q(y)}, 

which is inequality (2.5). If I '  is chosen as the central subinterval of an inter- 
val I of length at least A " / n l ,  where A " =  A ' +  2/B,  then, clearly, J c I and 
the corollary is proved. 

N 
Coronary (2.3). Suppose Q(x) = ~ cke ~nkx, where nk+l> q>  1, then there exist con- 

1 nk  
stants A"=A'q ' ,  ~=aq  ( 0 < ~ < ~ / 2 )  and B'=B'q, depending only on q, such that 

A "  A 
whenever an interval I and a complex number : satis/y III/>-- and I : l > - -  

n 1 r  o~ 
N 

Ylekl 
1 3 B '  

- , then there exists a subinterval J c I  o/ length [ J  I=  such that COS ~ n N 
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o , 

F i g .  2. 

cos ~ . (2.6) 

1or all x E J. 

This corollary can be derived from the preceding one by a geometrical argu- 
ment tha t  is very similar to the proof of corollary {2.1). Again, we may assume 
that  ~ is real. Let  us define of by  letting cos of= l I B  {where B is the constant 
in (2.5)) and let us construct the triangle OP~ of sides of length A and [~l 

A 
forming an angle of between them (see figure 2). The fact tha t  I~l > -  

cos of 

implies tha t  the angle OPt is greater than ~ /2  and we certainly have oJ/~ < 1. 
Using these two inequalities and the identity I ~ [z - ~ = 2A ] ~l cos ~ - A ~ (i.e. 
the law of cosines) we thus obtain 

2 cos ~ -- ~-~-] A cos ~ .  
', - -  ~  Ir x + f f i  

But, by exactly the same type of argument used at  the end of the proof of 
/7 

corollary (2.1), we obtain the fact tha t  whenever ~]cu[ ~< B ~  {Q(x)} (see inequality 
1 

(2.5)) then the distance between Q(x) and ~ cannot exceed o~. Thus, we have 
COS Of . 

shown [Q(x) -~ l  ~< eo ~ < l ~ [ - T  A for all such values of x. But, by collary (2.2), 

given any interval I of length at  least A " / n  x, such x's will fill a subinterval 
2 2 

J of length at  least B--nN" This proves our corollary with B' = - -  
3B" 

(if) Let  us now turn to the proof of theorem II. We shall decompose the 
series S(x) in question into successive lacunary blocks of its terms 

S(~) = Ql(x) + q~(x) + . . .  + Qj(x) + . . . .  

Theorem I, in the form of corollary (2.1), will be applied inductively to these 
blocks in order to "aim" toward our point w. We skall thus obtain a convergent 
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Fig. 3. 

sequence of real numbers ,  {xs}, such t h a t  the sequence of par t ia l  sums Sj(xj)= 
= Ql(xj)+ Q~(xj)+ ... + Qj(xj)=X~ converges to w .  F rom this it  will follow easily 

t h a t  S(x)= w, where x =  lira xj. 
i=r162 

The following e lementary  l emma contains the  pure ly  geometr ic  aspects of the 
a rgumen t  involved in the  construct ion of this sequence {Xj}: 

L e m m a  (2.3). Let 0j >/0 and  p~ = ~ 0j < cr (k = 0, 1 . . . .  ). I f  w i8 a complex 
/ ~ k + l  

number satis]ying ] w ] <~ ~1 eo and Ok <~ (~/2) ek, k -~ 1, .2 . . . . .  where 0 < ~ < 1, then ]or 
all sequences o] complex numbers {Xj) and ~Yj} constructed in such a ]ashion 
that X 0 = 0, 

f w - X j l  
r,+,  = x ,  + o . ,  I[ 

I X j + l - l z j + i ] ~ < ( 1 - ~ / ) 0 j + ~ ,  j = 0 ,  1 , 2  . . . .  

w e  have  1, 2 . . . . .  

In  particular, lim Xj = w. 
- -  f - ~ o o  

The proof  follows immedia te ly  b y  an  induct ion argument .  By  assumption,  
u - X  o = w ~ < ~ 0 .  We shall show t h a t  the  inequal i ty  w - X j  ~<z/Q0 implies 
w - X,+I] ~< ~/e,+l. Suppose, first, t h a t  w - Xj]/> 0,. 1. Then,  w - Xj+I] ~< w - Xj[ - 
-~0 j+1  (see fig. 3). Thus,  Iw-Xj+I]<~Qj-~Ot+I=~Qj+1. If,  on the other  hand, 

[w - X,I < 0,+1 then  

]w - Xj+I] < [w - Yj+x[ + ] Yr - Xy+ll < 0r + (1 - 7)0j.+1 < 2 0r < ~ ~J+x 

which completes  the  proof. 

2:1 9 
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Before beginning our construction of the sequence {Xj} let us first show that  

oo 

Ir < y Y I ,1 (2.7) 
k-I-1 

implies 

Ic, l (2.8) 
jffi/c+l 

Yq > 0. (2.9) provided fl ~> 

When /r 1 (2.7) clearly implies (2.8) as long as fl>~,, which certainly holds 

if fl~> Yq- -  Now let us suppose (2.8) true for k; we shall show that  it is 
q _ l _  7" 

true for k + 1. By our hypotheses, we obtain 

j ~ k + l  

j - k + 2  

which is inequality (2.8) for k +  1. 
The following notation will be useful. We shall denote by n~ and n'/ the 

smallest and the largest of the frequencies of the block Qj, by  c~ and c'/ the 
inj'Z 

coefficients of e tn~Z and e , and by Aj the sum of the absolute values of the 

coefficients of Qj. Thus, Qj(x) = cj e %z + ,, tn.x , ' �9 ... +cj  e " and A,=[c , [+ . . .  +[c;'[. 

Letting 6s= Aj . where ~ is the constant of corollary (2.1), and putting 
COS 

~ =  ~ ~ =  1 ~ A~= Rk we now construct inductively sequences {Xj~ and 
]=k+l COS ~ /~41 COS 

{Yj} satisfying the hypotheses of lemma (2.3). Since X 0 = 0  , we have YI=Xo+ 
w - X ~  =6 w__ 

+ ~ x ~ , _  v, x Iw [ �9 We select an arbitrary real number x o and apply corollary 

[ A'xo_2n__.~, x~ _~ w__w_ _ w - X  o (2.1) to Q=Q1, I = I x =  and Z = Z  1-  1 1 w l = O x ~ l .  We 

obtain ~ E I such that  

[ QI ( X l )  - -  Z I [  ~-~ A 1 tg ~ = (~1 s i n  ~ .  

We then define X I =Sl(xl)= Ql(xl) and, clearly, 

10 
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Ix~ - Y,I = IQ~(x~) - zl l  < (h sin a .  

w - X 1 
Y~ is then determined by Y~=XI+~[~_X1  [. Now we apply  corollary (2.1) 

[ A' A'] w - X  1 
- - -  =--7 and Z = Z~ = (~2 [w - XI[" again; this t ime to  Q = Q ~ , I = I  2= x 1 2n~'  xl + 2 n ~  

We obtain  an x 2 E I such tha t  

IQ~(x~) - z~[ < A~ tg  ~ = ~ sin ~. (2.1o) 

We then define X~ -- S~(x2) = $1(x2) + Q2(x~). Hence, 

But,  by  inequali ty (2.8), 
,, OO 

. . .  "4- $~/,1 Cl e 1 [ "~<//~1 f i ~ l  k [ ' ~ < n l  ~ 1  
p 

n 2 

A 1 
and, moreover,  x 2 being a point  of I S, Ix 2-  xl[ ~ ~ .  Thus, by  the mean  value 

theorem 

p t t  A t  

zne 

Using this estimate and  (2.10), therefore, we obtain  

A t  R . _  
[ X ~  - Y2[ ~< ~ + ~ sin :r 

2 ~  

Continuing in this fashion, we obtain  a sequence {xj} with 

Xl+l EIi+I  : - 2nt+1' x i A - ~  

from we easily see tha t  which 

A '  
[x~- XQ-l[ < r q 1' 1 ~< e < k, (2.11) 

/t, e ~ -  

and, consequently,  x =  lim xj exists and lies in an  interval about  x o of length 

q-12 q A ' )  w -  Xs-1 j ~> 1, then and such tha t  if X,=Sj(xj), Yj= Yj_I+(~,lw_Xj_I[, 

t 

Ix ,  - Y,I < ~ - ~0 ; - 1  + ~ sin ~ .  

11 
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We could then  app ly  l emma  (2.3), and  obta in  the conclusion of theorem I I ,  
with x = l im xj, x if 

1---~oo 

_<7 Oj .~ ~ 0j, (2.12) 

and A '  fl 2 ~ j - l + O j s i n x < ( 1 - ~ ) ~ s ,  j = l ,  2 . . . . .  (2.13) 

I n  other  words, we mus t  show t h a t  we can choose y =  y(q), ~ = ~/(q) and  the 
sequence {n;'} in such a way  t h a t  (2.12) and (2.13)hold.  We first  note  t h a t  for 
(2.13) to hold we mus t  choose ~/ to  be a posit ive number  less t han  1 - sin x. Hav ing  
chosen such an ~/, n;" shall be chosen induct ively to be the  largest  n u m b e r  of 
the  pa r t  of the  sequence {nk) following n;'-i such t ha t  (2.12) holds (which can 
obviously be done since X ]ckl < oo). Thus,  Aj + ]c;+1] > (~l/2)(R,-]C]+ll). But ,  by  
(2.7), IC;+l]<.y(Rj-]c;+~l). Hence,  we should impose the  condition y<~7/2. We 
also note t h a t  these two inequalit ies imply  

Rewrit ing {2.13) in the  form 

A ' f l  
[1 - ~ / -  sin ~] Oj ~> ~ -  [Qs + OJ] 

(2.14) 

or, af ter  mult iplying bo th  sides b y  cos ~, in the  form 

[ 1 - ~ - s i n ~  J 

we see t h a t  (2.14) implies (2.13) provided 

A ' 3  , _<~__ 

But ,  since l im 7q O, we can cer ta inly find Y so small, and  a fl sat isfying 
r -~oq-1-  7 

(2.9), such t h a t  this last  inequal i ty  and  the condition Y < 7 / 2  be satisfied. This  

proves  theorem I I  with this value of Y, v = ~ and ~ = 2A' q ~ -  
cos ~ q -  1" 

, For Is (x) - ~j (x,)l  -< ]SJ (x) - s~ (~,)1 + iS (x) - S~(~)] -< ]Zj(x) - S j (~) ]  + . j - <  A ' . ; ' ~ q  
nt+ l (q - -  1) ~1 + 

+ R f - > 0  as  ]-->oo, t h e  las t  e s t i ma t e  m a k i n g  use  of (2.8), t h e  m e a n  va lue  t h e o r e m  a n d  

the  l imi t ing  case of (2.11), w h e n  k-->c~. 

12 
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(iii). The proof of theorem II I  has many points in common with the pre- 
ceding one but  contains ideas that  are new. Instead of lemma (2.3), for example, 
we shall use the following analogous result: 

Lemma (2.4). Let {8~}, j = 1, 2 . . . . .  m, be a positive sequence, and suppose that 
m 

w and X o are two complex numbers satis/ying I w - X o l < ~ s ,  0<~]<1 ;  then, 
1 

whenever two sequences {Xj} and {Y~} satis/y 

w - X j  
Yj+~ = X, + ~s+~ i . . . ~ - ,  and IXj+~ - r++l[ ~< (1 - ~/)~J+l, 

IW---~jl 

= O, 1, 2 . . . . .  m -  1, we have ] w -  Xml ~< 2 sup 8j. 
i 

For, if Iw--Xm-ll<~m then, as in the proof of ]emma (2.3), I w - X m l < 2 ~  
and the lemma is true. On the other hand, if IW--Xm-ll>~Om then (see fig. 3) 
I w - X m l < l w - X ~ _ l l - ~ O m .  I~ this last case, applying this argument again we 
obtain the result that,  if IW--Xm_2l<8m_~ then Iw-Xm_~l<28,~_~ which im- 
plies I w - X , , l < 2 8 ~ _  ~ - ~ 8 ~ < 2 ~ _ ~  and the lemma is proved; or, if Iw-X~_21>~ 
~> ~m-1 then 

Thus, we see that  by preceding in this way we obtain the desired result if, 
for some ], I w - X j l  < 8j+i- On the other hand, if this inequality is satisfied by 
no value of ], 1 ~< ] ~< m - 1 ,  we obtain the contradiction 

m m m 

1 1 1 

Our proof of theorem I I I  shall be  based on this lemma and corollary (2.1). 
Let  A '  and ~, then, be the constants involved in this last corollary and let 
fl > 0 and y > 0 be two numbers satisfying 

(cos a ) ~ +  sin a = 1 - ~ .  (2.15) 

Because of our assumptions on the sequences {ck} and {nk} we have 

le, I nl + 1~21 n, + . . .  + I~0l n~ = oIn0), (2.16) 

as Q-->oo. :Now let us define the sequence of integers {Qj} by the conditions 
~1 = 1 and ~j+l, j =  1, 2, . . . ,  the least integer for which 

= Ic0 +,l + I~ 21 + .  + I 0,+,1 
satisfies 

13 
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ICll 9Z 1 "4- Ir nz + . . .  -4- I 0,1 .< net A 1. (2.17) 

An  immedia te  consequence of (2.16) is t h a t  A j=o(1 ) .  We  now define 

q/+l 

Qj(x) = ~, cke t"~  
ej+l  

qj = degree of Qj = n~j+l 

S* = Q I +  Q9 + - . .  +Qm. 

The theorem will t hen  be p roved  if we can show t h a t  there  exists  a sequence 
of rea l  numbers ,  {xr}, and  one of integers,  {mr}, such t h a t  

a) Sm e (Xe) = W r + O(1) 

0 [ ~ 1  b )  x r+  1 - - x F =  ~qmm~ (2.18) 

e) A m r + l + h ~ r + 2 +  ... + A % +  1 =o(1) ,  

e 
where w e = ~. ~k is the  yth pa r t i a l  sum of A .  For ,  b y  b), (xe} will converge and  

1 
i ts  l imi t  x will sa t i s fy  x-xe=O(qTalr). 1 But ,  since b y  (2.16), the  de r iva t ive  of 

S*~(x) satisfies Ils* 'll  we mus t  have  (using the  mean  value  theorem) 

'S'me(Z) -- ,S*m:,(Ze) = 0(1); 

thus,  b y  a) S*r(z  ) = w 7 + o(1) (2.19) 

Now, le t  vy=omr+l,  so t h a t  the  pa r t i a l  sum S~ r 
c), then,  implies  t h a t  

which, b y  (2.19), implies  

coincides with ,t~my. Condi t ion  

sup IS,(x) - S,r(x)l = o(1), (2.20) 
2,?~<v<~re+ I 

sup  [&(x)  - w e l  = o ( 1 ) ,  

and  th is  cer ta in ly  implies  the  conclusion of theorem I I I .  
Af te r  selecting x I and  m I a r b i t r a r i l y  le t  us now show how we can choose 

xr+l and  me+l once x~ and  m r a re  given. Le t  us p u t  

1 As we shall see, xx, the first number of the sequence {Xe}, can be selected arbitrarily. 
Thus I can be taken as an interval about x I and its length should be large enough to guarantee 
that x E I. Thus, A = Aq can be determined by the relation Ix -  xxl <~ A/qm, 2. 

14 
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1 
~t = Amy+i, 0O = XV 

COS 

Xo = S*~(0o), Zl = ~1, w!+~ - X~ 
[Wr+l - -  Xo[" 

A' 
B y  corollary (2.1) there exists a point  01 such tha t  [01--00[~ 

2qm r 
IQm~,+l(01) - Zxl ~ ~1 sin ~. 

and 

W~++I - -  X 1 
Let  us define X 1 = S* +1(01) , Z~= ~ iwv+ 1 -  Xl  I 

general, having obtained 

Xj  = S*:,+t(0t) 

and repeat  this argument:  In  

and defined Z1+1 = (~++l wr+l - Xt 
Iw~+,- x,t' 

an  application of corollary (2.1) gives us a point  0i11 such t ha t  

[ Ioo,1111<o,11)- 1111  111 sin= 
A 

1 0 . 1 -  01[ < :_:=-3 ~--:  �9 
(2.21) 

Pu t t ing  Yj+I = X j +  Zj+I and Xj+I= S*r+i+l(Oj+l) we have 

[Xj+I - r,+l[ < Is*~+1(o. , )  - s*~+J(ot)l + IQ~+J 4-1(0t11) - -  Z t + I I "  

The  first te rm of the right hand side of this inequali ty is majorized by  [01+1- 01[ 
1[s*;+t111 and, thus, by <2.171 a n d  (2.21), by  

A'  A' f l  
~ - - -  f lqm_+iAm_+i+i = - x - - ~ i + l  c o s  ~, 
Zqmr+i r r Z 

s i n c e  qraa+l=nqm~+]+ 1. Thus, keeping this in mind and using (2.21) to est imate 

the  second term, we obtain 

IXj+I - Y1111 ~< cos ,r + sin ~ ~1+1 = (1 - 71 ~i+1. (2.22) 

Now let us choose the least integer m such tha t  

m 

[wy+l - Xo[ ~< ~/~ 5i. (2.23) 
1 

We can thus apply lemma (2.4) and obtain 
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2 
[wr+~ - Xml ~< 2 sup ~j < - -  sup A k. (2.24) 

./ C O S  6C k > m~, 

On the other hand, our choice of m is such that  

~ j  < ~ + ~ Iw~+l - Xo[. (2.25) 

We now choose Xv+l=Om and m r + l = m r + m  and shall show that ,  with these 
choices, (2.18) is true, thus proving the theorem: Par t  a) is an immediate con- 
sequence of (2.24) and the fact tha t  As=o(1); par t  b) follows from the second 
par t  of (2.21) (since x,+l-xr=Om-Oo); finally, par t  c) now follows from (2.25), 
the already established par t  a) and the assumption tha t  the terms ar~l = wr+l - w r  
of the series A tend to 0. 

As was mentioned in the introduction, theorem I I I  is equivalent to the fol- 
lowing result: 

I /  70 is a closed connected subset o/ the extended plane then there exists a point 
o/ our interval 1 such that the set o/ limit points o/ the partial sums o/S(x)  coin- 
cides with 70. 

We see this immediately by  establishing the following 

Lemma (2.5). A subset 70 o/ the extenged plane is closed and connectet i /and  

only i/ it is the set o/ limit points o/ the partial sums o /a  series • -  o:~ whose 
1 

(complex) terms tend to zero. 
# 

The fact tha t  the set of limit points of the partial sums of such a series is 
closed and connected in the extended plane is a very elementary result and, 
thus, we shall only sketch the proof of the converse. 

Let us first observe tha t  if ]O is bounded, x 0 a point of ]O and ~ a positive 
number then there exists a finite sequence S = (x 0, x x . . . . .  xn = %} c ]O such tha t  
Ixk+l - x~l < o and such tha t  each x E ]O is a t  a distance less than  ~ from S. For it is 
sufficient to choose a finite number of y, E ]O such that  each x E ]O is a t  a distance less 
than ~ from some y, and then construct such a ~-chain (that is, a sequence of points 
of ]O such tha t  consecutive members are a t  a distance less than Q from each 
other) joining x 0 and y,; the reordered union of these Q-chains can be taken 
as S. Now choose a sequence Qn-~0 and corresponding ~n-chains Sn, which we 
reorder into a single sequence {wk} by  tak ing-Sk+l  after Sk. By putting 

O~k=Wk--wk-1 we obtain the desired series ~4 = ~ .  In  case ]O is unbounded 
1 

we select a point x 0 fi ]O and for each n > Ix0] we consider the closed connected 
region ]on formed by intersecting ]O with the disc ]Z[ ~<n and then completed 
with the circle IZ]=n. Selecting Qn--~0 and defining Sn with respect to ]On, 
~= and x 0 we then continue as before to  obtain the desired series J4. 

w 3. The general case 

(i) We now pass to the extension of these theorems discussed in the intro- 
duction. First we shall prove the following generalization of theorem I: 
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N 

Theorem I ' .  Suppose Q(x)= Z ck e ~n~, where nk+l> q >  1, then there exist constants 
1 n k  

A = A q ,  A '=A 'q  and K = K q ,  depending only on q, such that whenever E is a 
supertriadic set whose support is an interval o/ length at least A ' / n  1 and whose 
removal ratio is K then 

N 

le.I A sup 
1 xeE  

In  order to derive this theorem from theorem I we shall need a more intricate 
decomposition of a general lacunary power series into successive blocks than the 
one used in the proof of theorem II .  This decomposition will be obtained by 
means of the following lemma: 

Lemma (3.1). Suppose we are given an ~ > 0, an integer s > 0 and that 

n k + l  
S(x) = Z ck g '~,  > q > 1. 

k ffi 1 n k  

is a lacunary power series, then there exists a constant R, depending on q, e and 
s, such that S(x) can be written as a sum o/ successive lacunary blocks (corre- 
sponding to the same q) 

s ( x )  = Ql(x) + QT(x) + . . .  + Qj(x) + Q*(x) + . . . .  (3.1) 

with the /ollowing properties: 

(i) n~'/n~. < R; (ii) r < nt+, 1 < r2; (iii) A* ~< e(A s + A]+z) , 
nj 

where n~ and n~' denote the lowest and the highest /requency o/ Qj(x), Aj and A~ 
denote the sums o/ the absolute values o/ the coe//icients o/ Qj and Q*, respectively, 
and r = qS+l. 

In  order to prove this lemma let us first add to S(x) terms with ck=0, if 
necessary, so tha t  

n k + l  
q <  <q2, k = l ,  2 . . . . .  (3.2) 

n k  

Let us now choose a positive integer m satisfying 1/m<.e  and an arbi trary 
positive integer s. We then define r to be q~+l. Let us split S(x) into succes- 
sive blocks, each containing (m + 1) s terms, and from the second one choose the 
power polynomial of s successive terms having a minimum A ( =  sum of absolute 
values of its coefficients). We do the same for the fourth block of (m + 1) s terms, 
the sixth block, etc . . . . .  We shall denote these polynomials by Q~, Q~, Q~ . . . .  
and the blocks preceding them by  Q1, Q2, Q3 . . . . .  Each Q~, then, has s terms 
and, by  (3.2), the ratio of t h e  highest to the lowest frequencies of this poly- 
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nomia l  is be tween  q(S-1) and  q~(~-l). On the  o the r  hand,  each Qj has  less t h a n  
3 ( m + l ) s  terms,  as can be easi ly  seen f rom our  const ruct ion.  L e t  R = q  6(m+l)s. 

~" - ~(J) ~ ~r < < ~(J) < ~(J) - n "  b y  the  The  lemma now follows easily:  l e t t ing  , ~ j - m  ~ - ~  ... ~kj-1 k~-  j 

frequencies of Qt, we jus t  observed  t h a t  k t < 3 ( m + l ) s ;  consequent ly ,  using (3.2), 
we have  

Ak t Ak)--I 
--7 = 2(J--7- "2~) "'" 2(1t~ ~< (qZ) k1-1 < (q$)S(m+l), = R, 
n j  ki-1 kt-2 

which is i nequa l i t y  (i). 
Similar ly,  in o rder  to  p rove  (if), suppose  ~(1 j) <~(z~)< <.(s) ... ~ are  the  frequencies 

of Q*. Then,  aga in  using (3.2), 

t �9 

(t) . (1 )  ""~'~)~, ' �9  "Vs r s - 1  n /  ~'t 

Las t ly ,  in order  to  der ive  inequa l i ty  (iii) le t  us observe  tha t ,  since Q~ was 
chosen f rom the  2 f  h block of ( m +  1)s t e rms  of S(x)  in  such a w a y  t h a t  A~ was 
minimal ,  A~ does nos exceed a n y  of the  sums, A(1 ~), A(~ j), . . . ,  -~+I,A(~) of the  abso lu te  
values  of the  coefficients of the  m + 1 consecut ive po lynomia l s  of s t e rms  ob- 
t a inab le  from th is  2 f  h block.  Thus,  if ~,a(" -- ~,,.--'~ (A(~)}, 

l<k<m-{-- ! 

A~ < AT)< _1 5 A~)< ~(Aj+ Aj+I), 

and  the  l emma is proved.  
W e  now pass  to the  proof  of the  theorem.  W e  shall  a p p l y  l emma (3.1) to  

S ( x ) = Q ( x )  with e =  1 / 4 B  and  r = q  s+l where s +  1 is t he  sma l l e s t  in teger  such 
- - 8 + I ~ a A " B ,  where A "  a n d  B are  the  cons tan ts  of corol lary  (2.2). W e  t h a t  r -  ~ ~ 

thus  ob ta in  a decompos i t ion  of Q(x) in to  a f in i te  n u m b e r  of blocks 

* X  
Q(x) = Ql(X) + Q~(x) + . . .  + Q,,(x) + Qn( ). 

W e  choose an  a r b i t r a r y  in te rva l  I of l ength  a t  leas t  A " / n  1 aus our  suppor t  
of our  super t r i ad ic  set. The  theorem will t hen  be p roved  if we can show 1 t h a t  
there  exists  a sequence 11 ~ I s ~ ... D In of sub in te rva l s  of whi te  in te rva l s  of no 
more  t h a n  three  t ime  the i r  lengths  such t h a t  

Aj ~< B R (Qt(x)} 

if  x EI j ,  j = 1, 2 . . . . .  n. For  In will t hen  ce r t a in ly  have  po in t s  in common wi th  
E and,  if x EIn,  

1 For simplicity we shall assume throughout that the black intervals are removed from 
the middle of white intervals. The reader will find it easy to see that the methods used ex- 
tend to include the more general sets described at the beginning. 
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1 1 1 i = 1  

- -  " * X  = (! + 2 e) B R {Q(x)} R {Q~ ( )} ~< (1 + 2 e) B R {Q(x)} 

n N 

+ (1 + 2 e ) B ~ A [  ~< (1 + 2e)Bi~{Q(x)}+ (1 + 2s)2  e B  ZIc.I 
1 1 

N 

< lB~{O(x)} + ~ 2 It.I, 
1 

where in the last estimate we used the fact tha t  B i> 1 and, hence, e ~< 1. Thus, 

N N 

1 1 

and the inquality of theorem I '  holds for A =6B.  
We shall construct inductively this sequence of intervals, together with an 

accompanying sequence of integers ~1 < ~s ~< ... ~< an, in such a way tha t  Iljl = 
2 

and such that ,  after performing the first ~s stages of removing black 
--3n~'B 
intervals, I t is contained in one of the white intervals of length 3 IIjl. Let  
K = I / 3 R r  s and apply corollary (2.2) to Q(x)=Ql(x ) and our chosen interval I .  
We thus obtain a subinterval J1 of length 2/Bnl '  in which }~{QI(x)}>~A1/B. 
Observe that,  by  lemma (3.1) and our choice of r, 

2 3 1 3 
,,/> - = 9K. 

>~ A " B  nl r R>~r-~ 

We now begin our dissection of I until one of the black intervals intersects J r  
Since the removal ratio in no larger than  K this black interval cannot remove 
more than 1/9 th of J1- Thus, we are able to pick a subinterval 11 c J1 of length 

II~1 IJ~l 2 3 3Bn'~" and such tha t  it has an end point, but no other point, in common 

with the removed black interval. Now we remove black intervals up to and in- 
cluding the ~h stage, where the (al + 1) st is the first stage which has a black inter- 
val intersecting 11. Clearly, since t h e  removal ratio is less than  1/3, 11 is con- 
tained in a white interval of the g th stage of length ~ 3111]. 

Now suppose appropriate sequences {I  1, I s . . . . .  Ij} a n d  {~1, as, ---, ~J} have 
been defined. Let  us construct Ij+l and ~j+l. Since, by our choice of r and 
lemma (3.1), 

2 A"  A "  

rn I n] + 1 

we can apply  corollary (2.2) to Q(x)= Q),+l(X) and I = Ij. We obtain a subinterval 
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2 
J j+l~I j  of length IJs+~l = ~  on which ~{Qj+,(x)}~> Aj+a/B. Let  us now con- 

t inue our dissection until a black interval  intersects Jj+l.  I f  b is the length of 

this black interval, then b < ~ •  as can be seen by  the following argument :  

th stage containing Let t ing w denote the length of the white interval of the ~j 
Ij,  and  keeping in mind tha t  w ~ 3 [Ij[, we have 

b _<b w <~K 3]IjI<~K o l~jJ-, _[(n;+'l K n;'+l n ;+l<~Rr2_  1 

Thus, we are able to choose a subinterval Ij+sCJj+l of length IJj+l] 2 
3 3Bn~+l 

having an end point,  bu t  no other  point, in common with the black interval in 
question. We now remove black intervals until  and including the a~h+l stage 
where the (~j§ 1) st is the first stage for which a black interval intersects Is+l. 
Clearly, I j .1  is in a white interval  of the ~ �9 ~j+l stage of length no more t h a n  
3 IIj+ll. This finishes our induction and the theorem is proved. 

(ii) Next,  we shall prove the following extension of theorem I I :  

0r 

Theorem I I ' .  Suppose S(x) = ~. ck e in~, n k_+l > q > 1, is an absolutely convergent 
1 n k  

lacunary power series. Then there exist constants ~, ~, ~ and K, depen~ling only 

on q, such that i~ Ick] <~ ~ ~ [c#l, k= 1, 2 . . . . .  w is a complex number satis/ying 
k + l  

oo 

Iwl <<.~ ~ Icjl and E is a supertriadic set o/ support at least ~/n I and removal ratio 
1 

K then there exists x E E  such that S(x)=w. 

I n  order to  prove this theorem we shall make use of corollary (2.3). Let  us first 
observe tha t  if this corollary is valid for some value of B '  then it certainly holds 
for all smaller values of B'. Thus, letting ~ and A "  be the  constants  in this 

corollary, we choose ~ > 0  such tha t  e<~"  c o s a  and B '  so small t h a t  
cos :r A- 2 

B ' .  q 1 (1 + 2 s ) < c ~  Moreover, let s be a positive integer large enough so 
q -  8 

t ha t  r=qS+l>A" /B  '. We now a p p l y  lemma (3.1) and thus  obtain  a number  
R and a decomposition 

S(x) = Ql(x) + Q~(x) +. . .  + Qs(x) + Q~(x) +. . .  

satisfying (i), (ii) and (iii). F rom the order of our choices we see t h a t  all our 
constants,  including R, depend only q. {1 

Now, letting K =  m m  3Rr2, 3~;7R and E a supertriadie set constructed on  

an  interval  I of length A"/nx,  we shall show tha t  when w satisfies 
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C O S  a 
Iw] < - - ~ -  ~ Ickl (3.3) 

1 

then  there exists x E E such t h a t  S ( x ) =  w. Thus, values of ~ and v tha t  will 
C o s  

be admissible are A "  and T '  respectively. 
t t  

We shall use the no ta t ion  of lemma (3.1). I n  addit ion we shall let cj =coef -  

ficient of e '~J ~= last coefficient of Qj, n~* = smallest f requency of Q~ and cj* = coef- 

ficient of e in;~= first coefficient of Q*. 
I t  is clear t ha t  it suffices to show tha t  there exists a sequence of subintervals 

of I ,  11 ~ I ~  ... ~ I ~  . . . .  each contained in a white interval, such t h a t  

(a) there exists N for which 

d N = max [W -- [Ql(X) + Q* + . . .  + QN(x)]] <~ AN+I 
x ~ / ~  C O S  a 

and 

(fl) I f  there exists N 1 for which (6) holds then  there exists N~ > N 1 for which 
(a) holds. 

I t  will be convenient  to write FN = Q1 + Q~* + - . -  + QN and denote b y  XN E IN a 
point  at  which the max imum in (~) is at tained.  Thus, dN = [w-- FN(XN)I. Further-  
more, we define 

TN = [ell '/q~l + ]C21 T/~2 +..,,,, -Jr ICN] It, N 
nN 

As in the  last proof, we shall construct  the  intervals I 1 ~ I 2 ~  .. .  ~ I N ~  ... in- 
duct ively together  with a sequence of integers :h ~< as ~< ..- ~< aN ~< ... such that ,  
if we remove the first a~ stages of black intervals, then IN is contained in one 
of the white intervals of length ~< 3 [IN[. We shall also construct  them in such 

B '  
a way  tha t  [IN[ = - -~ .  

7~ N 

Let  us first suppose tha t  ]w] > ~1 . In  this case we can apply  corollary (2.3) 
C O S  a 

3 B '  
to  I ,  Ql(x) and  w. Thus, we obta in  a subinterval  J1 c I of length ]J l l  = n~'  

such tha t  

A1 max  ]w - Ql(x)] ~< Iwl - ~ -  cos al.  (3.4) 
X E J  1 

Clearly, [J1]_ 3B1 nl  >. 3B'  ~> 9K. 
III A" W'R 

We now begin our dissection of I until  one of the black intervals intersects Jl-  
Since the removal  ratio is K, this black interval cannot  remove more than  ~l,th 
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of J r  We pick 11 to be a subinterval of J1 of length II1] = = which has 

an end point in common with the removed black interval but  no other point. 
Now we remove black intervals up to and including the a~h stage, where the 
(al + 1) 't stage is the first stage which has a black interval intersecting 11. Clearly, 
11 lies within a white interval of the ~h stage of length ~< 3 II11. Furthermore,  
11 being a subinterval of J1, inequality (3.4) holds for I1: 

A 1 
dl = max I w -  Ql(x)] = I w -  Ql(xl)l < Iwl - cos  ~. 

X E I  1 

(3.5) 

~2  Now, if d 1 ~< then condition (~) is satisfied with N = 1 and we stop this 
COS 

type of construction. On the other hand, if d 1 > As we can apply corollary 
COS 

(2.3) to 11 since Illl = - ~  t > - 7 ,  by  our choice of r and by  lemma (3,1) , Q~(x) 
n l  n2 

and w-Ql (x l ) .  We obtain a subinterval Jsc I1  of length IJsl =3B',, such tha t  
n2 

As 
I w - Q l ( x l )  - Qs(x)l < I w -  Q l ( X l ) [  - ~ -  c o s  ~ = d 1 - c o s  (3.6) 

for all x E Js.  
By exactly the same process we have just described (and is explicitly carried 

out in the last proof) we obtain a subinterval Is c J  s length B '  and an integer 
n~ 

~ .  Since inequality (3.6) is valid when xEI~cJ~ 

d s = max Iw - Q l ( x )  - Q ~ ( x )  - Qs(x) I 
~'E/s 

~< max [ w  - Q l ( x l )  - Qs(x)l + max IQ*(x)l + m a x  ]Ql(xl) - Ql(x)l 
XEIs XEI| X E I  I 

As _~ <~dl-~coso~+A*+]IllmaxlQ'dx)l<~dl- cos a + A ~  + B ' T  1 
.rEl~ 

~< Iwl - ~ (A 1 + A,) + A~' + B'T1/, 

where, in obtaining the last inequality we made use of (3.5). 
A j+l 

Proceeding in this way, if dj > , i = 2, 3 . . . .  , N -  1, we obtain a sequence 
COS 

B'  
of intervals Is DI3~ ... DIN, of length I l j l = ~ ,  and a sequence of integers 

nj 
~s ~< ~a ~<... ~< aN with the properties described above such tha t  
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COS 0r 
dN~ [w[-- ~ -  (A1 + A~ + ... + AN) + (A~ + ... + A*_I) + B'(T1 + ... -~-TN_I). (3.7) 

Let  us, for the moment, assume that  

N - 1  

~. Ts~<q_-~q 1 (A~+ A~+ A~+ A~+ ... § A~_~). (3.8) 

Then, combining (3.7) and (3.8) and remembering that  

we obtain 

q B ' < C ~  1 cos 
q -  1 - ~ - -  and ~ < 8 (cos ~) + 2 '  

COS 0~ . ~ # cos ~ + 2 N-1 A* 
dN < Iwl - - - V -  (A1 + A* + A~ + A~ + . . .  + A~) + 2 s=~ 

+ B '  q 1 (A1 + A~'+ A2 + A~' + ... + AN) q-- 

.V 
COS ~ . .  

< lw[ - - ~ -  (~1 + A* + A~ + A~ + . . .  + AN) + ~(eos a + 2) E A, 
]=1  

COS 0~ -~ , 
+ - - ~ - ( A I + A ~ ' + A , .  A2 + ... +AN) 

COS g . .  
< Iw[ - - 7 -  (~1 + A* + A~ + A~ + . . .  + AN). 

COS 0~ ca 
But, since Iw] < - - ~ -  ~ Ickl, by assumption, the last expression is negative if N 

is large enough. Since dN~>0 this is impossible. Hence, we must have dN~< AN+---~I 
COS 

for some N; that  is (~) must hold for some N. 
Before considering the remaining cases let us prove a result that  we shall 

need which includes, as a special case, inequality (3.8). Define 

n k  

P+Q 

and let us estimate the sums ~ Gk. 
p 

of this sum and its coefficient is 

If j~>p then Icj[ appears in all the Gk's 

nj + ... + < 1 + + < ns 
np+q + q + q 2  "'" n p q - l "  
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On the  o ther  hand,  if j > p  then  ]cr occurs only  in Gj, Gi+I , . . . ,  GT+o and  its 

coefficients is n j +  nj nj 1 1 q + ... + < 1 + - + + < q Thus  
n t hi+ 1 nT+ 1 q "'" ~ ~71 - 1" 

Hence,  

T+e q q ~  1 ~ q-~ql v+e O~ < -- nAc,[ + Y 14 
Tbp j = l  J=T+I 

p + k  n p + k  

Z T,< Z a ,<~ - i ( r ,+ ] c* [+ . . .  +1c;%[) 
t = P  "" - -  n] =rtp 

q ( T T + A * + A T + I +  * - -  _ AT+ 1 + +AT+k). 
q 1 "'" 

(3.9) 

Since T 1 < A 1 (3.9) cer ta in ly  implies  (3.8). 

Now suppose t h a t  e i ther  (a) Iwl~< A1 or t h a t  (b) dv<--AT+I for some p > l .  
COS ~ COS r 

Pu t t i ng  d o = Iwl and,  for la te r  use, I 0 = I ,  we see t h a t  i nequa l i t y  (b), for p >~ 0, 
includes bo th  cases. Le t  us define J v + l C  I T (assuming I 1 . . . . .  I T were ob ta ined  

b y  the  previous  process,  when T 7> 1) to  he a n y  sub in te rva l  of length  IJv+ll = 3B',, 
n T + l  

B '  
and  we then  cons t ruc t  Iv+l  c Jv+l ,  of l ength  ,, , as before ( together  wi th  the  

n p + l  

in teger  aT+l). I f  dv+l ~< AT+2 then,  when p = 0, we have  condi t ion  (~) wi th  N = 1 
COS 

and,  when p > 0 ,  condi t ion  (~) is sat isf ied wi th  N I =  p and  N ~ = p + l .  I t  only  
A p + 2  

remains  to  examine  the  case dv+l > - - -  Bu t  in th is  case, as before,  we can 
COS 6r 

a p p l y  corol lary  (2.3) to  Iv+l,  Qv+2(x) and  the  po in t  w-Fv+l(Xv+l) .  B y  our pre- 
vious methods  we thus  ob ta in  sub in te rva l s  I v + 2 c J v + 2 c J v + l  (and an  in teger  

B '  3B '  
zeT+2) of lengths  ,, and  , , respect ively ,  for which 

n p + 2  r ip+2 

AT+2 
m a x  [ w - -  FT+I(ZT+I) - -  Ov+2(x)[ < dv+l -- ~2- -  cos ~. 

X•Ip+2 

Hence,  as before, 

dv+~ = ]w - Fr+2(xv+2)[ = m a x  [w - FT+,,(x)l <dT +1 --  AT+-~2 
~,p+ ~ 2 

cos ~ +  Av+ 1 + B'Tv+I.  

AT+3 
If  d p + 2 < - -  we ' re  through.  

COS 6r 
Otherwise,  r epea t ing  t h i s  a rgument ,  we ob ta in  

COS ~ . 
+ A~+2) + (Av+ 1 B (Tp+l + Tv,o).  dr+~<~dv+l ~-- (Av+2 + Av+s) + * * ' 
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C~ in this way ( assuming we keep ~ dp+s > Ar+j+~t' a n d c o s  ~ i 

the inequality 

d~+l = max lw - {Ql(X) -4.... + Qp(x) -4. Q~{x) -4. Q,+l(X)} I 
x~lp+ l 

max Iw -- F~(x)l + A* -4. A,+i ~< d, + A* -4. Ap+ l ~ Ap+1-4. ip* -4. Ap+l, 
Xelp +~ COS 6~ 

using 

we obtain (by (3.9), lemma (3.1) and the inequalities defining e and B') 

( ) cos~ , 
dp+k~< cosl a-+l  Ap+I+A* 2 (A,+~+ .... +Ap+k)+(A*+l+. . .  +Ap+k-~) 

+ B'(T~+I + ... + Tp+k 1) 

<( l+cos~)A~+~+A,  cos~_( ~+2 ...+A~+k)+ * ~A + ------ (A~+I "4- . . .  -4. A p + k - 1 )  
COS 

+B'  q q -  1 (T~+1-4. A*+1-4. A~+2-4-... + Ar+~-l) 

l + c o s g  Ap+l+2 ~ , A T + s +  T~+I+B'  (1 
cos ~ s=o q -  1 

k 
cos ~ ~ Ap+s 

2 s=u 

( ) c o s  + 1+ cos a A,+I+2sAp+I,§ 1 2sA~.4. T~+I 

k k 
COS 6~ ~ COS a ~ Ap+] .  

k 

-4. 2 e) ~ Ap+s 
1=1 

But it follows immediately from lemma (3.1) that  A T +1 < R Tp +1 and A~ < r~R T~+I. 
Thus, we have shown 

k 

dp+k<CTv+l -~ cos ~ ~ Ap+s, (3.I0) 
t = 2  

qB' 1+ c o s ~ R + 2 e R  +cos a R + 2 e r 2 R .  
where C = q _ ~  + cos ~ - 8 -  

We shall now show that, for an appropriate value of the constant 7 in 
Theorem II ' ,  the right hand side will be negative if large enough. This will 
finish our proof since it implies that  we must have the desired inequality 

dp+s < Al~+S+l for some j~> 1. 
COS 

k - 1  k 

Since ~ (A~,s,4. A*+s) < (1 -4. 2 e) ~ Ap+s the right hand side of (3.10) is major- 
J~2 i = 2  

ized by 
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3 COS ~ k-1 

C T p + I  S ( i T 2 ~ )  J=2 ~ ( / k ' + i + / k * + ' ) "  

But  this expression will cer ta in ly  be nega t ive  for k large if the coefficients of 
S(x) satisfy a re la t ion of the  fo rm 

Ic, I n,  + le, I n,  + .  + levi It, I, 
~k k+l 

3 COS t~ 
k = l ,  2 . . . .  , where / ~ < 8 C ( 1 + 2 e ) "  But  we have  a l ready shown tha t  the  in- 

oO 

equali ty Ickl <~ y ~. Ic,[, k = 1, 2 . . . . .  does imply  such a relat ion (see (2.7) and  (2.8)) 
k+l 

when y is so small  t h a t  

(iii) B y  an  a l m o s t  exac t  repet i t ion  of these a rguments  we now can obta in  the  
following general izat ion of t h e o r e m  I I I :  

Theorem I I I ' .  Suppose 91 = ~. otk is a series o/complex numbers tending to 0 and 
1 

that S ( x ) =  ~cke 'n~, he+link>q> 1, /s lacunary power series satis/ying ~lck[=  c~ 
1 1 

and lim ck=0 .  Then in any supertriadic set E o/ the type described in the pre- 
k---> or 

vious theorem we can find a point x such that the set o/l imit  points o/the partial 
sums o/ S(x) coincid~ with the set of limit points of the partial sums o/ 9I. 

I f  we use the  previous  a rgumen t  in order  to  successively approx ima te  the  
par t ia l  sums of 91 ( taking care, a t  each s tage,  to use as little of S(x) as possible) 
we obta in  the  'proof of this theorem.  We  leave the details to the reader.  

University o/ MontpeUi~r and Washington University, St. Louis, Missouri. 
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