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Introduction 

Le t  F 0 be a compac t  set  in R m. I f  F o has  a - c a p a c i t y  zero, 0 ~< ~ < m ,  1 there  exists ,  
according to  a wel l -known resul t  b y  E v a n s  [8], a posi t ive  measure  p concen t ra t ed  
on F 0 such t h a t  the  po ten t i a l  of order  a of p is inf ini te  everywhere  on 2'  0. I n  Chap te r  I 
we consider  a p rob lem re la t ed  to  th is  resul t .  W e  shal l  p rove  t h a t  a compac t  se t  F o 
has  a - c a p a c i t y  zero if a n d  only  if eve ry  cont inuous  funct ion coincides everywhere  
on F 0 wi th  a cont inuous  a -po ten t i a l  of a measure  wi th  compac t  suppor t .  This is a 
consequence of the  Theorems  1 and  2. However ,  these  theorems  conta in  much  more  
t h a n  the  above  cha rac te r i za t ion  of compac t  sets  of a - c a pa c i t y  zero. I n  pa r t i cu l a r  
we consider  the  case when we have  more  general  kernels  t h a n  r -~. 

Le t  h be a pos i t ive  integer ,  p>~ l ,  0 ~ < ~ < m ,  and  le t  F 0 be a compac t  set wi th  ~- 
capac i ty  zero. I n  Chap te r  I I  we use Theorem 1 to  deduce  condi t ions  on h, p a n d  
which gua ran tee  t h a t  eve ry  func t ion  ]o which is the  res t ic t ion  to  F 0 of a cont inuous  
function, can  be ex t ended  to  a funct ion  [ hav ing  the  following proper t ies :  / is def ined 
and  cont inuous  everywhere  in R m a n d  inf in i te ly  di f ferent iable  on the  complement  of 
F0; all  the  pa r t i a l  de r iva t ives  of / of orders  less t h a n  or equal  to  h and  the  funct ion 
/ i tself belong to LP(Rm). The  resu l t  is s t a t ed  in Theorem 3. The  condi t ions  of the  
theorem i m p l y  in pa r t i cu l a r  ~ < m - 1; i.e. all  the  compac t  sets considered in Theorem 
3 have  Hausdor f f  d imens ion  less t h a n  m -  1. 

W e  fo rmula te  a converse of Theorem 3 in w 7 (Theorem 4) where we also consider  
a cer ta in  class of Beppo  Levi  funct ions,  which, i n  t he  case a < m -  1, is more  general  
t h a n  the  class of funct ions  considered in  Theorem 3. The  case p = 1 is s tud ied  fur ther  
in w 

As a b y - p r o d u c t  of our  inves t iga t ion  we ob t a in  a theorem on the  exis tence of 
un i fo rmly  cont inuous  harmonic  funct ions  wi th  f ini te  Dir ichle t  in tegra ls  in the  uni t  
sphere,  which t ake  given cont inuous  values  on a cer ta in  subse t  of the  b o u n d a r y  of the  
un i t  sphere (Theorem 5). 

I wish to  t h a n k  Professor  L. Carleson who sugges ted  the  subjec t  of th is  p a p e r  and  
con t r ibu t ed  wi th  m a n y  ideas  to  the  proofs  of the  theorems.  

CHAPTER I. On the representation of continuous functions by potentials 

1. Notations and definitions 
R m is the  m-dimens iona l  Euc l idean  space, m >~ 1, w i th  po in ts  x = (x 1 ... . .  xm), Ix[ the  

d i s tance  f rom x to  the  origin. B y  a closed cube in R m we mean  the  set  of poin ts  sat is-  
fy ing  the  inequal i t ies  a ~ x ~ a t §  where a~,i=l . . . . .  m, are  a n y  numbers  a n d / > 0 .  

1 ~ = 0 corresponds to the logarithmic capacity. 
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S(Xo, r ) denotes  the  closed sphere [X-Xo[ ~<r. W e  wri te  min  {a,b} for  the  smal ler  
of the  numbers  a and  b. 

The complement  of a set  E we denote  b y  ~E.  I f  E 1 a n d  E 2 are  two sets, t hen  
E 1 \ E 2 is the  set of po in ts  belonging to  E 1 b u t  no t  to  E 2. I f  E I D E2, we wr i te  E I - E~ 
ins tead  of E 1 \ E~. 

B y  a kernel we mean  a funct ion K sa t i s fy ing the  following condit ions:  
(a) K is defined in the interval r > O, is finite and continuous, non-negative and non- 

increasing and satisfies lim,_~o K ( r ) =  co. 

(b) (r) r m-ldr < c~. 

(a) and  (b) are  for ins tance  sat is f ied if K(r) = r -~, 0 < ~ < m. 
Le t  a be a real  measure  on R m, i.e. a comple te ly  add i t ive  rea l  set funct ion.  The  

support of a is deno ted  b y  S~. a + is the  posi t ive  a n d  a -  t he  nega t ive  p a r t  of a, a = 
a + - a  -, and  la l  = a + + a  - .  

The  po ten t i a l  of a measure  a belonging to  a kernel  K,  the  K - p o t e n t i a l  of a, is 
deno ted  b y  u~, 

u~ (x) = ~K(I  x - y I) da(y), 1 
3 

and  the  energy in tegra l  b y  I~(a), 

x - y l ) d a ( x ) d a ( y ) .  

u~ is well-defined a t  the  po in t  x p rov ided  u~+(x) and  u~-(x )  are  no t  bo th  infinite.  
I f  there  will be no misunder s t and ing  we wri te  u" ins tead  of u~. I f  a is abso lu te ly  
cont inuous  and  has  a dens i ty  g, da=gdx ,  we somet imes  wr i te  u~ ins t ead  of u~. 

The  K - c a p a c i t y  of a bounded  Borel  set E, C~:(E), is def ined as 

Cx(E) = { inf IK(v)} -1, 
~eF~ 

where rE is the  class of posi t ive  measures  ~ wi th  t o t a l  mass  1 and  ~q,c E .  The K-  
capac i ty  is an  inner  measure,  i.e. 

C~(E) = sup CK(F), (1.1) 
FC:E 

where F is a closed subse t  of E .  
The  a -po ten t i a l  and  the  logar i thmic  poten t ia l ,  i.e. the  po ten t i a l s  in the  cases 

K ( r ) = r  -~, 0 < a < m ,  and  K ( r ) =  - l o g r ,  2 we also denote  b y  u~ and  u~ respec t ive ly  
and  ana logous ly  for the  a - capac i t y  and  the  logar i thmic  capac i ty .  

1 The in tegra t ion is to  be extended over  the  whole space if no l imits  of in tegra t ion  are indi- 
cated. 

We shall also consider the  case when K(r)= - l o g  r in spite of the  fact t h a t  - l o g  r takes  
negat ive values too. We somet imes omit  the  special simple t r e a t m e n t  which is needed in the  case 
K(r) = - log r. 
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Our kernel K satisfies the continuity principle (see for instance Ugaheri [18]): 
If  # is a positive measure with compact support and the restriction of u~ to S~ is 
continuous, then u~ is continuous in the whole space. 

Let  2'  be a compact set with positive K-capacity.  Then there exists a positive 
measure ~--which is not necessarily uniquely determined--wi th  ~(R a) =1,  S , ~  2", 
such tha t  

I~(~) = inf IK(v)={C~(F)) -1, 
v eFF 

where Fpis the class of positive measures v with v(R m) = I, Svc  F. We call v a capacitary 
distribution and u~r a capacitary potential belonging to K and F. u~r satisfies the fol- 
lowing inequalities: 

u~(x) >J(Gx(2")} -1 /or every xE2" except when x belongs to a set o/K.capacity 
zero. (1.2) 

u~(x) < (~(2")}-~ /or every xzS,.  (1.3) 

U~(Z) ~.< A* {GK(~'~)} -1 everywhere, where A is a constant which only depends 
on the dimension m o] the space R 'n. (1.4) 

As to (1.2) and (1.3) we refer to Frostman [9, pp. 35 ff.] and Fuglede [11, p. 159]. 
(1.4) is a result by Ugaheri [18]. 

I f  2"0 is a compact set, we denote by  S(2"0) the class of functions which are restric- 
tions to F 0 of real functions defined and continuous everywhere on R m. 

2. Representation of  continuous functions by potentials 

In  this section we also make the following assumption on our kernel K: 
(e) I / E  is the union o / a  finite number o/closed spheres and u~x a capacitary potential 

belonging to K and E, we have 

u~(x) >~ (C~c(E)) -1, /or every xEE.  (2.1) 

The condition (c) is for instance satisfied if K(r) = r -~, 0 < ~ < m, and, more generally 
if K satisfies 

K(r) <MK(2r),  for every r >0, 
where M is a constant. 1 

We shall now prove the following theorem on the representation of continuous 
functions by  potentials. 

Theorem 1. Suppose that K is a kernel satis/ying (c) and that F o is a compact set with 
CK(F0)=0. Then there exists, /or every /unction /oES(Fo), an absolutely continuous 
measure a with compact support having the /ollowing properties: The potential o /a ,  
u~, is continuous in the whole space and equal to/o on 2"0, i.e. 

u~(x) =/0(x), /or every xE2"0; 

1 Fo r  a proof  of th is  we refer  to  K u n u g u i  [13] or Car leson [4, p. 16]. These a u t h o r s  h a v e  m a d e  
f u r t h e r  a s s u m p t i o n s  on t he  kerne l  K.  H o w e v e r ,  i t  is ea sy  to  see t h a t  t he  resu l t  is  t r u e  also for 
our  kernels .  
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i / /0(x) > 0 / o r  every x E F0, then (~ is a positive measure and i / K  is in/initely di//erentiable 
in the interval r > 0  then u~ is in/initely di//erentiable on CFo. 

F o r  the  proof  we need the  fol lowing s imple lemma.  

Lemma 1. Let K be a kernel satis/ying (c) and F o a compact set with CK(F0)=0.  
Suppose that a is given, a > O. Then there is a set E which is the union o / a  finite number 
of closed spheres, E D Fo, so that C K( E) < a. I / u ~  is a capacitary potential belonging to 
K and E, then u~ is continuous everywhere and i / A  is the constant in (1.4) we have 

{CK(E)} -1 ~< u~(x) <. A(CK(E)} -1 /or every x E E  (2.2) 

and thus in particular/or every x E F. 

Proo/o/Lemma 1. W e  first  observe  t h a t  the  exis tence of a set  E follows i m m e d i a t e l y  
from the  facts  t h a t  F 0 is compac t  and  CK(P0)=0.  (2.2) is a consequence of (2.1) 
and  (1.4). Using (1.3) we also f ind  t h a t  the  res t r ic t ion  of u~ to  S~ is cons tan t  and  thus  
u~ is cont inuous  everywhere  according  to  the  con t inu i ty  principle.  

Proo/ o/ Theorem 1. W e  first  suppose  t h a t  ]o(x) > 0 for eve ry  x E F 0. Le t  ] be a con- 
t inuous  extens ion o f /0  to  Rm a n d  F a compac t  set  such t h a t  eve ry  po in t  of F 0 is an  
in ter ior  po in t  of F a n d / ( x )  > 0 for eve ry  x E F .  

W e  s t a r t  b y  proving  t h a t  for a n y  e > 0  there  exists  a posi t ive  measure  v wi th  
v(R m) less t han  a g iven posi t ive  n u m b e r  so t h a t  S~ is a subset  of a given ne ighborhood  
of F 0 a n d  u" =u~ is cont inuous  a n d  satisfies the  following inequali t ies ,  if M = 3mA + 1, 
m is the  d imension of the  space a n d  A the  cons tan t  in (1.4), 

u'(x) </(x) /or every xeP ,  (2.3) 
u'(x) >~ / o ( x ) - M e  /or every x E F  o. (2.4) 

W e  in t roduce  the  sequence of ne t s  ~ = ( ~ } ,  where ~0 consists of al l  closed cubes 
wi th  corners hav ing  in teger  coordinates ,  a n d  ~ ,  i > 0 ,  consists of al l  closed cubes 
which we ob ta in  b y  d iv id ing  the  cubes in Tl~-i in to  2 m equal  cubes b y  ( m -  1)-dimen- 
sional  hyperp lanes  para l le l  to  t he  coord ina te  planes.  Le t  wl ... . .  eor be a n u m b e r  of 
congruent  cubes f rom ~ ,  U wtD F ,  so t h a t  the  osci l lat ion of ] is less t h a n  e in eo~ for 
i = 1 ... . .  r. W e  separa te  those  cubes eo~,i = 1 .. . . .  r, which are  such t h a t  t he  m a x i m u m  
of/0 on F 0 N wt is larger  t h a n  Me. I. I n  th is  w a y  we ge t  the  cubes ~o~ .... .  w~. Using  L e m m a  
1 i t  is ea sy  to  realize tha t ,  for i = 1 .. . . .  s, we can choose a posi t ive  measure  wi th  t o t a l  
mass  less t h a n  a g iven pos i t ive  n u m b e r  hav ing  the  following proper t ies :  The  suppor t  
of the  measure  is a subse t  of a g iven ne ighborhood  of F 0 N w~; the  K - p o t e n t i a l  of the  
measure  is cont inuous  everywhere  a n d  t akes  values" be tween  ~ and  Ae on F 0 N eo~; 
i t  is less t h a n  or equal  to  Ae on eo~ and  on those  cubes 0) 1 . . . . .  wr which have  non-vo id  
intersect ions  wi th  w~ a n d  i t  is f ina l ly  less t h a n  a given pos i t ive  n u m b e r  elsewhere. 
I n  th is  w a y  we ge t  a posi t ive  measure  associa ted  wi th  eve ry  cube eo~, i = 1 ... . .  s. Le t  
v~ be the  sum of these  measures .  Due  to  the  choice of the  cons tan t  M,  M = 3~A + 1, 
and  the  fac t  t h a t  the  osci l la t ion of / is less t h a n  e in eve ry  cube o~, i = l  . . . . .  r, i t  is 
easy  to  real ize t h a t  we can m a k e  the  above  procedure  so t h a t  

u"(x)  < / ( x )  /or every x E F ,  (2.5) 

u'~(x) >1 min  ( / 0 ( x ) - - M ~ , e }  /or every x E F  o. (2.6) 

i If/o(X)<~Me for every x E F  0 there are no such cubes. In this ease, however, (2.3) and (2.4) 
are satisfied with v = 0. 
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Our procedure also guarantees t ha t  we can get  vl(R m) smaller than  a given positive 
number  and S,, as a subset of a given neighborhood of F 0. 

I f  (2.3) and  (2.4) are no t  t rue for V=Vl we c o n s i d e r / - u " .  As / (x )  -u~'(x) > 0  for 
every x E F and  u ~' is continuous we can repeat  the  procedure leading to (2.5) and 
(2.6) bu t  with / replaced b y / - u "  a n d / 0  b y / o - u " .  In this way  we get  a positive 
measure v~ having properties which are analogous to those of v I , and a continuous 
potent ial  u "2 satisfying 

u~(x) </(x) - u~'(x) /or every xE$', (2.7) 

u"(x) >~ min {/o(X) - u"(x) - Me, e} /or every x E F  o. (2.8) 

(2.6) and (2.8) give, for XePo, 

u"(x) + u"(x) >~ min {/o(X) - Me,  2e}, 

and so (2.7) and  (2.8) yield 

u"(x) +u" (x )  < / (x)  for every  xEP, 

u"(x) + u~'(x) ~ min {[o(X) - Me, 2e} for every x E F  o. 

I f  (2.3) and  (2.4) are no t  t rue for ~ =vl  +v2 we repeat  our  procedure anew. After 
n steps we have obtained n positive measures ~1 ..... u, having continuous potentials 
u", .... u ' -  so tha t  

u " (x )< / (x )  /or every xEP, (2.9) 

~. u'~(x)~ min {/0(x)-  Ms, he} /or every xePo, (2.10) 
t = 1  

and  so t h a t  ~ v,(R ~) is less than  a given positive number  and U ~S,, is a subset of a 
given neighborhood of F o. As /0  is bounded on F0, there exists, according to (2.10), a 
smallest number  n o so tha t  (2.4) holds with ~ =v~ +. . .  +~,,. F rom (2.9) we see tha t  
also (2.3) is t rue for this choice of u. 

As the  second step of the proof we show t h a t  there even exists an  absolutely 
continuous positive measure, yJdx, where ~ is infinitely differentiable and the  total  
mass of ~2dx is less than  a given positive number  and  S~ is a subset of a given neigh- 
borhood of F0, so tha t  (2.3) a n d  (2.4) are t rue with v replaced by  y~dx. I n  fact, let 

be an  infinitely differentiable funct ion with compact  support ,  ~ ~>0, Sq~(x)dx = 1, 
and let v 2 be the convolution of ~ and  ~, yJ = ~ - u .  ~ is then infinitely differentiable 
and the measure vjdx has the same total  mass as u. B y  choosing r small enough and 

such t h a t  S~c  S(O,r), where S(O,r) is the sphere with centre 0 and radius r, we can 
make S~ a subset  of a given neighborhood of S,. As u" = K ~ v  we have 

u ~ = K~e~ = K~e~-x-~ = ~ e u  ~. 

B y  choosing r small enough we can thus  also make the difference u ~ - u "  less than  a 
given number,  uniformly on F.  As we can prove an  inequali ty (2.4) for every e > 0 
we conclude tha t  we also can prove the  same inequali ty and  the inequali ty (2.3) 
with ~ replaced by  a measure ~0dx having the properties s t a t edabove .  
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Thus  we have  p roved  the  exis tence  of an  abso lu te ly  cont inuous  measure  ~/-~1 hav ing  
an  inf in i te ly  d i f ferent iable  dens i t y  so t h a t  

u'(x)  </(x) for eve ry  x E F ,  

u~"(x) >I/o(X) - 2 -1 for  eve ry  x E F o. 

B y  considering / -  u " i n s t ead  of / we ge t  ana logous ly  a measure  ~u~ so t h a t  

u"'(x) < / ( x )  - u ' ( x )  for  eve ry  x E F ,  

u~"(x) >1/o(x) - ur - 2-2 for eve ry  x E F 0, 

which gives uZ'(x) + uI"(x) </(x) for every  x E F ,  

u ' ( x )  + ut"(x) >~/o(x) - 2 -2 for every  x E F 0. 

Af te r  n s teps  we have  ob t a ined  n pos i t ive  measures ,  ~ i  . . . . .  [~n, sa t i s fy ing  

n 

~, urn(x) < / ( x )  /or every xEF ,  (2.11) 
i = l  

n 

t~=lum(x) >~ /o(x)-  2 -n /or every xE F o. (2.12) 

We can fu r the rmore  suppose  t h a t / ~  is abso lu te ly  cont inuous  and  has  an  inf in i te ly  
d i f ferent iable  dens i ty  for i = 1 .. . . .  n, t h a t  ~ [  btt(R m) is less t han  a given pos i t ive  num-  
ber  which is i ndependen t  of n, and  t h a t  the  m a x i m a l  d is tance  be tween  F 0 and  a 
po in t  on the  b o u n d a r y  of S.n  t ends  to  zero as n t ends  to  inf ini ty .  U n d e r  these  as- 
sumpt ions  i t  follows t h a t  {~ 'p~}~=l  converges weak ly  to  an  abso lu te ly  cont inuous  
posi t ive  measu re /~  such t h a t  the  dens i ty  of/4, is inf in i te ly  d i f ferent iable  om 0F0.  
Using  (2.12) we obta in ,  as the  kerne l  K is non-negat ive ,  

n 

u~'(x)>~um(x)>~/o(X)-2 -n, n =  1, 2 . . . . .  for eve ry  x E P  o. 
1 

This gives u~(x)>1/o(X) for eve ry  u E F o. As {~/x~} converges weak ly  to  /x we 
have  b y  (2.11): 

n 

/(x) >~ lira ~. um(x) >~ ui'(x) for every  x E F .  
n- - i .  oo 1 

I t  follows t h a t  u~'(x) =/o(X) /or every xE Fo, (2.13) 

u~(x) <~/(x) /or every xEF.  (2.14) 

F r o m  the  cons t ruc t ion  we conclude a t  once t h a t  u" is cont inuous  on C F  0. To prove  
t h a t  u ~ is cont inuous  a t  a po in t  x 0 belonging to  F 0 we use (2.14). I t  is well  k n o w n  t h a t  

u"(Xo) ~ l im u~(x). 
x . . . .~x  e 
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To prove tha t  u~'(Xo) >~ lim u~'(x) 
x . - - ~ x  o 

we observe tha t  x 0 is an interior point  of F and so (2.14) yields 

lim u~(x) < l im/(x)  =/(Xo) =/0(x0) = u"(Xo). 
x . - ~ x  o x.....~x o 

This proves tha t  u ~ is continuous a t  x 0 and thus  everywhere. 
F rom the  construct ion of u" we easily realize t h a t  u ~ is infinitely differentiable 

on CF 0 in the case when K is infinitely differentiable in the interval r > 0 .  Because 
if x I is a point  in ~ F  0 we can write u": 

n 1 n !  

u" = ~. u "  + (u u - 2 u ' )  (2.15) 
1 1 

and choose n 1 so large t h a t  the support  of I t -  ~.~'itt does no t  contain x 1. The second 
term of the r ight  member  of (2.15) is then  infinitely differentiable a t  x I due to  our 
assumption on K, and  the first te rm due to the fact  t h a t  ~ i t ~ i s  absolutely continuous 
and has an  infinitely differentiable density. 

B y  t h a t  our theorem is completely proved in the case when/o(X) > 0  for every 
x G F 0. The general case follows immediately  by  writing )to as the difference between 
two functions which are str ict ly positive on F 0. 

Remark 1. From the  proof it is clear t h a t  the measure ~ in Theorem 1 can be chosen 
with a+(R m) + a - ( R  z) less than  a given number  so tha t  S~ is a subset of a given 
neighborhood of F 0. We can also make  u" the difference between two continuous 
potentials generated by  absolutely continuous positive measures having densities 
which are infinitely differentiable on CF o. 

Renmrk 2. The condition K non-negat ive is no t  necessary for the val idi ty of 
Theorem 1. For  instance, it is easy to realize tha t  the theorem is t rue also for the 
kernel - l o g  r. 

Remark 3. From Theorem 1 we can deduce the following result: Suppose that g is a 
strictly positive function which is lower semi-continuous in  R m and that C~(Fo)=0,  
F o compact. Then there exists a potential u~, continuous on CF 0, which is generated by 
a positive absolutely continuous measure tt such that Sg is a subset o / a  given neighborhood 
o / F o  and 

u"(x) = g(x) /or every x E F o. 

I n  fact,  there exists a sequence of continuous functions {gt}~ r 0<g~_l(x)<gt(x) 
for every  x e F 0 ,  4 = 2 , 3  ..... converging pointwise to  g on F 0. Hence there is a positive 
measure Its having suitable properties and a continuous potential  u ~ so that ,  if 
g0=0,  

ut'~(x) = gt(x) - gt-l(X) for every x e F0, i = 1, 2 . . . . .  

I t  is possible to arrange so tha t  { ~ i t ~ } F  converges weakly to a positive measure It 
having the  required properties and  in fact  also those s ta ted for a in Remark  1. This 
gives the  required properties to  u ~ including the equali ty u"(x)=g(x)  for every 
xE F 0. {Compare the calculations leading from (2.11) and {2.12) to (2.13).) 
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This resul t  c lear ly  conta ins  the  following resul t  b y  R u d i n  [16] as a special  case 
(the case g(x)= oo for  eve ry  xEF0) :  Suppose  t h a t  G is an  open set conta in ing  the  
compac t  set  F 0 a n d  t h a t  C~_2(F0)=0,  m >~ 2. Then  there  exists  a pos i t ive  abso lu te ly  
cont inuous  measure  p having  compac t  suppor t  such t h a t  u~_2 is inf ini te  on F0, 
cont inuous  on C F  0 and  ha rmonic  in the  complement  of the  closure of G. 1 

Remark 4. Let U be the  open un i t  sphere in R m. I f  F 0 is a closed subse t  of the  
b o u n d a r y  of U, /0E$(F0) and  Cm_~(Fo)=0, m>~2, i t  is no t  h a r d  to  prove,  b y  modi-  
f ica t ions  of the  proof  of Theorem 1, t h a t  there  exists  a measure  ~ such t h a t  S ,  is 

Um-2(x)-/o(X) for compac t  a n d  does no t  conta in  a n y  poin ts  f rom U and  such t h a t  o _ 
every  xEF  o. As before we can ge t  u~-2  as  the  difference be tween  two cont inuous  
po ten t i a l s  genera ted  b y  pos i t ive  measures  which means  t h a t  the  energy  in tegra l  
Ira_2( ]a I ) is finite.  Therefore  we can conclude: F o r  a n y  funct ion/0  E $(F0) there  exis ts  
a funct ion  u, u(x)=/0(x) for  eve ry  xEFo, which is ha rmonic  in U, cont inuous  in the  
closure of U and  has  a f ini te  Dir ich le t  integral ,  

f m / o ~ \ z  

A converse of th is  propos i t ion  will be p roved  in w 8. 

3. Modulus of continuity of potentials 

W e  consider  two kernels  K and  K 0 and  suppose  t h a t  

l im Ko(r ) {K(r)} -1 = oo. (3.1) 
r-~0 

We shall  show the  exis tence of a modulus  of con t inu i ty  on the  set where ~K."lal is 
bounded  b y  a given cons tan t ,  a modulus  of con t inu i ty  which is common  to  al l  
po ten t ia l s  u~ wi th  a+(R m) +a-(R m) less t h a n  a g iven constant .  I n  w 4 we shall  t hen  
use th is  resul t  to  p rove  a converse of Theorem 1. 

Lemma 2. Suppose that the kernels K and K o satis/y (3.1). Then there exists a non- 
negative /unction t defined in the "interval r > 0 ,  limr_.0 t(r)=0, only depending on K 
and K o so that, if a is a measure with compact support, a+(R m) §  m) <<.M 1 and 
u~(x i )  < M 2, i = 1, 2, then we have 

I u~(xl) - u~(x,) I < (M1 + M~) t(I Xl - x~ I). (3.2) 

Proo/. W e  consider  on ly  the  case when a is a posi t ive  measure ,  f rom which the  
general  case is an  immed ia t e  consequence.  L e t  x I and  x~ be  two poin ts  w i th  U~o(X~) 

M2, i -- 1,2, and  p u t  ] x I - x~ I = r0- Le t  S be the  open sphere wi th  centre  (x I § x2)- 2 -1 
and  rad ius  2-1r0-}-rl, where r 1 is a n u m b e r  which we shall  choose l a t e r  depending  
on r 0 so t h a t  r I t ends  to  zero when r 0 t ends  to  zero. 

u~(xl)--u~(x~)= f (K([xl--y])-- K(]x~--yl))da(y)~ f s+  fcs= I + II .  

1 Rud in  also t rea ts  the  simple extension to a rb i t r a ry  closed sets. 
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In  order to  est imate I we introduce the funct ion t~: 

tl(r ) = (Ko(r)}-x �9 g(r). 

t I satisfies limr_,0 t l ( r ) = 0  according to  (3.1). I f  G(x;r) is the  value of a for the 
open sphere with centre x and  radius r, we have 

, II < f:~ r) + fi'+~'K(r)da(xz; r) 

fr,+r~ fle+r, = tx(r) Ko(r ) da(xx; r) + t l (r  ) Ko(r ) da(x~; r) 0 
sup tl(r ) {U~o(Xl) ~- U~fo(Z2) } < 2 M 2 sup tl(r), 

0~<r~ro+r~ 0~<r~ro+ri 

i.e. I I]~< 2 M  s sup tl(r ). (3.3) O~r<~re+r~ 
To be able to  estimate 11 we l~ave to  examine the difference K( [Xl - y I ) - K( I xz - y I) 

when yECS.  We need a result  of the following kind: There exists a non-negative 
funct ion $~ defined in the interval r>O,  limr-.o t2(r)=O, only depending on K, so 
that ,  for every  ~] > O, 

K(r) -K(r+o)  <~t2(~]) /or r>~tz(~), 0<0< 7. (3.4) 

We suppose for a momen t  t ha t  this has been proved and use it to  estimate II .  As 
I l x x - y l -  Ix2-yll<~ Ixl-x~l  =r o and I x t - y l  ~r  1, / = 1 , 2 ,  when yECS, we have by  
using (3.4) with ~ = r  0 and choosing r I =t2(ro), 

]1II < f~.s IK(lxl-yl)-K([x~-yl)l da(y) < M  1.$2(r0). 

We define t by  t(r0) = 2 sup tl(r ) + t~(r0), r o > 0, 

(3.5) 

where sup is taken  for those r which satisfy 0 ~< r ~< r 0 + $2(r0). t satisfies the  demands 
of the lemma; (3.3) and (3.5) give (3.2). 

I t  remains to  prove the existence of a funct ion t2, limr_,0 t~(r) =0,  only depending 
on K, such t h a t  (3.4) is valid. We observe tha t  K is uniformly continuous in the 
interval  a ~- r < oo for every a > 0. F r o m  this we conclude tha t  for every  e > 0 there 
exists a largest number  q(e), which is possibly + co, so t h a t  

K ( r ) - K ( r + ~ ) < e  for r>~e,, 0~<0~<q(e), (3.6) 

and it is no t  hard  to realize tha t  this implies the existence o f  a funct ion t 2 with the 
desired properties so tha t  (3.4) is true. Wi th  t h a t  the lemma is proved. 

4. A converse of  Theorem 1 

We denote by  ~/(K, Fo) the class of functions which are restrictions to F 0 of 
K-potent ials  u~ of measures ~ with compact  supports.  A func t ion /0  E S(F  0) belongs 
to "ll(K, Fo) if there is a funct ion gE~/(K, Fo) well-defined a t  every p o i n t  of F0, 
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such t h a t  ]o(x)=g(x) for every x E F  o. We shall prove the following converse of 
Theorem 1: 

Theorem 2. Let K be a kernel and F o a compact set, CK(Fo) >0.  Then there exists a 
/unction 1o belonging to $(Fo) but not to ~ ( K ,  Fo). 

Remark 1. From the proof of Theorem 2 it will appear  t ha t  also the following 
more general proposit ion is true: We can find a /unc t ion /o  E $(F0) such that there is no 
/unct ion/rom ~ ( K ,  Fo) coinciding wi th/o  on F o except on a subset o/ 2' 0 o/K-capaci ty  
z e r o .  

Remark 2. I t  will appear  f rom the proof t h a t  the assumption K non-negat ive is no t  
necessary for the val idi ty  of the theorem. For  instance the theorem is t rue also for 
the kernel - l o g  r. 

Remark 3. Theorem 1 and Theorem 2 give in part icular  the following characteriza- 
t ion of compact  sets of K-capac i ty  zero: Let K satis/y the condition (e) o[ w 2. A 
compact set F o has K-capacity zero i/ and only i / every  /unction ]rom $(F0) is the 
restriction to F o o] a continuous K.potential o / a  measure with compact support. 

Proo/ o/ Theorem 2. As CK(Fo) > 0 there exists a kernel K 0 such tha t  

lim K o ( r  ) �9 ( K ( r ) }  - 1  = c~  ( 4 . 1 )  
r - ~ 0  

and CK,(Fo) > 0.1 (4.2) 

According to (4.2) there is a positive measure % with tota l  mass 1, Sv, c F 0 and 
IK.(~0) < ~o.  

We first use L e m m a  2 to deduce a proper ty  on F 0 of an arb i t rary  K-potent ia l  
u~ of a measure a with compact  suppor t  and after t ha t  we shall construct  a continuous 
function / with res t r ic t ion/0  to F 0 such t h a t / 0  does no t  have this property.  Le t  
a be a measure with compact  suppor t  and Ml=a+(Rm)+a-(Rm) .  As  u ~  is finite 
except on a set of K0-capacity zero and %, due to  the fact  t ha t  IK.(v0) < 0% does no t  

lal concentrate  any  mass on such a set, we conclude tha t  the set where uK, is finite has 
%-measure 1, i.e. measure 1 with respect to  ~0. Consequently, for every e > 0  there is a 
constant  M 2 =M2(e ) so t h a t  u ~  is less than  M 2 on F 0 except  on a subset of F 0 
having %-measure less than  e. According to  (4.1) and  Lemma 2 this means tha t  there 
exists a funct ion t defined in the interval r > 0 ,  limr-)0 t(r) =0 ,  only depending on K 
and K o such tha t  

lug(x1) - u~(x,)] <~ (M 1 § M2) t(I x 1 - x 2 I), (4.3) 

/or x 1 and x 2 belonging to F o except when x 1 and x~ belong to a subset o/ Po having 
%-measure less than e. 

We construct  the funct ion / in the proof of the following lemma: 

Lemma 3. Let K o be a kernel, F o a compact set with CK.(Fo) >0,  % a positive measure 
with S~.c Fo, vo(R m) = 1, IK,(%) < oo and t* a non.decreasing /unction de/incd in the 
interval r > 0  such that t * ( r ) > 0  i/  r > 0 ,  limr_~ot*(r) =0.  Then there exists a /unction 

1 Compare Carleson [3, p. 405 I. 
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1, de]ined and continuous everywhere, having the/ollowing property /or all su[[iciently 
small positive values el ~: For every Borel set E,  E c  Fo, with uo(E) <~, there are points 
x 1 and x 2 belonging to F o - E with ] x 1 -- x2 ] arbitrarily small so that 

[/(Xl) - / (x2)  l >~ Mat* ( Ix ,  - x ~  I), M3 positive eonstant.~ (4.4) 

Using Lemma 3 we can easily finish the proof of Theorem 2. Let  K0, F 0 and r 0 
in the lemma be identical with the kernel K0, the set 2'0 and the measure uo occurring 
in the proof of the theorem. We choose the funct ion t* in the  l emma so t h a t  

lim t*(r) (t(r)} -1 = oo. (4.5) 
r--~0 

I f  / is the funct ion occurr ing in the lemma it is clear by  (4.3), (4.4) and  (4.5) t h a t  there 
is no measure a with compac t  support  such tha t  u~ and  / coincide everywhere on F 0. 
This proves our theorem. 

Proo[ o / L e m m a  3. We shall construct  / as a sum, / (x)  = ~.F/s(x). To construct  {/s}~ 
we use three sequences of positive numbers  (as}, {b,} and  {d,}. 

We first suppose t h a t  the  intersection between F 0 and an  arb i t rary  (m - 1)-dimen- 
sional plane parallel to  some coordinate plane has %-measure zero. 

To construct /~,  for  a fixed i, we star~ by  covering F o b y  means  of congruent  cubes 
from the sequence of sets T l = ( ~ t }  which we used in the proof of Theorem 1, and we 
use cubes with diameters less than  or equal to 2-1.as. ~ After  t ha t  we separate those 
cubes, say eo;1,oJ;2 ..... which intersect F 0 in a set of positive %-measure. For  every  
cube eo~j, where j is a fixed number,  j = 1,2, ..., we consider the infinite strip which is 
determined by  the points  (x I, , . ,  x m) where x 1 varies arbi trar i ly and x ~ .... ,x  m va ry  in 
the same intervals as the corresponding coordinates for an arb i t rary  point  in conj. 
I f  there is no  cube w~8, s ~ ,  which is contained in this strip and has an  ( m - 1 ) -  
dimensional edge plane in common with o);i, we divide w;i into two rectangles by  an 
( m -  1)-dimensional hyperplane perpendicular  to the xl-axis so t h a t  bo th  rectangles 
get  the p roper ty  tha t  t h e y  intersect F o in a set of positive r0-measure. (Compare 
(4.9) below.) The cubes o)~I,r ... are in this w a y  replaced by  rectangles m~,o)~ ..... 

We now choose the  number  ds satisfying 

0 < ds < min %(F 0 N eo~). (4.6) 
i 

0 t l  . H I f  r0(F 0 co,s)>2ds we divide, for 1 = 1 , 2  ..... w,j into two or more parts  by  ( m - 1 ) -  
dimensional hyperplanes perpendicular to the xl-axis in such a way  tha t  ~o~;,eo~, ... 
are replaced by  rectangles w~1 ..... o)~ m with the following properties: 

uo(Fo\ U eo~j) = 0. (4.7) 
j r 1  

d~<%(FoN~osj ) <2d~, ] = 1  ..... ne (4.8) 

Every ~o tj has an (m - 1)-dimensional edge plane in common with a rectangle a~ s8 , s ~=], 
in the in/inite strip which is determined by the points (x 1, ...,x ~) where x 1 is arbitrary 
and x ~ ..... x m vary in the same intervals az the corresponding coordinates/or an 
arbitrary point o[ ws~. (4.9) 

1 In general we cannot make (4.4) true for all x 1 and x~ belonging to F 0. This is a consequence 
of a result by Besicovitch, [1, p. 183]. 

We suppose=for the moment that the number a s is given. 
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As the intersection between F o and an ( m -  1)-dimensional hyperplane parallel to 
some coordinate plane has %-measure zero, we can form a subset A~s of cots containing 
the boundary of cots such tha t  the distance from the boundary of co~s to co~s-A~s 
is larger than  zero and, due to (4.8), 

vo(Fofl (w~j-Atj))>d, ,  j = 1 ..... ni. 

We can also make the choice of A~j such that ,  if ~ is a given number,  ~}>0, and we 
define A by  

CO n t 

A = U O (Atj N F0), (4.10) 
t = l  J= l  

then we have ~o(A) <~. 
We now choose [~. For every rectangle cotj there is an infinite strip of the kind 

described in (4.9). In  each such strip we choose [4 identically equal to t*(at) in every 
second set c o t s - A ,  and identically equal to zero in every second, counted from sets 
cots-Ats with points having smaller xX-coordinates to sets with points having larger 
xl-coordinates. In  the remaining points of R m we define [t such t h a t / ,  becomes con- 

n t  tinuous and less than or equal to t*(at) everywhere and zero on C Us~lco, �9 
We now fix two points x t and x~ from LJ ~l{cots fi F0) \ A  belonging to two different 

rectangles co~s bordering on each other in an infinite strip of the kind described in 
~(0 f^r the distance between cots-Ats and cot,-Ats (4.9). I f  we introduce the notation oss u 

and define bt by 
b~ = min ~}~, ( 4 . 1 1 )  

j * s  

then, clearly, we have 

I/t(xt)-/~(x[) I =t*(at) and b~ <. Ixt-x~l <.at. 

As the function t* is non-decreasing, we obtain 

I/,(~,) - / , ( ~ ; )  I >/t*( I~, - ~; I)- (4.12) 

For j > i  we have I/s(x,)-/s(x~) I ~< 2 max I/~(y) [ ~< 2t*(as), 

which gives I/s(x,)-/s(x~) I <t*(Ix,-x~l).2t*(as).{t*(b,)}-~, j > i .  (4.13) 

I f  we furthermore assume tha t  

at<bt_x, i = 2 , 3  ..... (4.14) 

we get /s(x~)-/s(x~) = 0, i < i .  (4.15) 

Putt ing / (x)= ~' / t (x)  we have by  (4.12), (4.13) and (4.15) 

I/(x,) - / (~; )  I ~ t*(I x ,  - x ;  I)[1 - 2 (t*(b,)}-~ �9 ~ t*(~)].  

I f  the expression in square brackets is larger than  or equal to 2 -1 , i.e. if 

t*(aj) < ~ t*(b,), 
J > i  

(4.16) 
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then [/(x,) - /(x~) [/> �89 t*([ x~ - x; I), i = 1, 2 . . . . .  (4.17) 

I t  is easy to realize that  it is possible to choose the sequence {a~} such that  (4.14) 
and (4.16) are satisfied and this shows that  it is possible to perform our construction. 
(4.16) guarantees that  ~. / converges uniformly and therefore / is continuous. 

Suppose now that  E is a Borel set, E c  F0, v0(E) <e. To finish the proof of the lemma 
it is, according to (4.17), enough to prove that,  for all sufficiently small values of e 
and for all i, there exist points xi and x~ from U1~21(r162 n F0) \ (E U A) belonging to 
two different rectangles cots bordering on each other in an infinite strip of the kind 
described in (4.9). Suppose, on the contrary, that  this is not the case. Thus, for some 
i, at  least one third of the rectangles ~o~1 ..... eo~,~ do not contain any points from 
F 0 \ (E t) A). Using (4.8) and the fact tha t  we have chosen A so that  v0(A ) <~7 we get 

>v0(EU A ) > d i . 3  i, (4.18) 8-b~] 

where ni is the number of rectangles wij for a fixed i. But  (4.7) and (4.8) give 

1 = vo(Fo) <2d~n~, 

which, combined with (4.18), gives e +7  >6-1. As ~/ can be chosen arbitrarily small 
we get a contradiction if e is small enough. 

The lemma is thus proved in the case when the intersection between F 0 and an 
arbitrary (m-1)-dimensional  hyperplane parallel to some coordinate plane has 
v0-measure zero. If this condition is not satisfied we choose an (m-1)-dimensional 
hyperplane P parallel to some coordinate plane such that  v0(P f3 F0) > 0 and carry 
through the above construction o f / - - w i t h  F o replaced by P N F0--in the ( m -  1)- 
dimensional hyperplane P. The fact that  we may have vo(P N F0) < 1 does not change 
the idea of the construction. After having constructed ] in P we extend ] to a con- 
tinuous function in R z. The extended function clearly satisfies the conditions of the 
lemma which thus is proved. 

CHAPTER I I .  An extension problem for continuous functions 

5. Statement  o f  the problem 

We first introduce some more notations. We denote the sequence (s 1 ..... sh) of 
indices between 1 and m by s and its length h by  [ s ] and we put  

a h 

Ox"... ~x "h" 

For any number p >/1 we denote by L v the class of all Lebesgue measurable func- 
tions / in R m such that  S ]/(x)]Vdx < co; we denote by  L~oo the class of all measurable 
f u n c t i o n s / i n  R m such that  Sr]/(x)]Vdx<oo for every compact set F. We use the  
notation 

and we write II/ll~ instead of i[/[[~',~,. 
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We shall use a class of d is t r ibut ions  in  R m (in the sense of Schwartz [17]) consisting 
of funct ions from L~or and, in  order to avoid confusion with the usual  pointwise 
derivation,  we always state explici t ly when it  concerns der ivat ion in  the  dis t r ibut ion 
sense. ~ denotes the Dirac measure and  we write D s ins tead  of DSS. 

We shall deal with the  following extension problem: Let  F 0 be a compact  set 
having  m-dimensional  Lebesgue measure zero. We are interested in  f inding condit ions 
on F 0 which guarantee  t ha t  every f u n c t i o n / 0 E $ ( F 0 )  has a con t inuous  extension / 
to R m such tha t  all the derivat ives o f / - - i n  a cer ta in  sense- -of  orders less t h a n  or 
equal  h belong to L ~, where h a n d  p are given numbers ,  p >~ I. I t  t u rns  ou t  t h a t  a 
re levant  condit ion is t h a t  C~(Fo)=O for a certain :r 0 ~ c r  irrespective of the 
regular i ty  of the set F 0 in  other respects. The results are formula ted  in  the Theorems 
3, 4 and  6 as condit ions on the connections between h, p, cr a nd  the  dimension m 
of the space. 

I n  the case when we are searching for a posit ive solution of our extension problem 
it is na tu ra l  to require t ha t  the extended func t ion  / is to be inf ini te ly  differentiable 
on CF 0 (Theorem 3). W h e n  we t r y  to f ind a converse (Theorem 4) of Theorem 3 we 
shall use a certain class of Beppo Levi funct ions of order h, BLh(LlPoc), 1 p ~> 1. This is 
the class of dis t r ibut ions T in  R ~ such t h a t  all the  derivat ives (in the  d is t r ibut ion  
sense) of order h are funct ions  belonging to L~or i.e. DSTEL~oc for all s wi th  Is[ = h. 

We s ta r t  our invest igat ion by  discussing some properties of the class BLn(Lroo), 
p >~ 1, and  the class of funct ions which are inf ini te ly differentiable on CF0, where 
C:r = 0  for some ~ < m - l :  

1 ~ Following Deny-L ions  [7, p. 314] we say t ha t  a funct ion  g, defined in  R m, has 
the proper ty  (AC) in  R ~ if g is absolutely  cont inuous on almost  every line 2 with a 
given direction if this direction coincides with the  direct ion of some coordinate axis. 

Using the proper ty  (AC) we get the following character izat ion of the dis t r ibut ions  
in BLh(L~or 

BLh(L~oo ) consists of those dis t r ibut ions T in  R ~ which have the following pro- 
perties: Every  der ivat ive D~T (in the d is t r ibut ion  sense) wi th  0 ~< l sl < h a is a func t ion  
which- -p roper ly  defined on a set of Lebesgue measure zero--g ives  a funct ion g,~ 
having the proper ty  (AC); all the derivat ives of the first order of g~ in  the 
usual  pointwise sense are in L~oo and  they  also const i tute  the derivat ives of g~ in  
the dis t r ibut ion sense. 

This characterization is given by  Deny  and  Lions [7, p. 315] for h = 1. The general 
case follows easily from the case h = 1 if we use a theorem by  Kryloff  [17, par t  I I ,  
p. 37] to conclude t ha t  if all the derivat ives of the first order of a d is t r ibut ion  are 
funct ions in L~or then  the d is t r ibut ion  itself is a funct ion  in  L~oo. 4 

2 ~ F 0 is a compact  set with C~(Fo)=O for some r162 sat isfying ~ < m - 1 .  Suppose 
t ha t  the funct ion g is defined and  inf ini te ly differentiable on CF o and  tha t  all the 
par t ia l  derivat ives of g of order h belong to  L~oc, where p >~ 1. C~(2'0) = 0 a nd  cr < m -  1 
mean  tha t  almost  every line with a given direction does no t  intersect  F 0. Otherwise 

1 The discussion of this chapter concerning Beppo Levi functions in the case h = 1, should be 
compared to the discussions in Deny [5] and Deny-Lions [7]. The definition of BLh(L~oc) is found 
in the work of Deny-Lions. Compare also Nikodym [14]. 

2 A function is absolutely continuous on a line if the restriction of the function to an arbitrary 
compact interval of the line is absolutely continuous. 

a DST with Isl =0 denotes T. 
4 Observe that by means of Kryloff's theorem it is possible to enunciate more than we have 

done in our characterization of the distributions in BLh(L~oc). 
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there would exist a direction such tha t  the orthogonal projection _F0 of F o on an 
(m-1)-dimensional  normal plane to this direction would satisfy Cp(F0)>0 for 
every f l < m - 1 ,  contrary to the fact  tha t  C~(F0)=0.1 This shows tha t  g and all 
the partial  derivatives of all orders of g have the property (AC). As all the partial 
derivatives of order h of g are in L~oc we can use the result by  Deny-Lions [7, p. 315] 
and Kryloff 's  theorem as in 1 ~ to conclude tha t  g defines a distribution belonging to 
BLh(L~oc ). In  particular we obtain tha t  9 and all the partial  derivatives of g of orders 
less than  h are in L~oc too. 

3 ~ . As we in the extension problem only are interested in continuous functions we 
~*~L ~ F0), p ~> 1, of functions in the following introduce two classes Ah(Lror ~ht  lor 

ways: Ah(L~or is the class o//unctions / defined and continuous everywhere which-- 
considered as distributions---belong to BLh(L~oc). ~4~(I_nvo~, Fo) is the class o//unctions / 
defined and continuous everywhere in R m, infinitely di//erentiable on ~Fo, and such 
that all the partial derivatives o / /o /orders  less than or equal to h belong to L~or 

From the discussion in 2 ~ we conclude tha t  A~(LlVor F0), with C~(F0)=0 for some 
< m - 1 ,  is a subclass of Aa(L~or 

4 ~ We shall need the following fact: Let  /0E S(Fo). I f  there exists a function 
/e,~*(/~Voc, Fo) (or Ah(LlVoc)) coinciding pointwise wi th /0  on Fo, then there exists a 
function/*eJ4~(L~oo, Fo) (or Ah(L~oc)) which is zero outside a compact set and coin- 
cides pointwise wi th /o  on F 0. 

In  fact, as the func t ion /*  we only have to choose/~,  where ~ is identically 1 on 
F 0, infinitely differentiable and has a compact support. 

6. A n  extension theorem 

We need the following lemma: 

I,e.mma 4. Let 0 < ~ < fl < m. Let ix be a positive measure with ix( R m) < oo and suppose 
that u~ is bounded. Then we have 

u ~ e L  v i / 2 ~ < p =  f l _ ~  (6.1) 

and ~ r < ~ < 2. (6.2) u~EZ~o~i[ l~<p m -  

More exactly, /or p > 1 we have, i/ a = #(Rm), 

m - ~  (6.3) 

and /or every sphere S with radius r, we have 

m - -  6~ 

Ilu~llLp(s,<~M~(a,r).{supu~(x)} (~-1)1v, i / l < p < ~ _  < 2 .  (6.t) 

Ml(a ) is a constant depending/urther on m, p and cr and M2(a,r ) a constant depending 
/urther on m, p, ~ and ft. 

1 Compare for instance Fros tman [9, p. 91] and Brelo~ [2, p. 330]. 
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For  a proof of the lemma, based essentially on HSlders inequahty,  we refer to du 
Plessis [15], Deny  [6] and Fuglede [10]. A proof based on funct ion theory  is given in 
Carleson [4, p. 61 and p. 80] for some special values of r162 and ft. The method  is, 
however, applicable in the general case, too. 

Theorem 3. Let F o be a compact set, p >~ 1 and h a positive integer. Suppose that either 

C~(Fo)=O /or c r  where m-ph>~O and p>~2 (6.5) 
o r  

C~(Fo)=O /or some ~ satis/ying ~ < m - p h  where m - p h > O  and l ~ p < 2 .  (6.6) 

Then every/unction belonging to S(Fo) can be extended to a/unction which is defined and 
continuous everywhere in R "~ and infinitely di//erentiable on CFo and such that all the 
partial derivatives o/ orders less than or equal to h o/ the extended /unction and the 
extended/unction itsel/ are in 1.2. 

Proo/. We first t rea t  the  case a > 0 and  assume tha t  either (6.5) or  (6.6) is valid. 
Suppose t h a t / 0  is a funct ion f rom S(Fo). According to w 5, 4 ~ it  is enough to  prove 

tha t  there is a funct ion from/4~(LFoo, Fo) coinciding pointwise wi th /0  on F 0. 
As C~(Fo)=0 there exists an  absolutely continuous measure a, constructed as in 

Theorem 1, with compact  support  such tha t  u~ is continuous everywhere, infinitely 
differentiable on CFo, u I"1 is bounded  and  u~(x)=/o(X ) for every XeFo. We shall 
prove tha t  u~ E A~(L~oo, F0). An  easy consequence of the properties of a is t h a t  

f , DSug(x)= /or every xeCFo, (6.'/) 

/or all sequences s with I s I <~ h i / ~  + h < re. The index x in D~ denotes derivation with 
respect to x. 

(6.'/) yields, if = h , ~ + h < ~ ,  

IDSu~,(x)l<.<MuLS~h(x) /or every x e C F o ,  (6.8) 

where M is a constant  only depending on h, ~ and  m. As ul~ ~ is bounded  we can, by  
means of (6.8) and L e m m a  4 used with j~ = ~ +h ,  conclude t h a t  all the derivatives of 
order h of u~ belong to L~or we use (6.1) if (6.5) is valid and (6.2) if (6.6) is valid. 

u~E Ah(Lloo, Fo) , and  so the F rom the discussion in w 5, 2 ~ we finally conclude t h a t  " * v 
theorem is proved if a > 0. 

The case a = 0 is t rea ted  analogously to the case a > 0, by  using the following lemma 
instead of Lemma 4: 

Lemma 5. Let 0 <fl < m. Let/x be a positive measure with compact support. I /ei ther 
I0(#) is finite and 2 <~p=m/fl or 1 <<.p<m/fl, then u~EL~or 

The proof of Lemma 5 is analogous to t h a t  of Lemma 4 (see Fuglede [10]). 

7. A converse of  Theorem 3 

Theorem 3 gives a positive solution of our  extension problem with the extended 
function in the class M~(L~or F0) if F 0 satisfies (6.5) or (6.6). The following theorem 

p gives a converse of Theorem 3 as 14h(Lloo, Fo) is a subclass of ~4h(L~o~ C~(Fo)=0 
for some :r < m - 1: 
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Theorem 4. Let F o be a compact set. A su/ficient condition/or the existence o /a /unc-  
tion in S(Fo) , which cannot be extended to a/unction in Ah(L~oc), is that either 

C~(F0)>0 /or some o~ satis/ying cr  where m-ph>~O and p > 2  (7.1) 

or C~(Fo) > 0/or  or = m - p h  where m - p h  > 0 and 1 ~<p ~ 2. (7.2) 

In  order not to encumber the proof with details we shall not t reat  the case when 
m - p h  =0,  1 ~<p ~< 2. I t  is, however, no difficulty to modify the proof which we shall 
give to obtain: The theorem is also true in the case when 

Co(Fo) >O, m - p h = O ,  l~<p~<2. (7.3) 

An inspection of the Theorems 3 and 4 shows tha t  they give a complete solution 
of our extension problem when p = 2 but  not when p 4= 2. 

Theorem 4 is proved in w 8. For the proof we need integral representations of those 
functions in BLh(L~or which are zero outside a compact set. To deduce these we 
use the following formulas (Schwart z [17, par t  I ,  p. 47]): I f  Aa is the Laplace operator 
iterated h times, h >~ 1, then we have, in the distribution sense, if (~ is the Dirac 
measure and M 1 and M 2 are certain constants only depending on h and m, 

M 1.Ahlx[  ~h-m =(~ i / m - 2 h > 0  or m - 2 h < 0 ,  m odd, (7.4) 

M 2 �9 Aa(] x ]2h- m log Ix ]) = ~ i / m  - 2h ~< 0, m even. (7.5) 

We can write Ah = ~ a ,  DSD ~, (7.6) 

where as are constants and the sum is extended over a number  of multiindices s 
with Is I =  h. I f  / e  BLh(L~oc ) and / has compact support  we obtain, by  means of 
(7.6), in the ease when (7.4) is valid, 

/=6~e /=  M l & h l x p  -'n ~e /~- Mi  ~ a,D'-)e DS]xl2~-m ~e /=  M~ ~.a,DS[x[ 2h-m ~r D~/. 

The distributions D~[xl 2a-'n and DS/ are functions and DS/ has compact support. 
The convolution DS[x] 2a-m-)eD~/can consequently be written as an integral and as 
D~/EL', we get: 

I / / E  BLa(LI~oo), / has compact support and the/unction Ics. a is defined by b~.a(x ) = 
DS[xl 2h-m, then there are/unctions g~ with compact supports, gsEL ~, and constants b~ 
so that 

](x) = ~  bs~lcs.h(x-y)g,(y)dy a.e., i / m - 2 h > 0  or m - 2 h < 0 ,  m odd. (7.7) 
,] 

Analogously we get by (7.5)--with other values on the constants b~--i/ the /unction 
* x = D S ( I x l 2 ~ m l o g l x  b* h is defined by k~. h( ) ]), 

/ .  
l(x) 8.h(x--y)gs(y)dy a.e., i/ m- -  2h< O, m even. 

J 
(7.8) 

The sums in (7.7) and (7.8) are extended over a number o/multiindices s with Is[ = h. 
In  the proof of Theorem 4 we eilso need the following lemma: 
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Lemraa O. 1 Let K be a kernel. Suppose that g~, i = 1, 2, are/unctions having the property 
that/or every e > 0 there exists a Borel set E with C~(E) < e  such that the restrictions o/ 
gl and gr to CE both are continuous. I] we,/urthermore, assume that gl(x) =g2(x) a.e. and 
that the set o/points x where g l (x )4  g~(x) ks a Borel set, then gl(x) =g2(x) except on a set 
o/ K-capacity zero. 

Proo/. Let  E 1 be the set of points x where gl(x)~g2(x) and suppose tha t  C~(E~)= 
a >0 .  Choose e, 0 <e  < a ,  and let E be a Borel set with C~(E) < e  such t h a t  the restric- 
tions of gl and g2 to  CE both  are continuous. We further  choose a compact  subset 
F of E 1 \ E with C~(F) > a - e .  Le t  F~, for n = 1,2 ..... F . ~  F ,  be the union of finitely 
m a n y  closed spheres having  radii ~<r,, where r,-->O when n-->oo, and  centres be- 
longing to F and let F* consist of the set of points s i tuated a t  a distance ~<r~ from F , .  

I f  ~u, is a capaci tary  distr ibution belonging to the kernel K and  F , ,  then 

u~-(x) < A.  {0~(F.)}-~, (7.9) 

where A is the constant  in (1.4). Let rpn , ~ef.dx = 1, be a non-negat ive funct ion which 
is infinitely differentiable and  let S% be a subset of S(0, rn). We define yJ~ by  
v/. =cf.-)e/an. yJndx is a positive measure with tota l  mass 1 and S ~ c  F*. Since E 1 has 

Lebesque measure zero there exists for every ~ > 0 a closed set H.(~), H.(~) c F* \ El ,  
such t h a t  the restriction of the  measure yJndx to H.(~]) has to ta l  mass >/1 - ~ .  Hence 

IK(~)n)/~ (1 __~)2 {CK(Ha(~))}-I/~ (1 _~)2 {CK(.~n* \ j~1}-1 7_.+0 gives 

IK(~n) ~ (C1c(F*n \ El)} -1. (7.10) 

On the other  hand  we have by  (7.9) 

u~"(x) = K * ~ .  -.x- ,u,,Cx) = ~ .  * u p ( x )  < A .  { O x ( F . ) }  -~, 

which gives IK(~,)<.A.{OK(F,)}  -1. This inequali ty and (7.10) give 

C~(F*\E1) >i A- IC~(F. )  >1 A-1Cx(F) > A -1" (a - e). 

By choosing e so small t ha t  A - l ( a - e ) > e  we get  CK(F* \ El)>CK(E) as CK(E)<e, 
i.e. the set (F* \ El) \ E is non-empty .  

Let  x~E (F* \ E l ) \  E. According to our construct ion we have  

g l ( X . )  = g2(Xn), n = 1,2 ..... and  ( 7 . 1 1 )  

There exists a point y,  EF such that ] x , - y , [  ~<2r,, n = 1 , 2  ..... (7.12) 

We now prove the existence of a point  x o f rom F where gl and  g2 coincide which 
gives a contradict ion to the fact  t ha t  F c E 1. We suppose t h a t  the sequence of points 
(x,} converges to a point  x 0. (If this is no t  the case, we choose a convergent  sub- 
sequence.) F rom (7.12) we conclude tha t  (y,} converges to  x 0 too. Hence xoEF. 
We now use the estimate 

I gl(Xo) - gu(Xo) l < ]gz(Xo) - gl(Xn) I -~ [g l (Xn)  - -g2(xn)  ] + I - g .(xo) I �9 

z A special case of this lemma is given in Deny and Lions [7, p .  353] .  

72 



ARKIV FOR MATEMATIK. B d  5 nr 5 

The second te rm of the right member  is zero according to (7.11). As xn and x o belong 
to CE and the restrictions of 91 and g2 to CE are continuous, we conclude tha t  the 
two remaining terms of the right member  are arbitrarily small when n is large. 
This proves tha t  gx(Xo)=g2(x0) which gives a contradiction to the fact tha t  xoEF.  

8. Proo f  o f  Theorem 4 and a theorem on harmonic  func t ions  

The idea of the proof of Theorem 4 is as follows: We start  by  observing that,  due 
to w 5,4 ~ we only have to prove the existence of a function ]o E $(Fo) which cannot 
be extended to a function in ~4h(L~or with compact support  if (7.1) or (7.2) is satisfied. 
But  every function in ~4h(/~Voc) is--considered as a dis t r ibut ion--an element in 
BLh(Lroc ). This means tha t  every function in Mh(LlVoc) with compact support  can be 
written on the form (7.7) or (7.8). Following the method of the proof of Theorem 2 
we shall deduce moduli of continuity of the right members of (7.7) and (7.8) having 
properties analogous to those of the modulus of continuity of the potentials in the 
proof of Theorem 2. This will also show tha t  the right members of (7.7) and (7.8) 
have such properties tha t  we can use Lemma 6 to conclude tha t  every function in 
Mh(Lroo) with compact suppor~ has a representation (7.7) or (7.8) valid not only a.e. 
but  everywhere except on a set of K0-eapacity zero, where the kernel K 0 is defined 
below. (Compare (8.1) and (8.17).) The choice of K 0 is such tha t  C~o(Fo) > 0  and this 
will enable us to infer, from Lemma 3, the existence of a function [0ES(F0) which 
cannot be extended to a function in Mh(/~Vor if (7.1) or (7.2) is valid. 

The case 1--<19--<2. We star t  by  treating the case 1 ~<19~2 and we suppose conse- 
quently tha t  (7.2) is true for the given set F 0 and given values on h and 19, 1 <<-19 <~2. 
Since C~(Fo)>0 for ~ = m - 1 9 h  there exists a kernel K 0 satisfying 

lira Ko(r ) r z -v~  = co, CKo(Fo) > O, lira Ko(r ) > 0. (8.1) 

As CK.(Fo)>0 we can choose a measure v 0 with 

v o >1 O, vo(R m) = 1, S,0c Fo, IK~ < cr (8.2) 

We formulate the information which we need about  the right members of (7.7) and 
(7.8) in the following lemma: 

Lemma 7. Let the compact set Fo, the kernel Ko, and the measure v o satis/y (8.1) 
and (8.2) and sulx2aose that 19 and h are given numbers, h a positive integer, with m -19 h > 0, 
1 <19<2. Using the notations o/(7.7)  and (7.8) we de/ine the/unct ion vh by 

vh(x)=~bsfks.~(x-y)g~(y)dy i/ m - 2 h > 0  or m - 2 h < O , m  odd, (8.3) 

by vh(x) ~ (8.4) and = ~. b~ k* .h (x -y )gs (y )dy  i / m - 2 h < ~ O ,  m even, 
.I 

at those 1points where the right members are well de/ined. The sums are extended over the 
same multiindices s as in (7.7) and (7.8), i.e. over a number o / s  with I sl = h; b s are 
constants and gs /unctions in L v with compact supports. Then there exists a non-negative 
/unction t h de/ined in the interval r > 0, limr+0 th(r ) = O, only depending on m, h and K o 
such that the/ollowing assertion is true: 
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For every e > 0  there exists a Borel set E 1 with CK~ and a constant M only 
depending on ~, m, h, Ko, bs and g~ so that 

[vh(xl) -vh(x2) l ~< Mth(Ix~-x2 l) /or all x~,x 2 E OEx. (8.5) 

Furthermore, there exists a .Borel  set E2 with %(E2)<~ such that (8.5) is valid with 
E 1 replaced by E 2. 

We can easily finish the ~aroof of Theorem 4 in the case 1 ~<p~<2 if for a momen t  
we suppose t ha t  Lemma  7 has been proved. As we have ment ioned  above i t  is enough 
to prove the existence of a func t ion /0E S(F0) which cannot  be extended to a funct ion 
in ~t~(Lro~) with compact  shpport.  To prove this we first s tudy  those funct ions in 
jta(/n~oo) which have compact  supports.  Let  / be such a function.  Then  ] has a represen- 
ta t ion  (7.7) if m - 2h > 0 or m - 2h < 0, m odd, and  a representa t ion (7.8) if m - 2h ~< 0, 
m even. This gives an  integral  representa t ion of / val id a.e. Bu t  since / is cont inuous 
we can use (8.5) of Lemma  T and  Lemma 6 to conclude t h a t  this in tegral  representa- 
t ion of / is valid everywhere except on a set of K0-capacity zero. 1 By  means  of the 
last  sentence of Lemma 7 we infer, as the set where the integral  representa t ion of 
/ is no t  t rue has K0-capacity zero and  accordingly also r0-measure zero: For  every 
e > 0  there exists a Borel set E, E c  Fo, % ( E ) < e ,  such that ,  if th is the funct ion oc- 
curring in  Lemma 7, t hen  

ll(~,)-t(~)l <Mt.(l~,-=~l) /or all xl ,x~ e F o -  E.  (8.6) 

Using Lemma 3 and  (8:6) the proof is now completed in  the same way as we 
finished the proof of Theorem 2 b y  means  of Lemma 3. 

I t  remains  to prove Lent lna  7. 

P r o o / o / L e m m a  7. We first deal with the case p = 2. According to our  assumptions  
we have m -  2h > 0 which means  t h a t  the case when vh is defined by  (8.4) does no t  
occur. The kernel K 0 has when p = 2 the properties 

l im Ko(r)r m-2h = co, CK.(Fo) > 0, l im  Ko(r ) > O. 
r--->O r--c, 

(8.7) 

Let q be a funct ion  defined in  the ' i n t e rva l  r > 0 satisfying 

q is non-increasing, non-negative and continuous, q(r) ~ Alq(2r  ) ]or every r >0,  
A 1 constant, lira q(r) = oo. 

r - - ~  

(8.8) 

We define the func t ion  g by  

g(Y) = ~ Ig,(Y) I, 
where the sum is ex tended over those funct ions g~ which occur in  (8.3). F ina l ly  we 
introduce the funct ion  wh: 

(q(] x - y I) g(Y) 

x Due to the degree of arbitrariness in the choice of K 0 in (8.1) it is, in fact, easy to realize, 
that the integral representation of / holds true except on a set of g-capacity Zero with ~ = m - ph. 
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The reason for introducing the funct ion wh is the following: Since k s, h(x) = D s I x l 2h-m, 
I sJ = h, we have 

tk~.h(x) l <~ M* Ixth-". 1 (8.9), 

This and (8.3) show t h a t  v~ is majorized by  a potent ial  generated by  the kernel 
r h-re. Bu t  wh is a potent ial  generated by  the kernel rh-m.q(r). Since q(r) tends to  
infinity as r tends to zero we m a y  proceed as in the proof of Lemma 2 to  show an 
inequali ty of the type  of (8.5) for vh, valid for points x I and  xs f rom a set of points 
where wh is majorized by  a certain constant.  We star~ by  performing this and then 
we shall finish the proof of Lemma 7 in the case p = 2 by  showing tha t  wh is bounded 
except  on a set having K0-capacity and v0-measure less t han  a prescribed positive 
number,  if q is properly chosen. 

We accordingly suppose tha t  wh(x~) ~<a, i = 1, 2, where a is a given positive number.  
As in the proof of Lemma 2 we pu t  Ix1-xg. I = r  0 and introduce the open sphere B 
with centre 2-1(xl +x2) and radius 2-1ro+rl,rl >r0, and  write 

Using (8.9) we obtain  I IJ < a. M {q(r o + rl)} -1. 

I f  yEC~q we obtain, by  using the  mean  value theorem, if Isl = h, 

] ks. h(xl - y)  - ks. h(x~ - y)  J < M (~1 - -  r 0 )  i n -  h +1" 

As in the proof of Lemma 2 we now realize tha t  we can choose r I depending on r 0 
and find a funct ion th, defined in the interval r > 0, th(r)-->O when r-->0, only depending 
on m, h and  q, such t h a t  

[va(xl)-va(x2) ] <~ (a+l)Mta(]Xl-X2]) i/ wa(xz) ~<a, i = 1,2. (8.10) 

The lemma follows, in the case p = 2 ,  by  means of (8.10), if we prove t h a t  it is 
possible to  choose q only depending on K 0 such that ,  for every e > 0, there exists a 
constant  a with wa(x ) <<.a except on a set of K0-capaci ty and  %-measure less than  ~. 
But  this is a consequence of the assertion t h a t  we can choose q only depending of 
K 0 such that ,  if G~ denotes the set where wh(x ) > a > 0, then 

CK0(Ga) < M - a  -2 Jl g Ill*. (8.1 l) 

To prove this last assertion we consider an  arbi t rary  positive measure ~u with 
/t(R m) = 1, S ,  c G~. We have, by  Sehwarz's  inequality, 

a~ < ( fwh(x )dg (x ) ) '= f  r,( )[ r q('x-Y') d#(x))dy} 
U y 

<llgll ,. f fd  . . . . .  r qIl: -yl)qIl -yll JJ 
t I n  t he  proof  of this  l emma M denotes  a c o n s t a n t - - n o t  necessarily the  same each t ime it  

occu r s - -on ly  depending on the pa ramete r s  shown for the  cons tan t  M in L e m m a  7. 
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We define H by  H(x,z)=f q(lx-Yl)q(lz-Yl) dy 

and shall prove tha t  we can choose q, satisfying (8.8) and only depending on Ko 
such tha t  

H(x,z) <~ MKo(lx-z[ ). (8.]2) 

In  fact, if for a moment  we suppose tha t  this has been proved we obtain from our 
est imate of a ~, 

a < II g 15. M .  I=~ 

Hence a ~ < M .  ]] g 6]~,. {CK0(G~)} -1 

which yields (8.11). 
We now prove the assertion leading to (8.12). If  we pu t  z - x = t  we obtain,  by  a 

subst i tut ion in the integral defining H(x, z), 

H(x,z)= (q(lYl)q(lY-tl) 
j i W q - y : i U ,  du �9 

We denote  this expression by  Hi ( t )  and est imate Hi ( t )  by  the following divi- 
sion of the  integral, where D is the  set of points y satisfying 

lul > I ~__1, ly -  tl > I~1 and lul < 21tl, 

By using q(r) ~ A 1 q(2r) we obta in  

I < 2m-hAaq(lt])ltlh-"f ~ul<.~ lyi~-" q(lyl)dy 

/'l~l 
< MAxq([ t ] ) l t  p-mJo #-1 q(r)dr. 

For  I I  we obtain  the same est imate as for I.  

L dy 
III<2m-n{q(It[)}2" u'~>~i~ilUl 2m-2h <MItPh-={q(Itl)}=' 

as m -  2 h > 0 .  

IV  <. A~. 22m-2h {q(I t I)} 2" I t  12h-2m fDdY ~< M .  A~. I t  12h-m {q(I t I)} ~. 

These est imates show tha t  (8.12) is t rue  if we can choose q satisfying (8.8) so 
tha t  

q(i~l).l~i_,,l,,,,.,,.~q(r)dr-'" + ~q(I ~1))'~ ~ : , ( i  ~i). I ~1 m-~, I t l .0 .  
J o  

76 



AllKIV FOR MATEMATIK. Bd 5 nr 5 

But this is a consequence of the facts t ha t  m - 2 h > 0 ,  limr_,0 Ko(r)r m-2h= oo, 
l im,_~ Ko(r ) > 0 and, for instance, the fact  t ha t  

l~: [ -~Jo rh-~ q(r) dr < M 2 q([ ~ 1), (8.13) 

if q satisfies (8.8) with A 1 sufficiently close to 1. M 2 is a constant  depending on A 1 
and h. (8.13) is proved by  dividing the integrat ion interval (0, ]~1) by  the points 
2-"1 1, . . . .  

Hence Lemma 7 is proved in the case p = 2. 
We now prove Lemma 7 when 1 <~p < 2. I n  this case it m a y  occur t ha t  m - 2h ~0 .  

Consequently we also have to consider the case when the function vh is defined by  the 
formula (8.4). 

We let q be a function satisfying (8.8) and introduce the functions g and wa in the 
same way as in the case p = 2 .  (8.10) is, of course, still valid, when m - 2 h > 0  or 
m - 2 h < 0 ,  m odd, i.e. when vnis defined by  the formula (8.3), bu t  we can also deduce 
the same formula when m-2h<~O, m even, i.e. when va is defined by  the formula 
(8.4). I n  fact, when m-2h<~O, m even, and m - h > O  it is easy to prove tha t  the 
estimate (8.9) holds also for k* i.e. t ha t  8, h 

I l=h. (8.a4) 
Analogously to the proof o f  (8.10) when vh is defined by  (8.3) it is possible to show, 
by  means of (8.14), the existence of a funct ion ta, defined in the interval r > 0 ,  
lira,_,0 th(r) =0,  only depending on m, h and q such tha t  (8.10) is t rue also when vh is 
defined by  (8.4). 

An  inspection of the proof when p = 2  now shows tha t  the lemma follows in the 
case 1 < p < 2  if we prove tha t  we can choose q only depending on K 0 such tha t  the 
following subst i tute of (8.11) is valid, 

CKo(Ga) < Maa -p ]1 g H~p, a > 0, (8.15) 

where G~ denotes the set of points x where wn(x ) > a and M a is a constant  depending 
on the same parameters  as the constant  M in (8.5) and on the constant  A in (1.4). 

To prove (8.15) we consider, as in the proof of (8.11), a positive measure ft,/~(R ~) = 1, 
SucG~. B y  using HSlder 's inequali ty twice we have in the case l < p < 2 , 1  if 
p' = p(p - 1)-1: 

aW < wn(x)d#(x) <II~.L - -  - ~ n  d/x(x) dy 
JtJIx-yl - 

=]]9]]~'~ x - y ]  " . ] x - y ]  ~" .q(]x-y])dla(x ) dy 

< Ilgll[,{ sup u,~_,~(y)F '-~ z -y lT-  .q( lx-y l )~dlz(x)  dy. 
y~Rm 

x As to the latter use of H61der's inequality, compare [15, p. 130]. The case p = 1 requires a 
simple special treatment which we omit. 
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Defining q~ by  ql(r)={q(r)} ~ we get 

f{f I~ -y U-~ .q ( I  ~ - y ])~dp(x)} ~ dy 

~ ~ d "x" d " " ~ q~(Ix-Y]) "qs(Iz-Y]) ", = ) j  t,t ~ ~ , t~!  ~ . . . . .  ~ au. 

I f  we replace h by  ph/2 in the proof of (8.12) we realize t h a t  we can choose q 
sat isfying (8.8) such tha t  the last integral above is majorized by  M .  I K,(p) where 
K 0 satisfies (8.1). Hence 

aV'< M II g I1~," s u p  { u ~ _ v h ( y ) }  p'-~" IK.(/x). 
y q R  m 

(s.16) 

Now let F be an a rb i t ra ry  closed subset of Ga. For  p we choose a capaci tary 
distr ibution belonging to the kernel K 0 and  the set F .  This gives 

sup u~-vh(y) <~ M sup u~.(y) < M"  A .  {C~.(F)} -1, 
y e R m  y ~ B m  

where A is the constant  in (1.4). Consequently (8.16) yields 

aW < MAY'-2 II g IIVL, {CKo(F)} -v'+1, 

i.e. CK,(F) < M , a  -v ]] g ]]~p. 

Since F is an a rb i t ra ry  closed subset of Ga we conclude t h a t  (8.15) holds true. 
By  t h a t  Lemma 7 is proved and  accordingly also Theorem 4 in the ease 

l ~ < p < 2 .  
The case p >2 .  We now prove Theorem 4 in the case p > 2 and  we conse- 

quent ly  assume tha t  (7.1) is valid. According to  (7.1) we can choose e 0 such 
tha t  

C~(Fo) > 0 ,  O t o = m - p h + e  o, : % < m ,  % > 0 .  (8.17) 

Fur thermore,  we choose a positive measure v0 having the properties 

~o ~ O, %(R m) = 1, S~o c FO, I~(VO) < cr (8.1s) 

The proof is now analogous to  the proof of the  theorem in the case 1 ~< p ~< 2 
if we replace the kernel K 0 by  r -~" and use the following lemma instead of 
Lemma 7.1 

Lemma 8. I ~  the compact set Fo, the number a o and the measure v o satisfy (8.17) 
and (8.18). Suppose that p and h, h a positive integer, are given numbers with 
m - p h  >~ O, p > 2. I f  we define the function va by the same formula (8.3) as in Lemma 
7, then exactly the same conclusions as in Lemma 7 are true, word by word, concerning 
va if we replace the kernel K o occurring in Lemma 7 by r -~~ 

1 Observe that the case when the function v h is defined by (8.4) does not occur when p > 2 
since m -  2h > 0 if p > 2, due to our assumption (7.1). 
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The proof of Lemma 8 is analogous to the proof of Lemma 7 for the case 
p = 2. The differences are that  the function wh which is used in the proof of 
Lemma 7 now is defined by 

(g(Y) dy, w (x) = j[V - V = m -  h + > 0, 

where g is defined in the same way as in the proof of Lemma 7, and that  we, 
instead of (8.11), use the fact that  if el is chosen small enough and Ga as usual 
denotes the set of points x where wh(x)>a > O, then 

C~,(Ga) < Ma-V H g HvL~ �9 

This fact is proved by using formula (6.4) in Lemma 4 and as the result can 
be extracted from du Flessis [15, w 5] and Fuglede [1O, w 4] we Omit the details. 

By that  Theorem 4 is completely proved. 

We now use Theorem 4 to prove the following theorem on harmonic functions. 

Theorem 5. Let U be the olaen unit sphere in R m, m >12, and F o a closed subset 
of the boundary of U. Then Cm_2(Fo)=O i/ and only if every /unction f0e$(F0) 
van be extended to a /unction u o which is harmonic in U, continuous in the closure 
of U, has a finite Dirichlet integral 

dx< (8.19) 

and satisjies Uo(X ) =/0(x) /or every x E F o. 

Proo]. One half of the theorem has been proved in w 2, Remark 4. To prove 
the other half we assume that  Cz_2(F0)>0 and assert that  there exists a func- 
tion ]0 E S (Fo) which cannot be extended to a function u 0 having the properties 
stated in the theorem. 

Let u be a function which is continuous in the closure of U, harmonic in U 
and such that  (8.19) holds with u 0 replaced by u. We define the function u* by 

[ u (x ) i f  I xl < 1, 

Our assertion clearly follows from Theorem 4 if we prove that  u* E~l(L~oc). We 
first observe that  all the partial derivatives of the first order of u* are in/,12or 
Furthermore, it is easy to realize tha t  u* has the property (AC). In  fact, if a 
and b are given finite numbers, we have on almost every line with the direc- 
tion x ~ 

. ~ \ Ox ~ ] dx~ < ~ , ,  

which proves that u* is absolutely continuous on almost every line with the 
direction x ~. 
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Since u *  has  the  p r o p e r t y  (AC) and  al l  the  p a r t i a l  de r iva t ives  of the  f i rs t  
order  of u* are  in  L~or we conclude (compare  D e n y - L i o n s  [7, p. 315]) t h a t  
u* E Ax(L~oo), which proves  our  theorem.  

9. The case p = 1 

Theorem 3 gives, for p = 1, a resul t  in one d i rec t ion  of our inves t iga t ion  of 
the  extens ion  p rob lem in the  ease when C~(Fo)=0 for some g < m - h ,  and  
Theorem 4 a resul t  in t he  o the r  d i rec t ion  when  C~(F)>0 for :r = m - h .  W e  now 
give some add i t i ona l  resul ts  when C~(Fo) = 0 for cr = m - h b u t  C~(Fo) > 0 for eve ry  
g < m - h .  

We s t a r t  b y  the  following example1: 

Example 1. Let  F o be the  set  of po in t s  x = ( x  1 . . . . .  x m) with  x 1 = 2  -n for 
n = 0 ,  1 ,2 ,  ... or x 1 = 0  and  0~<x*~<l, i = 2  . . . . .  m. W e  choose a sequence {a~}~ 
such t h a t  ~ a ,  is convergent  and  ~ [ a ,  1= oo and  define a func t ion  /o G S(Fo) 
b y  pu t t ing ,  for n = 0 ,  1 . . . . .  

/o(X) = ~a~ i/ xEFo, x 1 =2 -~ 
0 

oo 

and  /o(X) = ~ ai i/ x E Fo, X 1 = 0 .  
0 

I f  / is an  ex tens ion  of /0 to  R m which  is cont inuous  everywhere  a n d  inf in i te ly  
d i f ferent iable  on C F0, we obta in ,  for 0 ~< x ~ ~< 1, i = 2 . . . . .  m, 

~ . . . . .  x~! d x , =  -'0~ 1" i> ~[an+ll 
O x l  2 - n - 1  0 

and  hence f i ' " f l  O/(xl'-""Xm)[ dxl ""dxm=~176 
~x t 

The given set F 0 is thus  an  example  of a compac t  se t  which has  a - c a p a c i t y  
zero for ~ = m - 1 ,  if m >~2, is enumerab le  if m = 1, a n d  has  t he  fol lowing pro-  
perry:  There  exis ts  a func t ion  /0ES(F0)  t h a t  cannot  be e x t e n d e d  to  a func t ion  
which is cont inuous  everywhere ,  in f in i te ly  d i f ferent iable  on CF0 and  such t h a t  
all  the  pa r t i a l  de r iva t ives  of the  f i rs t  o rder  of t h e ' e x t e n d e d  func t ion  are  in  Lloc. 

We use the  above  example  to  p rove  the  following theorem:  

Theorem 6. Let h be a positive integer, ~ = m - h  and o~ >10. Then there exists a 
compact set Po which satisfies C~(Fo)= 0 i/ o~ > 0  and is enumerable i/ o~=0, and 
a /unction /o E S(Fo) that cannot be extended to a /unction / which is continuous 
everywhere in R a, in/initely d#/erentiable on C F o and such that all the partial 
derivatives o/ order h o / /  belong to Lloc. 

Proo/. F o r  h = 1 the  t heo rem is a consequence of E x a m p l e  1. Hence  we assume 
t h a t  h > 1. 

1 The idea to use an example of this kind has been proposed to me by Dr. G. Aronsson. 
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P u t  m* = m - ( h -  1) and let R m* be the m*-dimensional subspace of R = which 
is defined by  the points (x 1 . . . . .  x ~*, 0 . . . .  ,0)  where x I . . . . .  x ~* varies arbitrarily.  
According to  Example  1 we can then choose a compact  set F 0, F o c R  =*, which 
satisfies O=(F0)=0 if = > 0  and is enumerable if = = 0 ,  and a funct ion )t o E S(F0) 
which cannot  be extended to a funct ion g, which is defined and  continuous in 
R m*, infinitely differentiable on R m * - F 0  and such t h a t  

" " J ~ l Oxl dxl  ... dx'n* < c~ 

for all finite values of a and b. 
Suppose t h a t  we have chosen F0 and )t0 as indicated and  tha t  there exists an 

extension )t of )t0 having the  properties s ta ted for the funct ion )t in the theorem. 
We shall prove t h a t  this gives a contradict ion by  s tudying the derivative 

Oxl 0X m*+l ~xrn*+2 . . .  008 m" (9.1) 

For  every  choice of x '  . . . . .  x m-z such t h a t  the line th rough  the  point  (x', ..., x m-' ,  0) 
parallel to  the x~-axis does no t  intersect  F 0, we get, 

f r o t h - .  1 m - 1  t" - -  . ~ l ~ x , . _ , x _ _  -'~J ,l~ O~-')t(x' . . . . .  x " - ' , t o )  a~-')t(x I . . . .  x~ - l , 0 )  
0 o x l o x m * + I  . . -  axm - "  Ox l~xm*+l  . . .  a xrn-1 0 x l  a x m * + l . . .  O~ " (9.2) 

From the discussion in w 5, 2 ~ we conclude tha t  for almost  all t o 

" ' "  f I ~ ~ ~  d x ~ ' " d x " - ~ <  ~ 
a J a [  t /  v ~  

(9.3) 

for all finite values of a and  b. (9.2) is valid for a lmost  every  line parallel to  
the xm-axis as C=(Fo)=0,  o ~ = m - h  and h > 1. Hence we obtain  from (9.2) and 
the assumpt ion on )t t h a t  (9.3) is t rue with t o = 0  for all finite values of a and 
b. I f  h =  2 this gives a contradict ion to the choices of F 0 and )t0. I f  h > 2  we 
repeat  the  above procedure with (9.1) replaced b y  the second term of the r ight 
member  of (9.2). An  induct ion a rgument  finally shows t h a t  

f: f:l . . . .  x , 0  . . . . .  0 )  dx~*< co 
0x 1 

for all finite values of a and b which once more gives a contradict ion to the 
choices of F 0 and  )t o. This proves the  theorem. 

The type  of sets F 0 used in Example  1 and  in the proof of Theorem 6 has 
a ra ther  complicated structure.  As a comparison we consider a case when F 0 
has a simple s tructure and  still satisfies C=(Fo)= 0, a = m - h .  

E x a m p l e  2.1 Consider the case m = 2 and let F o be the boundary o)t the open un i t  
circle U. T h e n  the )tollowing assertions are true: 

z T h i s  e x a m p l e  is due  to P ro fesso r  L.  Carleson.  T he  e x a m p l e  is re la ted  to  r e su l t s  b y  Gagl ia rdo  
[12]. 
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1 ~ Every /unction /oES(F0) can be extended to a /unction / which is de/ined 
and continuous everywhere in R z, in/initely di//erentiable on ~ Fo, and such that the 
partial derivatives of the /irst order o/ / are in L:. 

2 ~ Let G be a non-decreasing postitve /unction de/ined in the interval r>~O 
satis/yin9 

lim G(r) = oo. (9.4) 
r~o r 

Then there exists a /unction /o E S (F  o) that cannot be extended to a/unction / which 
is continuous in the closure o/ U, in/initely di//erentiable in U and satis/ies 

ff G(I grad /[) dx ~ dx ~ < ~ .  (9.5) 
U 

Proo/o/  1 ~ Le t  /0 be a given function from S(Fo). We introduce polar coor- 
dinates (r, 0) and consider /o as a function of 0. We write /o on the  following 

�9 form, where ~0n, for n = 1, 2 . . . . .  is an infinitely differentiable funct ion of one 
variable with period 2zr and maxo<0<~. ]q0n(0) I ~< M"  2 -n for a certain constant  M, 

/o(0) = ~ Cn(O). 
1 

P u t  max0<0<2~ I~0'n(0) [ = an, n = 1, 2 . . . . .  and choose {en}, 1 > e~ > 0, limn-,oo e. = 0, 
such t h a t  ~ 0  en an < co. 

We star t  by  extending /o to  U. Let  {qn} be a sequence of functions defined 
in the interval r>~0 with q~ non-decreasing, infinitely differentiable and such 
t h a t  q . ( r ) = 0  if r~< 1 - e ~  and  qn(r)=l if r ~  1. As our extension of /o to U we 
choose the function / defined by  

oo 

/(x:, x 2) = ~ qn(r)~n(O), x 1 =r  cos O,x 2 =r  sin 0. 
1 

/ is clearly infinitely differentiable in U and  for a certain constant  M :  we have 

f f u (l a/ xl + I~X~l) dxldx2<~ n ~ 1 M l  f:JO j o  f~" (Iq'~(r)~n(O)l+lqn(r)~'n(O) l)rdOdr 

oo  

~< M 1 ~ (2~r M .  2 - "  + 2~r. an e=) < oo, 
1 

i.e. the partial  derivatives of the first order of / are absolutely integrable over 
U. Analogously we can, of course, extend /o to  the exterior of U with the ex- 
tended function equal to zero outside a compact  set, which proves 1 ~ 

P r o o / o / 2  ~ Suppose tha t  /o is a funct ion from $(F0) which can be extended 
to a function / having the properties s tated for the f u n c t i o n / i n  2 ~ L e t / ( r ,  0) 
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be the value of ] at  the point with polar coordinates (r, 0). If we again consider 
/0 as a function of 0 we have /(1, 0) =f0(0 ). We get, if 0 < e < l  and 5 > 0 ,  

j o .  --V r "" 

Integration over 00 yields 

j.2~ 72~ t'l 
[/o(0o + O) -/o(Oo) [ dOo < MlJo J~ ]grad/(r ,  Oo) ldrdOo 

0 

f2n ['00+o 
+ M I J o  dOoJo * Ig r a d / ( o , O ) l d O = I + I I ,  (9.6) 

where M 1 is a constant. W e  divide the domain of integration of I into two 
parts, one of which consists of those points where {grad/(r ,  00){:>( l -~)  -1/2. 
Using (9.4) and (9.5) we obtain, with a constant M~ only depending on ] and 
a number e(~) only depending on Q, e(0)-->0, ~-+l,  

I< M2(e(~ ) + ]/i-~-~). (9.7) 

To estimate H wc observe that  

f 
27t 

I I=M~5 o Igrad/(Q, 0)[d0, 

and, by (9.5), this quanti ty is less than MaS(1-~)-1 for a certain value if--On 
where 2 .... 1< l -  ~,~<2 ~, n - l ,  2 . . . . .  Using this and (9.7) i t  is easy to realize 
that  we can choose o depending on 5 with Q-->I whcn &+0, so that  we obtain 
a modulus of continuity t(5), tfi)-+0 when 5-->0, for the left member of (9.6), 
a modulus of continuity which is independent of /0: 

" /0(0 + 6 ) -  ]o(O){dO ~- Mr(5), /or ever!! 5 > 0. (9.8) 

M is a constant depending on /0  and /. Thus (9.8) holds true for all tile func- 
tions from $(F0) which can be extended to functions having the properties 
stated for the function ] in 2 ~ I t  is, however, not hard to realize that  there 
exists a function /0ES(F0) which does not satisfy (9.8). 
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