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l .  Introduction 

The usefulness of the characteristic function in probabili ty investigations on the 
real line, and even in an Abelian locally compact topological group, has led Grenan- 
der [1] to define an analogous object as the characteristic function or Fourier trans- 
form in the non-commutat ive case. 

Although it is then an operator-valued function he has shown (for regular measures 
on a group with a countable base of neighbourhoods) tha t  a probabil i ty measure 
and its ehalacteristie function uniquely determine each other, and tha t  convolution 
of measures corresponds to multiplication of characteristic functions, and has given 
a version of the continuity theorem. The latter states tha t  if a sequence of proba- 
bility measures converges to a probabil i ty measure, the sequence of characteristic 
functions also converges, and conversely tha t  if a sequence of characteristic functions 
converges to a characteristic function, the sequence of probabil i ty measures also 
converges, provided the group satisfies a certain further condition. The significance 
of this condition is not  known, but  it is certainly a restriction. 

In  section 3 of this paper  we shall show tha t  this restriction is unnecessary, and 
incidentally tha t  the group need only be supposed to have a countable base of 
neighbourhoods at  each point. Even with this improvement,  however, the theorem 
is not as strong as in the classical case on the real line, in which it is sufficient to 
suppose tha t  a sequence of characteristic functions converges to a continuous func- 
tion, to conclude the convergence of the measures. The problem of obtaining a simi- 
lar strengthening in the present ease will therefore also be considered briefly. 

The properties of Fourier transforms will be used in section 4 to show tha t  the 
only idempotent  probabil i ty measures on the group are Haar  measures on compact 
subgroups, thus extending a result which is well-known in the commutat ive case (see, 
for example, Rudin [2]). 

2. Definitions 

Throughout the paper  the group G, of elements g, tha t  we deal with will be a locally 
compact  (Hausdorff) topological group. 

The measurable sets will be supposed to include the smallest Bore] field contain- 
ing the open and closed sets, and all measures considered will be finite, positive 
and regular, so tha t  for all measurable sets A 

#{A} = sup t ,{c} ,  
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where the supremum is taken over the compact sets C contained in A. Regulari ty 
is not, of course, a restriction if G has a countable base of neighbourhoods. 

Let  L be the set of continuous functions on G which vanish outside a compact 
set (depending on the particular function), and let C (G) be the set of all bounded 
continuous functions on G; then a sequence of measures Pn tends to a measure p 
vaguely, if 

f/(g)d~,,(g)---> f/(g)d~(g) (/EL), 

and weakly if this is true for / s C(G). Weak convergence implies vague convergence, 
and if a sequence of probabil i ty measures converges weakly to a measure/~,/~ is 
also a probabili ty measure. Furthermore if G is compact,  weak and vague conver- 
gence coincide. 

To define the Fourier transform we take any  complete set B of continuous irre- 
ducible uni tary representations of G (which is then, however, held fixed throughout 
the entire discussion). Le t  

g-~ u~ (8 E B) 

be a typical  representation belonging to B, U~ being uni tary  operators in the Hil- 
bert  space H~. Then the Fourier transform of the finite positive measure ~u is ~ (fl), 
where/2 (fl) is the bounded-operator-valued function uniquely defined by  

(~(fl)y,z)= f(U~y,z)d#(g) (y, zEH~;flEB).  

3. The continuity theorem 

We first prove the following lemma, where P is the set of normalised elementary 
continuous positive definite functions ~(g). (The terminology here, and indeed 
throughout the paper, is tha t  of Naimark [3].) 

Lemma 1. Suppose that G has a countable base el neighbourhoods at each point. Then 
i] P is given the structure el a measurable space in such a way that ~ (g) is measurable 
/or fixed g, r gc(g) is product.measurable on, P • G, gc being the characteristic/unction 
el any compac$ set C c G. 

Coronary. I / i n  addition p and ~ are (finite) measures on G and P respectively 

To prove the lemma we construct a sequence of product-measurable functions 
/,(r g) which converges at  every point (~b, g) of P x C to r and the result then 
follows a t  once. 

Let  ~V~ be a countable base of neighbourhoods a t  the identi ty of G. Then for each 
n there exists a finite set of points g~'~ such tha t  g~'~N, cover C. Still keeping n 
fixed, sets Nn.jc  N~ can be found so tha t  g~')2i~.j are mutual ly  disjoint and cover 
C, and we then write 

38 



ARKIV FSR MATEMATIK. B d  5 nr 3 

1.(,/,, g) =,/,(g~% (g e g~">_,v..j). 
I t  is easy to see that  these functions have the properties described above. 

The corollary now follows since, because of the regularity of/~, each side may be 
approximated arbitrarily closely by  integrals of ~b(g)Xc(g) for suitable compact C, 
and to these Fubini's theorem may be applied 

I t  is now possible to prove the following version of the continuity theorem. 

T h e o r e m  1. I] the measures l~n converge weakly to the measure p, then the Fourier 
trans[orms /2n(8) converge weakly to/2(8 } ]or each 8. I] G has a countable base ol neigh- 
bourhoods ~ each point and a sequence el Fourier trans]orm8 fi~(8) converges weakly 
]or each 8 to an operator ~(8), the measures/un converge vaguely to some measure ~. 
I f  in addition ~o(8 ) = [r the Fourier trans]orm o] a measure p, then t~, converges 
weakly to ! ~. 

The first part  of the theorem follows directly from the fact tha t  (U~y, z} is a 
continuous function of g for fixed y and z in H~. 

Let p(g} be a continuous positive definite function, which may be normalised by  
dividing by a suitable constant. According to [3], Theorem 1, p. 393, there exists a 
cyclic unitary representation U a and a unit vector x in some Hflbert space H such 
that  

:D(g) = ( u ~  x, x). 

By Theorem 8, p. 519 of [3], H may be expressed as a topological direct integral, 

over a domain 9 ,  such that  
H= foH, 

where, for almost all ] of D, U~ is a continuous irreducible uni tary representation 
of G. I t  follows that  

~(g) = j-~f(g) d~(/) 

where, for almost a l l / ,  ~r(g) is an elementary normalised continuous positive definite 
function, and ~bf(g)is continuous in / for fixed g. The correspondence from / to Cr 
allows the set P to be given the structure of a measurable space in which r is 
measurable for fixed g, and ~1 induces a measure ~ in P,  for which 

P(g) = f'/'(g) '/e('/'). 

Now suppose that  G has a countable base of neighbourhoods at each point and 
that  the sequence of Fourier transforms /2n(8) converges weakly to an operator 
~(8} for each 8. Then in particular S~(g) dF, (g) converges for each ~b E P.  

Since among the set of representations B must be a one-dimensional 8 for which 
U~ = I(g E G), to which corresponds the positive definit~ function ~(g) = 1, the as- 
sumed convergence of/~n implies tha t  the sequence of measures Fn is bounded, and it 
follows tha t  for some constant K 
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f~ b(g)dlan(g)<K ( r  n~> 1). 

For  any  continuous positive definite function p(g) we have just seen tha t  there 
is a measure Q such tha t  

p(g) = re(g)  de(•). 

which by  the corollary to Lemma 1 is equal to 

I t  has just been shown tha t  from the hypothesis of the convergence of fin follows 
the dominated convergence of the integrand, and thus SP(g)d#n(g) also converges. 

In  the proof of Theorem 5, p. 403 of [3] it is shown (essentially) tha t  a function 
belonging to L can be approximated uniformly on G by  continuous positive definite 
functions, and hence S[(g)dpn(g) converges for all [ E L. Since such a limit is clearly 
a positive linear functional on L, the sequence/~n does converge vaguely. 

If  the limit yJ (fl) of the sequence/~n(fl) is in fact a Fourier transform fi (fl), then 
the previous argument may  be extended to show tha t  the vague limit of Pn is #. 
Since for ] E C(G) we can write 

ft(g) = f/(g) 0(g) + fl(g) [1 - 0(g)] d n(g), 

where O(g) is a member  of L bounded by  0 and 1, equal to uni ty on a compact set 
which contains all but  an arbitrari ly small amount  of the mass of #, the weak con- 
vergence of/~n to # follows from the vague convergence and the fact tha t  ~u.(G) con- 
verges to #(g). The proof of the theorem is then complete. 

As we have already observed, the theorem in the classical case on the real line 
(and even on an Abelian locally compact group) is appreciably stronger, and thereby 
much more useful in tha t  continuity of the limit of a sequence of characteristic 
functions is enough for the weak convergence of the measures. The question there- 
fore arises, is it possible to find a simple sufficient (and preferably also necessary) 
condition for the limit of a sequence of Fourier transforms to be a Fourier transform? 
(Note tha t  on a compact group, since vague and weak convergence coincide, the 
theorem already shows tha t  no extra condition is necessary.) 

On the  real line there are several ways of obtaining the result, but  there is basi- 
cally only one which appears likely to generalise. This is to take a set of necessary 
and sufficient conditions for a function to be a characteristic function, and show 
tha t  most of them are necessarily satisfied by  a limit of characteristic functions. 
For instance, a function is a characteristic function if and only if i t  is continuous 
and positive definite, and the limit of a sequence of characteristic functions is 
necessarily positive definite, so tha t  the usual conclusion follows a t  once. 

From this point of view, then, the problem is to characterise those (operator- 
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valued) functions which are Fourier  transforms. Now among  the characterisations 
known on the real line, there appears to  be only one which does no t  involve sums 
or differences of two values of the independent  variable: t h a t  due to Boehner [4]. 
For  instance, positive definiteness involves / ( s  - t), or in the general Abelian locally 
compact  case J(st-1), where s and t are elements of the dual  group. As this corre- 
sponds in the general case to  "mult ipl icat ion" of two different representations, an  
operat ion which would be ve ry  difficult to  handle no mat te r  how it  was defined, 
it is p robab ly  more profitable to consider Boehner ' s  conditions. On an Abelian group 
these take the  form t h a t  a funct ion ~(7) defined on the dual group is the  Fourier  
t ransform of a (not necessarily positive) measure if and only if i t  is continuous and 
if there is a constant  C such tha t  

[2:an W(Y-)l ~ Csup[ 2:a.r,,(g)[ 
g 

for all finite sets of real numbers  a ,  and  characters yn. The prospects of generalising 
even this do no t  seem very  hopeful, however. 

4 .  I d e m p o t e n t  m e a s u r e s  

B y  an idempotent  measure, we mean  a measure ju with the  p roper ty  #~/~ = ju, 
where -)(- is the convolut ion operation. Then we have the following result. 

Theorem 2. A positive (/inite, regular) idempotent measure on a locally compact group 
is the normed H a a r  measure on a compact sub.group. 

The fact  t h a t  convolut ion of measures is equivalent  to  multiplication of Fourier  
t ransforms,  shown b y  Grenander  with a countabi l i ty  condition on G, is clearly true 
in general. We have therefore to  find those positive measures/~ for which 

fi(fl) fi(fl) = fi(fl) (fl EB) .  

During the proof we shall need to use the concept  of the support  S of the meas- 
ure /~, defined as the  smallest closed set which has the same measure as the whole 
group G. The definition is meaningful  because F is regular. 

I t  is clear that /~(G) = 1. Let  us for the momen t  fix fl, and take  x as an a rb i t r a ry  
fixed element of H~. I f  z = fi(fl)x, then  

f@)z=z. 

z) - (/2(fl) z, z) = j'[(z, z) - ( U~ z, z)] d/z(g), Thus 0 (z, 

from which it follows tha t  with probabi l i ty  one 

V~ z ~ z; 

as the set of points g for which this is t rue is obviously closed, it follows tha t  if g 
belongs to the support  S 

Recalling tha t  x is an a rb i t ra ry  element of H~, and tha t  fl itself is arbi trary,  we have 

s~  n{g: u~ p(~) =p@}, 

41 



R. M. LOYNES, Fourier transforms and probability theory 

where the set on the right-hand side is a closed sub-group G I. I f  h fi G 1, let us define 
a new measure ph by  the relationship 

ph(A) = ~u(h-lA) 

for all measurable sets A. Clearly Ph is also finite, positive, and regular. Then eval- 
uating the Fourier transform we find 

(~(~) y, z) = f (v~  y, z) d~(g) 

f ( U~g y, z) dl~(g ) 

= f (u~ U~ y, z) dp(g) 

= ( v ~  ~(~) y,  z) 

= (~(~) y ,  z) 

for all y, z E H e, and all ft. Hence by  the uniqueness theorem for Fourier transforms 
p h = p .  

Now G 1 with its relative topology is also a locally compact group, whose open 
subsets are measurable subsets of G. Thus p restricted to G 1 is a left invariant  
measure, and hence Haar  measure on G1, which is therefore compact,  since/~ is 
finite. 

Returning now to the original group G, let A be a measurable set. Then 

p(A) = p ( A  n G 1 ) + p ( a  n G~). 

The second term on the right-hand side is not greater then p(S c) and therefore van- 
ishes, and the resulting equality completes the proof of the theorem. 

Churchill College, Cambridge, and Institute o/Mathematical Statistics, University o/~tockholm. 
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