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§ 1. Inwroduction

In this paper we shall study the behavior of certain lacunary power series

8(x) = ¢, ™", where the frequencies n, form a sequence of positive real numbers
k=1
satisfying ni.1/m>¢>1,%k=1,2,3, .... It has been shown by R. Salem and

A. Zygmund (see [2]) that if ¢ is large enough and certain conditions are im-
posed on the coefficients ¢,, then there exists an interval on which the values
S(x) fill an open set; that is, S(x) gives us an example of a Peano curve. If

other conditions are imposed, to wit, ) |ck|=oc and lim ¢, =0, then a theorem
k=1 k>

of R. E. A. C. Paley says that every complex number { can be obtained as
sum S(x) (see [3]).

It will be our aim to extend these two results in several directions. In the
first case we shall show that the result of Salem and Zygmund is valid for all
g>1. In the second case we shall show that by considering the sets of limit
points of the partial sums of S(x), as z varies throughout a large enough inter-
val, we obtain exactly the family of all closed connected subsets of the extended
plane (or, as we shall show to be equivalent, all sets that arise as the collec-

tion of limit points of the partial sums of a series > a, with lim &, =0). Further-
1 k—>c0

more, we shall show that, in both cases, this behaviour takes place in certain
sets of measure zero that are constructed by a process similar to that which
gives us the Cantor set.

Let us first consider the behaviour of S(z) on the above mentioned intervals.
Before announcing the precise statements of the theorems we have just described,
however, let us point out that their proofs will be based on the following result,
which is of interest in itself:

.N e
Theorem I. Suppose Q(x)= /_c e™"® where —— - >q>l then there exist two con-

stants A=A, and A’ =A,, dependmg only on q, such that, whenever an interval
I has length ]I|>A /n,y then

This research was conducted while the last-named author was a post-doctoral fellow of the
National Science Foundation.
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N
S lex| < 45up R{Q(e)} 2 (11)
1 z€

The result dealing with Peano curves is the following:

Theorem II. Suppose S(x ch e 1 /M >q> 1, is an absolutely convergent
lacunary power series. Then there exzss constants y, & and v, depending only on q, such that

if lal<y 2 |el k=1,2, ..., I is an interval of length at least &/n, and w a
j=k+1
complex number satisfying |w|<v> |ci| then there exists x€E such that S(x)=w
1

For example, it follows from this theorem that the series

S o0 ein $%
@=2

defines such a Peano curve for all ¢>1 and p>1. Another simple example of
a series satisfying the hypothesis of theorem II is the Weierstrass function

S(x z e -2k ei'nkz
=1
whenever A< log (1++9).
Perhaps the simplest formulation of the above-mentioned generalization of the
theorem of Paley is the following:

Theorem III. Suppose S(x)= che"‘k’ rs1/me> ¢ > 1, 18 a lacunary power series

satisfying Z|ck|— oo and lim ¢,=0. Then there exists a constant 4 = A, such that,

k—o0
oo

if A= Eock is any numerical series with (complex) terms tending to O and I any

mterval of length A/n,, we can then find x€I so that the set of limit points of
the partml sums of S(x) coincides with the set of limit points of the partial sums

of A

We shall show that for, not only the last two, but for all three of these
theorems the behaviour exhibited by the lacunary polynomial or series in ques-
tion actually takes place on certain Cantor-type sets. The simplest of these type
of sets are constructed in the following way: Let us fix an interval I (which
shall be called the support of our set) and a constant K smaller than } (which
shall be called the removal ratio of our set).? Let us now remove from I a sub-

1 If z=u+v is a complex number then R {z} =u will denote the real part of z.
? An example showing that this restriction is necessary, at least for the generalization of
theorem I, can be found in § VI of [11.
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interval situated in its middle and such that the ratio of its length to that of
I is smaller than K. This leaves us with two similar intervals with each of
which we can repeat this procedure (the ratio of the length of the removed to
that of the previously remaining interval need not be the same as before, as
long as it is smaller than K). Keeping up this process we obtain a certain set £ < I.
We shall refer to the removed intervals as black intervals, while the intervals from
which a black interval is removed shall be called white intervals. More generally, our
methods for proving these theorems will not require that the black intervals be
taken away from the middle of white intervals; however, we shall be forced to
assume that at each stage the length of the smaller remaining white interval
divided by the length of the larger one majorizes some fixed positive number
that depends on the removal ratio. We shall call these sets supertriadic (for a
previous study connecting these type of sets with lacunary series see [1].)

The organization of this paper follows that of this outline. We shall devote
the next section to the proofs of theorems I, IT and III. Theorem I is not new
(see [3]) but the proof we shall give is different from the original one. This
proof is a refinement of an argument given in [4] (see pages 247-249) which is
there used to obtain a somewhat weaker result. In the third, and last, section
we extend these three theorems to the case of the Cantor-type sets just de-
scribed. The proofs of these more general theorems are considerably more com-
plicated than those of the theorems announced above which concern the behavior
of our lacunary series on intervals. It should be pointed out that the method
of Salem and Zygmund, as mentioned in their paper, can be used to show that,
for g large enough, we can substitute certain sets of measure zero.for the inter-
val I in. the statement of theorem II. These sets, however, are supertriadic sets
of the type used in our generalization of theorem II.

§ 2. The interval case

(i) Let us first observe that theorem I is an immediate consequence of the
following fact:

n .
1> ¢>1 and frequencies ¢,

Given real numbers ny <m, < ... <ny satisfying
k

@s, -+, O then there exists a constant Ay such that for each interval I of length
[I|>A¢/n, we can find a finite non-negative measure u, with support included
in I, whose Fourier transform

Mu)= f ™ d p(x) = fw e"*d p(x)
satisfies R{M(ny) e} >1/C,, (2.1)

where C, is some positive constant depending only on q.

For, letting ¢, be defined by c,=|c|eix and T(z)=R{Q(z)}, we have
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N X 1 N
w(d) [s‘;:g) T(x)] > fIT(x)d/t(x) = R{§|ck| €7k M(nk)} > o %Ick|

which gives us (1.1) with 4 =A4,>C, u(l).

In the sequel we shall be dealing with power polynomials obtained by taking
finite sums of the form 2" =P(x). We shall call the set of frequencies {v.}
the spectrum of this polynomial and shall denote it by Sp(P). The number
8= lgxin {|v.—;|} will then be called the step of this spectrum.

+j

Having made these definitions, let us begin our proof of theorem I. By the
observation we have just made, this proof reduces to constructing the measure u.
This construction will depend on two lemmas concerning the F. Riesz products:

N N
Py(@) =TI (1 + cos [mez+ @i]) =TT (1 +} e &Pk + ¢~ """ e~ '0k])
1 1
N s
=1+>ke Pre M4 .
1

The first lemma, which can be easily proved by induction on N, collects several
well known facts (see [4], pages 247-249):

Lemma (2.1). If ¢>3 then Py(x) has coefficients of modulus not greater than
1; in particular, the coefficients associated with the frequencies 0 and —mny are 1

-3
and Ye "k respectively. Furthermore, Sp(Py) has step mo smaller than nlgti and
is contained, with the exception of 0, within the segments

11 1 11 1\T
i[n (1 ————— ——_)n (1+—+—+...+—_)] : (2.2)
"\ ¢ ¢ N g ¢ ¢!

The second lemma (also essentially contained in the same passage of [4]) is an
easy consequence of the first:

Lemma (2.2). Suppose ¢>1 and let p be a positive integer satisfying ¢° > ¢° 1 + 2.
Define

Py(x) =kl:{)(l +eos [+ =12 ...,

Then the sets Sp(P;)—{0} are disjoint, their union has step >8=a,n,, where a,
D
s a positive constant that depends only on q, and Q(x)= > Pj{x) has the form
i=1
N . N
Q)=p+1i>e ke it 4 J e,
1
where |oy|<1. A fortiori, Sp(Q)—{0} has step >6.

1 If a<b, +[a,b] shall denote the interval [a, b] while — [a, b] denotes the interval [—b, —al]
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For our hypothesis on p implies ¢°>3. Thus, we can apply lemma (2.1) to
each of the polynomials P;. Hence, Sp(P;)—{0} is contained within the inter-
vals (2.2) (with ¢ replaced by ¢*). Lemma (2.2) will then certainly be true if the
intervals associated with P; and P, j=%j', are disjoint and at a distance at least &
from each other (4 shall be determined presently). But this is easily seen to
be the case, since, assuming, say, that a=j+kp>j +op=4,

1 1 1 1 1

1
aa(l—q—p—?—z—— ...—;5(,‘—_2-)) —nﬁ(l+é7,+q—p2+ ...+q——p(2-2))

T 1 ¢ ) 4”-_2)_1."_]
>nﬁ[n,s(l q”—l) q”—l]>nﬂ[qa (q"—l -1

6" —2) - ¢ 4 - -2)] _
>n‘[ -1 ]_nl[ -1 ] 5>0
p+1__qp__2q qp__3
-1 -1

The construction of u is now straight forward. We first remark that it is
sufficient to consider an interval I centered about the origin, since the general
case would then follow by a translation of the variable x. Thus, we shall as-
sume that I=[—2p, 2p], where a lower bound on g shall be given presently
(thus giving us a value for 4,). Let a(x) be the triangular function

q

We note that, according to our proof, a,= min

z
—st—, —20<2<0
4gz+29’ es®
alz)=4 1 x
— -2 0<z<
20 492,0 <20
0 ,|z|>2p
0 .2 00
Thus, A(u)= f e’“’a(x)dx=szlzx@zx and, in particular, f a(x)dr=A4(0)=1

We define u by letting %—f@(x) a{x). Thus,

oo 4
M(u)= f e dy(x)=pA(x)+1L e % A(w—m) + 2 ay A(x — 4y).
1

-0

But, in general, if v, v, 7, ... is a sequence with step >4 and {b,} is any
sequence of real numbers, we have

Z bp A(vp— )

h+m

2 % 1
< sup lbhlhgmA(”m"”h) <{sup |bn|}? 72:1”2—62-

Thus, letting the »,’s be the frequencies and the b,'s the coefficients of Q(x)
we obtain
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| M (ny) —fe™ 7% | = ‘ pA(me) +1 _Zk "% A~ ) + Z oy A — )| <
i*

2\21 op=
<p (=2 fali 2.3
P (6292) ; 7’L2 362 92 ( )
where 6 =a,n,. Hence, if we choose ¢ such that 3—§2%<%, inequality (2.3) can
be written in the form

| M(me) €7~ 3| <},

which clearly implies R {M(n)e i"’k}>1 Hence, inequality (2.1) is satisfied with
C’ =4. The lower bound on A, obtained by this method is easily seen to be

Vp 7 Theorem I is thus proved.

In the sequel we shall apply theorem I in slightly different, but equivalent,
forms. The following three corollaries are the restatements of this result we
" shall use.

N

Corollary (2.1). Suppose Q(z)= z cr €%, wher

Ny

constants, a=og, 0<a<m/2, and A'=A,, depending only on g, such that when-
N

ever a complex number Z has modulus |Z|=E£—’ where A=7|c|, and an inter-
o 1

val I has length |I|>A’/n, then there exists x €I such that
|Qx)—Z|<Atg . (2.4)

By multiplying both Q(z) and Z by ¢ '®*Z we can reduce the problem to
the case when Z is real. To see that theorem I implies corollary (2.1) (the di-
rection we need) is now immediate. For, letting A’ be the constant of theorem I,
we know by that theorem (see inequality (1.1)) that there exists an x €1 such
that Q(z) lies to the right of the vertical line ¢ passing through the point
(A/A, 0). On the other hand, clearly |Q(x)|<A, which implies that Q(x) must
lie in the intersection of the half-plane to the right of ¢ and the disc about 0 of
radius A (the shaded region in fig. 1). Defining « by the equation cos x=1/4,
inequality (2.4) follows from the observation that the distance between a point
of this region and Z cannot exceed w=A tan « (see fig. 1).

Nr+1

Corollary (2.2). Suppose Q( x)—Zc e™x*, where e >q>1, then there exist two
constants A" =4, and B=B,>1, dependmg only on g, such that each interval 1

2
of length |I|>A"/n, contains a subinterval J of length B such that

N

N
;IckI<BR{Q<y)} (2.5)

for each y€J.

6
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bS]~ 2

Fig. 1.

For, if I' is an interval of length at least A’/nl, where A’ is the constant
of theorem I, then, by that theorem we know that there exists x €I such that
N
2 le| <AR{Q(x)}. But, if y is any other point, using the mean value theorem,
1

we obtain

| Q) —

Thus,
N N
R{Q(y)}=R{Q } R{Q(x } %lck"nzle"‘yl%lckl'

Hence, letting B=24 and y€J= [:v - %mv, x+ El;gv] we obtain

Slal-g Sledd= (3 —52) Slal < (5 -male—sl) Zlanl < REQW,

which is inequality (2.5). If I' is chosen as the central subinterval of an inter-
val I of length at least A" /n,, where A" =A’'+2/B, then, clearly, J<I and
the corollary is proved.

Corollary (2.3). Suppose Q(x) Z e EE, where T > q> 1, then there exist con-

123

stants A=Ay, a=a, (0<ac<n/2) and B =B, depending only on q, such that

‘whenever an interval I and a complex number { satisfy |I |>7 and |¢|> on &
1

N

2 el ’

! =3B such that
ny

= con o [hem there exists a subinterval J <1 of length |J]
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P
A ]
a
0 % g
Fig. 2.
|¢- Q@ <]t -5 A (2.6)

for all z€J.

This corollary can be derived from the preceding one by a geometrical argu-
ment that is very similar to the proof of corollary (2.1). Again, we may assume
that { is real. Let us define « by letting cos «=1/B (where B is the constant
in (2.5)) and let us construct the triangle OP{ of sides of length A and |(|

forming an angle a between them (see figure 2). The fact that |L‘|>cos >

implies that the angle OP{ is greater than 7/2 and we certainly have o/|(|<1.
Using these two inequalities and the identity |{[*—w?=2A|{|cosa—A? (ie.
the law of cosines) we thus obtain

A

2cosa—i
_A2|L]cos a—A) 1¢]}. A - o8«
e [¢]+w =4 w >2(2cosoc cos &) = 2 A

1+I—CI

1¢1-

But, by exactly the same type of argument used at the end of the proof of
N

corollary (2.1), we obtain the fact that whenever 3 |c,| < BR{Q()} (see inequality
1

(2.5)) then the distance between @Q(x) and [ cannot exceed w. Thus, we have

shown |Q(:&:)~C|<w<|§|—m;oC
given any interval I of length at least A''/n,, such #’s will fill a subinterval

2 : an B2
J of length at least By This proves our corollary with B =3B

(i) Let us now turn to the proof of theorem II. We shall decompose the
series S(z) in question into successive lacunary blocks of its terms

S(z) = Q(x) + Qu(x) + ... + @y(x) + ...

Theorem I, in the form of corollary (2.1), will be applied inductively to these
blocks in order to ‘“‘aim” toward our point w. We skall thus obtain a convergent

A for all such values of x. But, by collary (2.2),

8
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Fig. 3.

sequence of real numbers, {z;}, such that the sequence of partial sums S,(z;) =
=@y (x;) + Qulzy) + ... + Q;(w,) = X; converges to w. From this it will follow easily
that S(z)=w, where z= lim z;.
j=00
The following elementary lemma contains the purely geometric aspects of the
argument involved in the construction of this sequence {X,}:

Lemma (2.3). Let 8,20 and p= 2> &< oo (k=0,1, ...). If wisa complex
f=k+1
number satisfying |w|<no, and 8 <(1/2) o, k=1, 2, ..., where 0<n <1, then for
all sequences of complex numbers {X,} and {Y;} consiructed in such a fashion
that X,=0,
’w—X,

Yii=X;+ 851 {m}

| X4~ Y1+1|<(1—77)51+1, 7=0,1,2, ...
we have |w—X;|<ng, §=0,1,2, ....

In_particular, lim X;=w.

>
The proof follows immediately by an induction argument. By assumption,
w—X,|=|w|<ng, We shall show that the inequality |w— X,|<%g, implies
w— X;.1| <7 gs+1. Suppose, first, that |w— X;|>6;,1. Then, jw— X, <|w—X;| -
—n0;41 (see fig. 3). Thus, |w— X4 <% g;~%0;41="70;+1- If, on the other hand,
Iw - le < 6;'.;.1 then

lw—Xj| <|lw— Yypa| +|¥se1— Xjia] <8jur+ (1= 9) 841 <28141 <9 0441
which completes the proof.

2:1 9
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Before beginning our construction of the sequence {X,} let us first show that

e <y 2 ledf 2.7)
k+1
implies
(-
le my + ea| g + ... + o] i < ﬂnki %1 lesl (2.8)
ovi > o ) .
provided B= —1—7 0 2.9)

When k=1 (2.7) clearly implies (2.8) as long as >y, which certainly holds

if g 25_—)1@:;. Now let us suppose (2.8) true for k; we shall show that it is

true for k+1. By our hypotheses, we obtain
o0
lerl my + ... + e e+ lersa] Ricsr <me B g lesl + lex+1] s =
J=k+1

—nkﬂ Z IC,l+nkﬂ|ck+1|+nk+1|ck+1l<nk+1(ﬂ yﬂ ) > el

Byl
<ngsf Z le,
F=k+2

which is inequality (2.8) for k+1.
The following notation will be useful. We shall denote by n; and n; the
smallest and the largest of the frequencies of the block @, by ¢; and ¢;’ the

coefficients of €™ and ¢"°, and by A, the sum of the absolute values of the
, iz s im,

coefficients of Q. Thus, @z)=cje " +...+¢ e /% and Aj=lejl+ ...+
Letting 6,=EO%’—“ . where o is the constant of corollary (2.1), and putting
hod 1 2 B
= &= Aj=—= truct inductively sequences {X;} and
Ok f=§+1 ' oon o 121 1= oos o ¢ NOW construct inductively sequen s {X;} a

{7} satisfying the hypotheses of lemma (2.3). Since X,=0, we have ¥, =X, +
+4

We select an arbitrary real number z, and apply corollary
A4’ + A’ w— X,
2ny 0 Hw—X,|°

Pyid
1lw X~ el
(21) to @=¢,, I=Il=[ Xy —
obtain x, €I such that

w
2n’1] and Z'_ZI“51M‘5
|Qu(®) — Zy| <A, tg a=6, sin a.
We then define X, =8(x,)=@,(z,) and, clearly,

10
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|X; = Y3| = |@u(=)) — Z,| <4, sin a.
w— X1

Y, is then determined by Y,=X, +6ZI X Now we apply corollary (2.1)
A’ w— X,
= = T Z=12,
again; this time to Q=@Q,, I=1I,= [xl o x1—1—2n2] and =07 =X, Xll
We obtain an z,€7 such that
|Qa(5) — Z,| < A, tg o =6, sin a. (2.10)

We then define X, == 8,(x,)=8,(x,) + @a(x,). Hence,
| X, — Yol <[8y(2) — Sy(a)| + |Qe(@a) — Zol.
But, by inequality (2.8),

rr s inlz

. -]
I81(2)| = [iny ¢, €™ + ... +iny ¢y e |<ni'ﬂ§;]ck| <nBo,
n.

A

and, moreover, x, being a point of I, Ixz—x1|<2—1,. Thus, by the mean value
ne

theorem

‘ A
I‘Sl(xz)' (‘”1)| glnfel .3 01

Using this estimate and (2.10), therefore, we obtain

|X,— Tyl <A 2’3914—62 sin a.

Continuing in this fashion, we obtain a sequence {z;} with

.4 A’ ]

1 €Ly =2,——— x;+
T T on’ T 20,

(from which we eagily see that

A q <
|x,,—x,_,_1| <;;‘ q_—_—_l’ 1<Q<k, (211)

and, consequently, z=lim z; exists and lies in an interval about z, of length

2q A
q—ql n_) and such that if X;=8)(x), ¥,=Y;_ 1+5jlw__Xf_L| j>1, then
1

Al
IX] - le <Tﬂgj_1 + 61' sin o.

11
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We could then apply lemma (2.3), and obtain the conclusion of theorem II,
with = lim z;,! if

j—>o0

5,<g o5 (2.12)

’

2

and ﬁg,_1+6,- sina<(l—n)d;, j=1,2, ... (2.13)

In other words, we must show that we can choose y=1y(q), n=n(g) and the
sequence {n;'} in such a way that (2.12) and (2.13) hold. We first note that for
(2.13) to hold we must choose % to be a positive number less than 1 — sin «. Having
chosen such an 7, ;" shall be chosen inductively to be the largest number of
the part of the sequence {m,} following n;_y such that (2.12) holds (which can
obviously be done since 2|e| < o0). Thus, A;+ |¢j+1]> (1/2)(R;—|cj+1]). But, by
@7), lejs1| <p(B;—|cisa]). Hence, we should impose the condition y <7/2. We
also note that these two inequalities imply

A,> (g - 'y) R, (2.14)

Rewriting (2.13) in the form

’

2ﬁ [0+ 5]

[1—#n—sina]d; >

or, after multiplying both sides by cos «, in the form

[l —n— sin a—A2ﬂ] A,>A2ﬂR,,

we see that (2.14) implies (2.13) provided

A'f

n
<KoY
9 7

2(l—n~sina—A"3)

2

But, since lim P
y=>04— 21—
(2.9), such that this last inequality and the condition y<n/2 be satisfied. This

=0, we can certainly find y so small, and a § satisfying

proves theorem II with this value of y, v= _ and §=2A’—q—.
coS o q—1

_A'ni g
nj+1(¢—1)
+R;>0 as j—oo, the last estimate making use of (2.8), the mean value theorem and
the limiting case of (2.11), when k—>oo.

1 For |S() - S| <|85(@) — Sj(ap)| + |8 @) — Si@)| < |Sstw) — Sitap)| + By <

12
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(iii). The proof of theorem III has many points in common with the pre-
ceding one but contains ideas that are new. Instead of lemma (2.3), for example,
we shall use the following analogous result:

Lemma (2.4). Let {3,}, j=1,2, ..., m, be a positive sequence, and suppose that
w and X, are two complex mumbers satisfying |w—Xo|<n 38, 0<n<1; then,
1

whenever two sequences {X,;} and {Y,} satisfy

'M)—X;
i1=X; 0 =" Xia— Y| <A —n) b1,
Y XJ+6H1|w—X;| andl j+1 J+1| ( 1) i1
i=0,1,2, ..., m—1, we have |w—X,|<2 sup ;.

i

For, if |w—X,_1|<é, then, as in the proof of lemma (2.3), |w— X,/ <20u

and the lemma is true. On the other hand, if |w— Xn-1|>d, then (see fig. 3)

fw—~X,|<|w—Xu_1|~70, In this last case, applying this argument again we

obtain the result that, if |w—X,_s|<d8m_; then |w—Xn_i|<28m_1 which im-

plies |w—X,|<26s-1—798,<28._; and the lemma is proved; or, if |w— Xy_o| >
>0,-1 then

[w— Xl <|w—Xm-a| =96, <|w—Xn_o| —90m-_1—76n
Thus, we see that by preceding in this way we obtain the desired result if,

for some 7, |w—X;|<é,,1. On the other hand, if this inequality is satisfied by
no value of j, 1<j<m—1, we obtain the contradiction

Iw"‘Xml<|w_Xol_77§61<"7§61—77§61=0-

Our proof of theorem IIT shall be based on this lemma and corollary (2.1).
Let A’ and «, then, be the constants involved in this last corollary and let
B>0 and >0 be two numbers satisfying

(cos oz)—Az—ﬂ-i- sinax=1-17. (2.15)

Because of our assumptions on the sequences {c,} and {n} we have
lea| g + [ea] 7y + ... +|eg| 2, = 0(ny), (2.16)

as p—>oo. Now let us define the sequence of integers {o,} by the conditions
=1 and g;,1, =1, 2, ..., the least integer for which

Aj = lcej+1| + ,Cel+2l + ...+ ICQJ.+1|

satisfies

13
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leal 7y + feal 2+ ... + [cg;| 1, < By A (2.17)

An immediate consequence of (2.16) is that A;=o0(1). We now define
9}+1
Qe = 2 cxe™s*
e+l
g;= degree of Q;=ng1
Srn=Q+ Q@+ ... +Qn

The theorem will then be proved if we can show that there exists a sequence
of real numbers, {x,}, and one of integers, {m,}, such that

a) Sn (x,)=w,+o(1)

b) x,,+1—xy=0(—1—) (2.18)
qm,

c) Amy+1+Amy+2+ PN +Am7+1 =O(1),

Y
where w, =Y o is the y™ partial sum of 4. For, by b), {x,} will converge and
1

its limit x will satisfy x—x,,=0(q,‘,,’1,).1 But, since by (2.16), the derivative of
Sns(x) satisfies “S’f,,;”w=o(qmy), we must have (using the mean value theorem)

S’,",,y(x) - Sy*ny(xy) =o(1);

thus, by a) S;,y(:c) =w,+o(1) (2.19)

Now, let Vy=@m,+1, SO that the partial sum S;y coincides with S;y. Condition
c), then, implies that
Sup ISv(x) - Svy(x)| = O(l), (220)

"’,QVSV}H_I

which, by (2.19), implies
sup  |S,(x) —w,| =0(1),

ﬂy<v<v7+1

and this certainly implies the conclusion of theorem III.
After selecting x, and m, arbitrarily let us now show how we can choose
Zy+1 and m,.; once x, and m, are given. Let us put

1 As we shall see, x;, the first number of the sequence {xy}, can be selected arbitrarily.
Thus I can be taken as an interval about «, and its length should be large enough to guarantee
that £ €1. Thus, A=A, can be determined by the relation |x—w1| <4 / qm, 2.

14
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1
0;= €OS o Anyiss Oy =
g% _s Wyr1— Xy
XO" Smy(oo)’ Zl 61 lw‘y+1 _Xol‘

’

and

A
By corollary (2.1) there exists a point 6, such that I01—00|<2q
My

|me+1(91) —Z,| <4, sina.

Let us define X,=8 .:(6,), Z2=62M and repeat this argument: In
4 fery1 — X4
general, having obtained

X;= S;'nyw(oj)

Wy1 — X

and defined Zj1=0j11 o, — X,
y+

an application of corollary (2.1) gives us a point 6;; such that

|me+i+1(01'+1) - ZJ'+1| <djs18ina

' (2.21)
62— 0, <

2QM7+i

Putting Yj+1=X1+Z;+1 and Xf+1=S;y+j+1(0j+1) we have
IXi+1 - Yi+1| < |Sr*n +i(01+1) - fn +i(0!)| + IQm +J‘+1(9i+1) —Zf+1|'
g v b4

The first term of the right hand side of this inequality is majorized by |0j 1 —B,I
8% willo and, thus, by (2.17) and (2.21), by
, v A;
9 .ﬂq”nyﬁ Arny+i+1 = —'Btsjﬂ cos o,

2qm, 11 2

since gn_+5= Thus, keeping this in mind and using (2.21) to estimate

Pom+141°
the second term, we obtain

AI
IXi+1 - Yj,;r1| < (—2é cos o+ sin ac) 6;+1 = (1 - ’iﬂ 6j+1- (222)
Now let us choose the least integer m such that
m
1 — Xo| <7 ?51'- (2.23)

We can thus apply lemma (2.4) and obtain

15
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[wy 41— X | <2 sup 6;< 002 sup A;. (2.24)
j

8 O k>my

On the other hand, our choice of m is such that
m 1
> 8y < O +5lwy+1 -X,| (2.25)
1

We now choose z,.1=0, and m,.,=m,+m and shall show that, with these
choices, (2.18) is true, thus proving the theorem: Part a) is an immediate con-
sequence of (2.24) and the fact that A;=o(1); part b) follows from the second
part of (2.21) (since x,.,;—x,=0,—0,); finally, part ¢) now follows from (2.25),
the already established part a) and the assumption that the terms o, .1 =w, 1 —w,
of the series A4 tend to 0.

As was mentioned in the introduction, theorem III is equivalent to the fol-
lowing result:

If D is a closed connected subset of the extended plane then there exists a point
of our interval I such that the set of limit points of the partial sums of 8(x) coin-
cides with D. '

We see this immediately by establishing the following

Lemma (2.5). A subset D of the extended plane is closed and connecteld if and
only if it is the set of limit points of the partial sums of a series ;4=§ o, whose
(complex) terms tend to zero. '

The fact that the set of limit points of the partial sums of such a series is
closed and connected in the extended plane is a very elementary result and,
thus, we shall only sketch the proof of the converse.

Let us first observe that if D is bounded, z, a point of D and p a positive
number then there exists a finite sequence §={z,, z,, ..., #n =} < D such that
|#k+1 — x| < 0 and such that each x € D is at a distance less than p from 8. For it is
sufficient to choose a finite number of y, € D such that each €D is at a distance less
than ¢ from some g, and then construct such a p-chain (that is, a sequence of points
of D such that consecutive members are at a distance less than g from each
other) joining 2z, and y,; the reordered union of these g-chains can be taken
as 8. Now choose a sequence p,—>0 and corresponding g,-chains S§,, which we
reorder into a single sequence {w,} by taking -Sk.: after S,. By putting

o, =w,—wx_y Wwe obtain the desired series 4=, In case D is unbounded

1
we select a point x,€D and for each n>|z,| we consider the closed connected
region D, formed by intersecting D with the disc |Z|<n and then completed
with the circle |Z|=n. Selecting g,—>0 and defining S, with respect to D,
0, and xz, we then continue as before to obtain the desired series A.

§ 3. The general case

(i) We now pass to the extension of these theorems discussed in the intro-
duction. First we shall prove the following generalization of theorem I:

16
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N
Theorem I'. Suppose Q(z)=72 c, €™, where Wiet1 -, g>1, then there exist constants
1 [ '
A=A4, A'=A4; and K=K, depending only on q, such that whenever E is a
supertriadic set whose support is an interval of length at least A'/n, and whose
removal ratio is K then

N
;Ickl <4 sup R{Q(x)}.

In order to derive this theorem from theorem I we shall need a more intricate
decomposition of a general lacunary power series into successive blocks than the
one used in the proof of theorem II. This decomposition will be obtained by
means of the following lemma:

Lemma (3.1). Suppose we are given an £>0, an integer s>0 and that

2 Mrt1
S)= 3 ¢ ™, —>q>1.
k=1 Ny

is a lacunary power series, then there exists a constant R, depending on q, € and
s, such that S(x) can be writlen as a sum of successive lacunary blocks (corre-
sponding to the same q)

S(x)=Q,(x) + Q¥ () + ... + Q@) + QF ) + ..., (3.1)
with the following properties:
nje1

() n) /nj<R; (i) r< e <% (i) AF<e(A;+ D),
¢l

where n; and n; denote the lowest and the highest frequency of @yx), A; and A}
denote the sums of the absolute values of the coefficients of Q; and QF, respectively,
and r=gq'*.

In order to prove this lemma let us first add to S(z) terms with ¢,=0, if
necessary, so that

g<Z 2 k=12, ... (3.2)
P

Let us now choose a positive integer m satisfying 1/m<e¢ and an arbitrary
positive integer s. We then define r to be ¢°*!. Let us split S(z) into succes-
sive blocks, each containing (m-+1)s terms, and from the second one choose the
power polynomial of s successive terms having a minimum A (=sum of absolute
values of its coefficients). We do the same for the fourth block of (m +1)s terms,
the sixth block, etc..... We shall denote these polynomials by @f, @3, @5, ...
and the blocks preceding them by @,, @,, @,, .... Each @f, then, has s terms
and, by (3.2), the ratio of the highest to the lowest frequencies of this poly-

17
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nomial is between ¢~V and ¢**~V. On the other hand, each @, has less than
3(m+1)s terms, as can be easily seen from our construction. Let R=g®"*V?
The lemma now follows easily: letting nj=A{ <A< ... <A} 1 <if)=n; by the
frequencies of ¢;, we just observed that k,<3(m+ l)s, consequently, using (3.2),
we have

) }53-1 29

i 2 2\ ki~1 2)3m+ls _ p
.- <(q ) 1 <(q ) =

’ . ~ F)

nj; l(kj;—l Ag;—2 )s(lj)

which is inequality (i).
Similarly, in order to prove (ii), suppose {’ <»¥ < ... <»{ are the frequencies
of @F. Then, again using (3.2),

5) G o)
$+1 Nypy ¥§ (4 ’"q+1

,V(sl) ,‘,gi) 1 o v(i) ni nj

(s+l)__r

r=gq

Lastly, in order to derive inequality (iii) let us observe that, since @ was
chosen from the 24* block of (m+1)s terms of S(x) in such a way that Af was
minimal, A} does nos exceed any of the sums, AY, AP, ..., A%,,, of the absolute
values of the coefficients of the m+1 consecutive polynomlals of s terms ob-
tainable from this 2 block. Thus, if A= min {A?},

1gk<m+l

AF<AP < <L S AP <e(A;+ Ajia),

M i+k

and the lemma is proved.

We now pass to the proof of the theorem. We shall apply lemma (3.1) to
S(z)=Q(x) with e=1/4B and r=¢°*' where s+1 is the smallest integer such
that r=¢°*'>3 4" B, where A” and B are the constants of corollary (2.2).
thus obtain a decomposition of Q(z) into a finite number of blocks

Q) = (%) + Q) + ... + Qu(®) + Q).

We choose an arbitrary interval I of length at least A''/n, aus our support
of our supertriadic set. The theorem will then be proved if we can show! that
there exists a sequence I;,51,>...51, of subintervals of white intervals of no
more than three time their lengths such that

A;<B R {Q;(:t)}

if €1, j=1,2, ..., n. For I, will then certainly have points in common with
E and, 1f xEI,,,

! For simplicity we shall assume throughout that the black intervals are removed from
the middle of white intervals. The reader will find it easy to see that the methods used ex-
tend to include the more general sets described at the beginning.

18
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§|ck|=§(A,+Af)<(1+2s)§A,<(1+2e)BElR{Q,(x)}

—(1+26)B {R{Q(x)}‘—éMQﬂx)}] <(1+26) BR{Q®)

+(1+2£)B§A}"<(l+2s)BR{Q(x)}+(l+2s)2eB > led
1 1
I
é%BR{Q(x)}+§§|ck|,

where in the last estimate we used the fact that B>1 and, hence, ¢<}. Thus,

Slod -1 ZJed <1BR{Q)}

and the inquality of theorem I’ holds for 4 =6B.

We shall construct inductively this sequence of intervals, together with an
accompanying sequence of integers a, <a,<...<a,, in such a way that |I,|=
~3.7% and such that, after performing the first «; stages of removing black

nj
intervals, I, is contained in one of the white intervals of length 3|I;l. Let
K=1/3gr+* and apply corollary (2.2) to Q(z)=@,(x) and our chosen interval I.
We thus obtain a subinterval J; of length 2/Bn;" in which R{Q,(x)}>A,/B.
Observe that, by lemma (3.1) and our choice of r,

Mol 2 m_3

Vi, 2 w31
| “4"Bn”" rR

3
oy 9K.
We now begin our dissection of I until one of the black intervals intersects J,.
Since the removal ratio in no larger than K this black interval cannot remove
more than 1/9™ of J,. Thus, we are able to pick a subinterval I, =J; of length
- 2

13 " 3Bn
with the removed black interval. Now we remove black intervals up to and in-
cluding the " stage, where the (o + 1)** is the first stage which has a black inter-
val intersecting I,. Clearly, since the removal ratio is less than 1/3, I, is con-
tained in a white interval of the of" stage of length <3|I,|.

Now suppose appropriate sequences {I,, I,, ..., I;} and {a;, a, ..., o;} have
been defined. Let us construet I;;; and oy,;. Since, by our choice of r and
lemma (3.1),

and such that it has an end point, but no other point, in common

2 AI’ A/’
IIjI =z T
3n;’ B ;.  mjn

we can apply corollary (2.2) to Q(x) =@Q;.1(x) and I =1,, We obtain a subinterval

19
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Jir1<I; of length |J]-+1|=B—57 on which R{Q; 1(%)}>A;.1/B. Let us now con-

j+1
tinue our dissection until a black interval intersects J;.;. If b is the length of
this black interval, then b<‘i]€l| as can be seen by the following argument:

Letting w denote the length of the white interval of the o} stage containing
I,, and keeping in mind that w<3|[}, we have

(53
3n,’B

b b v g3l g _grn K Kp. o
Wil " [Tyl |51 ( 2 ) 3n;" 3 min n 3 ’
Bnj's
. [T 2
Thus, we are able to choose a subinterval I;,;<Jy,; of length ——=_——
3 3Bn;.1

having an end point, but no other point, in common with the black interval in
question. We now remove black intervals until and including the oty stage
where the (0.1 +1)* is the first stage for which a black interval intersects ;..
Clearly, I;,; is in a white interval of the of}; stage of length no more than
3|Z;14|. This finishes our induction and the theorem is proved.

(ii) Next, we shall prove the following extension of theorem II:

Theorem II'. Suppose S(z)=2 ¢, ™, Besls o> 1, is an absolutely convergent
PP k " q Y

1 k
lacunary power series. Then there ewist constants y, &, v and K, depending only

o0
on g, such that if |c]<y > le}, k=1,2, ..., w is a complex number satisfying
K+1

o0

|w|<v3lc,| and E is a supertriadic set of support at least &/n, and removal ratio
1

K then there exists x€E such that S(x)=w.

In order to prove this theorem we shall make use of corollary (2.3). Let us first
observe that if this corollary is valid for some value of B’ then it certainly holds
for all smaller values of B’. Thus, letting « and A" be the constants in this

corollary, we choose ¢>0 such that 8<%._Eos_oc_ and B’ so small that

cos oc+2
cos o

B - qz—1(1+28)< Moreover, let s be a positive integer large enough so

that r=¢°*'>A"/B’. We now apply lemma (3.1) and thus obtain a number
R and a decomposition

S(a) = Q) + Q¥ (@) + ... + Qla) + Q@) + ...

satisfying (i), (ii) and (iii). From the order of our choices we see that all our
constants, including R, depend only g.
Bl
3R 3A"R
an interval I of length 4”/n,, we shall show that when w satisfies

Now, letting K = min and E a supertriadic set constructed on

20
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o0

? lel (3.3)

COS o

8

ool <

then there exists x€E such that S(x)=w. Thus, values of £ and » that will
be admissible are 4" ‘and ‘co%c’ respectively.

We shall use the notation of lemma (3.1). In addition we shall let ¢; = coef-
ficient of einlf’r.: last coefficient of Q;, nf =smallest frequency of @ and c] = coef-

ficient of e"/°=first coefficient of Q.
It is clear that it suffices to show that there exists a sequence of subintervals
of I, [oI,>...oIy> ..., each contained in a white interval, such that

(«) there exists N for which

dy= mex [w—[Qu(x) + QF + ... + Qu(@)]| < —=,

and

(B) If there exists N, for which (a) holds then there exists N,> N, for which
() holds. ~

It will be convenient to write Fy=0,+ @f+ ... + @y and denote by xy€Ily a
point at which the maximum in (x) is attained. Thus, dy=|w — Fy(zy)|. Further-
more, we define

T _ledm e my ... e n
N n; .

As in the last proof, we shall construct the intervals I,=>1,>...oIy> ... in-
ductively together with a sequence of integers oy <o, <...<ay<... such that,
if we remove the first ay stages of black intervals, then Iy is contained in one
of the white intervals of length <3|Iy]. We shall also construct them in such

a way that |IN|=77.
N

A,
COSs &

In this case we can apply corollary (2.3)

B’
to I, Q(x) and w. Thus, we obtain a subinterval J,cI of length 1J1’=%
1

Let us first suppose that |w|>

such that
A,
max |w— Qy(z)] < |w| — < °0s . (3.4)
relp

@_331 n 3B’

Il n A"/A”R>9A'

Clearly,

We now begin our dissection of I until one of the black intervals intersects J,.

Since the removal ratio is K, this black interval cannot remove more than (})**

21
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L]ll = 2—, which has
3 "

an end point in common with the removed black interval but no other point.
Now we remove black intervals up to and including the of" stage, where the
(o +1)* stage is the first stage which has a black interval intersecting I,. Clearly,
I, lies within a white interval of the «i" stage of length <3|I,|. Furthermore,
I, being a subinterval of J,, inequality (3.4) holds for I,:

of J,. We pick I, to be a subinterval of J, of length |I,|=

A
d,= max lw — @ (x)] = |w — Qyzy)| < Jw| — ?1 oS . (3.5)

Now, if d1<$:a then condition (x) is satisfied with N=1 and we stop this

type of construction. On the other hand, if d1>(—£:—oC we can apply corollary

(2.3) to I, (since |Ill=§>%,—, by our choice of r and by lemma (3,1)), Qu(x)
1 2

B
and w— Q,(x,). We obtain a subinterval J,< I, of length |[J,|= %—, such that
2
A, A,
| — @u(2y) — Qu(ax)] < | — Qy(,)] — o Cos&= dy~ o 08« (3.6)

for all z€J,.
By exactly the same process we have just described (and is explicitly carried

out in the last proof) we obtain a subinterval I,<J, length o and an integer

o,. Since inequality (3.6) is valid when z€l,cJ,
dy = mafizlw — Q,(%) — Q1 (z) — Qy()|

< max |w — Qy(xy) — Qz(x)l + mallx |Q‘1k(x)| + lilgx lQl(xl) - Ql(z)l

zely zE€
< A, * ’ A2 * ’
\dl—? cos a+ Af + |1, max |Q1(x)|<d1——2~ cos x+ A7 +B'T,

cos o
2

< |w| ~ (A, +A)+ A+ BT,

where, in obtaining the last inequality we made use of (3.5).
Ai+1

Proceeding in thi , if d;>
eding in this way, if d; p——

, §=2,3, ..., N—1, we obtain a sequence

of intervals I,>I,>...>1y, of length |I,|=§7, and a sequence of integers
1

% <oy < ... <oy with the properties described above such that
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dN< qul

+ o F AN AF+ . AN )+ BT+ ..+ Ty). (3.7)
Let us, for the moment, assume that

S T,< qil(A1+A1+A2+A2+ CFAw1). (3.8)
j=1

Then, combining (3.7) and (3.8) and remembering that

q , COS & 1 cosa
—— B <—- <z,
q—1 < 8 and ¢ 8 (cos a) +2
we obtain
+27
dy < |uw| - *+...+AN)+c°s“ ZA,

+B’%1(A1+A;"+A2+A;‘+...+AN)

< lw| - T+A,+ AT+ ...+ Ay) +e(cos x+2) ZA,
"°s°‘(A FATH A AL+ .+ Ay)
<] - 2224, +AT+H A+ AT+ .+ Ay).

o0
But, since ]w]<co%C 2 led, by assumption, the last expression is negative if N
1

AN+1

is large enough. Since dy>0 this is impossible. Hence, we must have ngcos p

for some N; that is («) must hold for some N.
Before considering the remaining cases let us prove a result that we shall
need which includes, as a special case, inequality (3.8). Define

led 7y + Jeol g+ ...+ lex]
Ny

Gk=

D+e

and let us estimate the sums > G,. If j>p then |c,| appears in all the G;’s
r

of this sum and its coefficient is

1 11 1
n,(——+...+—-)<&(1+—+—2+...+—)<@ -
7y Npie/ Ty 9 q ¢/ ny,g-1
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On the other hand, if j>p then l¢;| occurs only in G;, Gy, ..., Gpiyp and its

. - - 1
coefficients is 24+ —2 4 . 4+ —2<1+-+ ...+—p—+jj<—q~. Thus
n; o M Mp+1 q """ gq—1
LS o+ L S o)
Ge<—L = c +~— ¢l.
Z k q 1 np P jI ) -1 Plien} 7
Hence,
pik "
> T,< Z G< T (T o+ eal -+ oo +lepaxl)
i=p nj=n_
»

(3.9)
=q_g_i (T, + Ay +Ap i +AT . Ak

Since T', <A, (3.9) certainly implies (3.8).

. A Api1
Now suppose that either (a) |w|<cosla or that (b) d,,<00’; +a for some p>1,

Putting d,—=|w| and, for later use, I,=1, we see that inequality (b), for p=>0,

includes both cases. Let us define J,.;< I, (assuming I,, ..., I, were obtained
3B

by the previous process, when p>>1) to be any subinterval of length |J, .| = e
p+1

’

B
and we then construct I,,;<J,,;, of length ——, as before (together with the
Npi1

integer «,.1). If dy. g \%” then, when p=0, we have condition («) with N =1
o

and, when p>0, condition (B) is satisfied with N,=p and N,=p+1. It only

p+2

remains to examine the case dp,,>- But in this case, as before, we can
cos

apply corollary (2.3) to Ipi1, @pia(x) and the point w— Fy, 1(25.1). By our pre-
vious methods we thus obtain subintervals I,,ocJy2<J, 1 (and an integer

’ ’

op+2) of lengths B;, and

, Tespectively, for which
Rp+2 Npro

A10+2
max |w— Fpi1(xpi1) — Q,,+2(x)| Sdper— 5 cOoS o.
zelpto

Hence, as before,

:+1 +B’Tp+l-

dpin= Iw— Fp+2(xp+2)l = max IW*F;;+2"3’5)I <dpi1—
relpt2

Ay . .
If deg\f we’re through. Otherwise, repeating ‘this argument, we obtain
a .

B8 X Aprat Dprs) + (Aler + Ai2) + B (Tpy + T, o).

D+3 = dprl
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Apijr
COos o

Continuing in this way (assuming we keep obtaining d,.;> ), and using

the inequality

dpss = max fw—{Q,(a) + ... +Qyle) + @3(2) + Gp(a)}
zTelp+1
< max Iw—Fp(x)|+A;+Ap+1\d +A +Ap+l\cﬁ:+015

relp +1

+AY+ Ay,

we obtain (by (3.9), lemma (3.1) and the inequalities defining ¢ and B’)

+ 1) Apir+ A= F At o+ Ap) + (Afr o+ Adr)

2
+B(Tpsr+ ... +Tprira)

N

1
dpii <
Dtk (co

14 cos « cos o
< (—m) Api+ Ay ———(Apsat ... +Apii) + (Apia+ .. +Apix-a)

+B’q_L1<T11+1 + A:H + A1H-2 +.o.ot A1J+lc—1)

1+ cos . ;4 9 :
<(TOS‘OC_)AP+1+28-§ Ap.;+B q——:—lTp+1+B E(l +28)j§1Ap+;
COS(X
ZAII+]
<(——1+C°“c Apor 268, + 8% roen + 2B p
cOS a p+1 €QAp+1 8 p+1 y) q—1 p+l
k k

ST~

But it follows immediately from lemma (3.1) that Ap,1 < RTp,; and A, < rRT,.1.
Thus, we have shown

P
dpse <C Ty —Ecosa D Apsy, (3.10)
j-2
where C=—gli~ +—————1 Toosa
q—1 cos o

We shall now show that, for an appropriate value of the constant y in
Theorem II’, the right hand side will be negative if large enough. This will
finish our proof since it implies that we must have the desired inequality

d,,+,<A”+j“ for some j>1.
cos &
k-1
Since > (Ap.;+AF)<(1+2¢) Z A, .; the right hand side of (3.10) is major-
=2
ized by
2t 25



J.-P. KAHANE ct al,, On lacunary power series

k-1

3 cos a Z (Ap+i+A;+i)-

c -2
Tour 8(1+2¢) /%

But this expression will certainly be negative for k large if the coefficients of
S{z) satisfy a relation of the form

edl 7y + ey mg +
My

ver +|c,,|nk<ﬁ §: !CII,
k+1

3 cosa

k=1,2, ..., wh _ocosx
where f<ci+2e)

But we have already shown that the in-

equality ¢ <ykz led, £=1,2, ..., does imply such a relation (see (2.7) and (2.8))
+1

when y is so small that

Yq
=>—"">0.
A g—1-y

(iii) By an almost exact repetition of these arguments we now can obtain the
following generalization of theorem III:

Theorem III'. Suppose A= a, is a series of complex numbers tending to 0 and
1

(-] o0
that S(x) =3 ¢, €™, mi1/n>q>1, is lacunary power series satisfying > |e]= oo
1 1

and lim ¢,=0. Then in any supertriadic set E of the type described in the pre-

k—o0
vious theorem we can find a point x such that the set of limit points of the partial
sums of S(x) coincides with the set of limit points of the partial sums of U.

If we use the previous argument in order to successively approximate the
partial sums of A (taking care, at each stage, to use as little of S(x) as possible)
we obtain the proof of this theorem. We leave the details to the reader.

University of Montpellier and Washington University, St. Louis, Missourt.
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