Bilateral Tauberian theorems of Keldyš type

By Tore Selander

Introduction

Let T be the class of increasing (i.e. non-decreasing) functions defined for $x \geqslant 0$ and identically zero in neighbourhoods of the origin. Let $\varphi \in T(\alpha, \beta, a)$ or shorter $\varphi \in T(\alpha, \beta)$ if $\varphi \in T$, is differentiable and satisfies the basic inequality

$$
\begin{equation*}
\alpha \varphi(x) \leqslant x \varphi^{\prime}(x) \leqslant \beta \varphi(x) \tag{1}
\end{equation*}
$$

for $x>a, a=$ constant >0. Here α and β are constants for which always $0 \leqslant \alpha<\beta<\alpha+1$. Avoiding the case $\varphi \equiv 0$ we can and shall also always assume $\varphi(a)>0$.

We write $f \sim g$ if $f(x) / g(x) \rightarrow 1$ as $x \rightarrow+\infty$, later on also when the independent variable tends to $-\infty$ or tends to infinity in the complex plane in certain ways. The integral part of a number β is denoted $[\beta]$.

Keldyš [1] has proved
Theorem A. Let $\varphi \in T(\alpha, \beta)$ and suppose in case $\alpha=0$ that $\varphi(x) \rightarrow \infty$ as $x \rightarrow \infty$. Write $[\beta]=m$. If for $\psi \in T$

$$
\int_{0}^{\infty}(u+x)^{-m-1} d \varphi(u) \sim \int_{0}^{\infty}(u+x)^{-m-1} d \psi(u)
$$

then $\varphi \sim \psi$.
In his proof Keldyš first deduces the following theorem which, however, is not explicitly formulated in his paper.

Theorem B. Let φ and ψ satisfy the same conditions as in Theorem A. Let k be a constant such that $\beta<k<\alpha+1$. It then follows from

$$
\int_{0}^{\infty}(u+x)^{-k} d \varphi(u) \sim \int_{0}^{\infty}(u+x)^{-k} d \psi(u)
$$

that $\varphi \sim \psi$.
In this paper we deduce theorems of similar type (with $\alpha>0$) in the bilateral case in which integrals are considered over ($-\infty,+\infty$) instead of over ($0, \infty$). As preparation we study in section 1 unilateral Tauberian and Abelian theorems with the kernel $u^{\delta}(u+x)^{-1}$, where δ is a constant with $0 \leqslant \delta<1$. Section 2 deals with the bilateral case
for the kernel $(u+x)^{-1}$. In section 3 a unilateral Tauberian theorem is deduced for the kernel $u^{-h}(u+x)^{-m-1}$. By the help of these results a bilateral theorem with kernel $(u+x)^{-m-1}$ is obtained in the last section.
A. Pleijel [2] has investigated the bilateral case with the kernel $u^{-h}(u+x)^{-1}$ for special explicitly given functions φ. I thank him for directing my interest to the problem of generalizing the results by Keldyš.

1. The unilateral case with the kernel $u^{\delta}(u+x)^{-1}$

In Keldyš's paper [1] we find
Lemma 1. If $\varphi \in T(\alpha, \beta, a)$ then $x^{-\alpha} \varphi(x)$ increases and $x^{-\beta} \varphi(x)$ decreases for $x \geqslant a$.
For our estimates we also need
Lemma 2. Let $\varphi \in T(\alpha, \beta, a)$ with $0<\alpha<\beta<1$ and let δ be a constant such that $0 \leqslant \delta<$ $1-\beta$. Then there are positive constants A_{1}, A_{2} so that

$$
\begin{equation*}
A_{1} x^{\delta-1} \varphi(x) \leqslant \int_{0}^{\infty} u^{\delta}(u+x)^{-1} d \varphi(u) \leqslant A_{2} x^{\delta-1} \varphi(x) \tag{2}
\end{equation*}
$$

is valid for all $x>a$.
Proof. The integral is diminished if taken only over $(x, 2 x)$. Since φ is increasing and since according to (1) $d \varphi(u) \geqslant \alpha u^{-1} \varphi(u) d u$ for $u>a$, it is clear that $d \varphi(u) \geqslant \alpha \varphi(x) u^{-1} d u$ in $(x, 2 x)$ provided $x>a$. This proves the left hand side of (2). To show the right-hand side the domain of integration is divided into $(0, a),(a, x)$ and $(x,+\infty)$. The integral over ($0, a$) is evidently $O\left(x^{-1}\right)$ which can be replaced by $O\left(x^{\delta-1} \varphi(x)\right)$ since $x^{\delta} \varphi(x)$ has a positive lower bound when $x>a$. According to Lemma $1, u^{-\alpha} \varphi(u) \leqslant x^{-\alpha} \varphi(x)$ for $a \leqslant u \leqslant x$ and $u^{-\beta} \varphi(u) \leqslant x^{-\beta} \varphi(x)$ for $x \leqslant u<\infty$. These estimates added to $d \varphi(u) \leqslant$ $\beta u^{-1} \varphi(u) d u$ give the appropriate estimates for the integrals over (a, x) and $(x,+\infty)$. The convergence of the occurring integrals is clear since $\alpha>0, \delta \geqslant 0$ and $\beta+\delta<1$.

Theorem 1. Let $\varphi \in T(\alpha, \beta, a)$ with $0<\alpha<\beta<1$ and let $\psi \in T$. Let δ be a constant such that $0 \leqslant \delta<1-\beta$ and write

$$
\begin{aligned}
& f(x)=\int_{0}^{\infty} u^{\delta}(u+x)^{-1} d \varphi(u), \\
& g(x)=\int_{0}^{\infty} u^{\delta}(u+x)^{-1} d \psi(u) .
\end{aligned}
$$

Then $f \sim g$ if and only if $\varphi \sim \psi$.
Proof. Assume first $j \sim g$. If $\delta=0$ theorem A shows that $\varphi \sim \psi$. Only the case $\delta>0$ remains to be considered. Write

$$
\begin{aligned}
& F(x)=\int_{0}^{x} t^{-\delta}(x-t)^{\delta-1} t(t) d t \\
& G(x)=\int_{0}^{x} t^{\delta \delta}(x-t)^{\delta-1} g(t) d t
\end{aligned}
$$

If the expressions for f and g as integrals are introduced and the order of integration inverted one finds

$$
\begin{align*}
& F(x)=\pi(\sin \pi \delta)^{-1} \int_{0}^{\infty}(u+x)^{\delta-1} d \varphi(u), \tag{3}\\
& G(x)=\pi(\sin \pi \delta)^{-1} \int_{0}^{\infty}(u+x)^{\delta-1} d \psi(u) .
\end{align*}
$$

If we can prove that $f \sim g$ implies $F \sim G$ the result $\varphi \sim \psi$ follows from Theorem B.
To every $\varepsilon>0$ we can choose $c>a$ so large that if $g(t)=f(t)+\eta(t) f(t)$ the function $\eta(t)$ satisfies $|\eta(t)|<\varepsilon$ for $t \geqslant c$. Take $x>2 c$ and write.

$$
\begin{aligned}
& F(x)=F_{1}(x)+F_{2}(x)=\int_{0}^{c} t^{-\delta}(x-t)^{\delta-1} f(t) d t+\int_{c}^{x} t^{\delta}(x-t)^{\delta-1} f(t) d t, \\
& G(x)=G_{1}(x)+G_{2}(x)=\int_{0}^{c} t^{-\delta}(x-t)^{\delta-1} g(t) d t+\int_{c}^{x} t^{-\delta}(x-t)^{\delta-1} g(t) d t .
\end{aligned}
$$

We evidently have

$$
\begin{align*}
& F_{1}(x)=O\left(x^{\delta-1}\right) \tag{4}\\
& G_{1}(x)=O\left(x^{\delta-1}\right) .
\end{align*}
$$

We want to get a lower bound for $\boldsymbol{F}_{2}(x)$. A partial integration of (3) shows that

$$
F(x)=\pi(1-\delta)[\sin \pi \delta]^{-1} \int_{0}^{\infty}(u+x)^{\delta-2} \varphi(u) d u .
$$

The last integral is diminished if taken only over $(x, 2 x)$ and since $\varphi(u \geqslant \varphi(x)$ in this interval we get a constant $A>0$ such that

$$
F(x) \geqslant 2 A \varphi(x) x^{\delta-1}
$$

Since $F_{2}(x)=F(x)-F_{1}(x)$ and $\varphi(x) \rightarrow \infty$ when $x \rightarrow \infty$ we conclude by (4) that

$$
\begin{equation*}
F_{2}(x)>\mathrm{A} \varphi(x) x^{8-1} \tag{5}
\end{equation*}
$$

for large values of x. Because of the choice of c

$$
f(t)(1-\varepsilon)<g(t)<f(t)(1+\varepsilon)
$$

when $t>c$. It follows that

$$
\begin{equation*}
F_{2}(x)(1-\varepsilon)<G_{2}(x)<F_{2}(x)(1+\varepsilon) . \tag{6}
\end{equation*}
$$

Writing

$$
\frac{F}{G}=\frac{F_{1} \mid F_{2}+1}{G_{1} / F_{2}+G_{2} / F_{2}}
$$

and observing that $\varphi(x) \rightarrow \infty$ when $x \rightarrow \infty$ we see from (4), (4'), (5) and (6) that $F \sim G$. As was already mentioned this implies that $\varphi \sim \psi$ is a consequence of $f \sim g$.

T. selander, Bilateral Tauberian theorems

We proceed to prove that $f \sim g$ is a consequence of $\varphi \sim \psi$. The cases $\delta=0$ and $\delta>0$ are now considered simultaneously. If

$$
\begin{equation*}
\psi(u)=\varphi(u)+\eta_{1}(u) \varphi(u) \tag{7}
\end{equation*}
$$

our assumption means that $\eta_{1}(u) \rightarrow 0$ as $u \rightarrow \infty$. Relation (7) certainly holds for $u \geqslant a$. The proof is however easily adapted also to cover the case when ψ cannot be written in this way for $u<a$. Partial integrations of the formulas for f and g lead to the relations

$$
\begin{aligned}
& f(x)=\int_{0}^{\infty} K(x, u) \varphi(u) d u \\
& g(x)=\int_{0}^{\infty} K(x, u) \psi(u) d u
\end{aligned}
$$

where $K(x, u)=u^{\delta}(u+x)^{-2}-\delta u^{\delta-1}(u+x)^{-1}$. From (7) it follows that

$$
g(x)=f(x)+\int_{0}^{\infty} K(x, u) \eta_{1}(u) \varphi(u) d u
$$

For $u>C=C(\varepsilon)$ we have $\left|\eta_{1}(u)\right|<\varepsilon$. The integral from C to $+\infty$ is less than

$$
\varepsilon \int_{C}^{\infty}\left(u^{\delta}(u+x)^{-2}+\delta u^{\delta-1}(u+x)^{-1}\right) \varphi(u) d u
$$

Assume $x>C>a$. Then, according to Lemma $1, u^{-\alpha} \varphi(u) \leqslant x^{-\alpha} \varphi(x)$ in (C, x) and $u^{-\beta} \varphi(u) \leqslant x^{-\beta} \varphi(x)$ in (x, ∞). It follows that

$$
\left|\int_{C}^{\infty} K(x, u) \eta_{1}(u) \varphi(u) d u\right|<\varepsilon C^{\prime} x^{\delta-1} \varphi(x)
$$

where C^{\prime} is independent of $C=C(\varepsilon)$. By a rough estimate of $K(x, u)$ it is easily seen that

$$
x \int_{0}^{C} K(x, u) \eta_{\mathbf{1}}(u) \varphi(u) d u
$$

is bounded. By the help of (2) it then follows that $g \sim f$.

2. The bilateral case with the kernel $(u+x)^{-1}$

Lemma 3. If φ, φ 丰constant, and ψ are monotone in the same way for $x>0$ and for $x<0$ and if

$$
\begin{equation*}
\int_{-\infty}^{+\infty}(u-z)^{-1} d \varphi(u) \sim \int_{-\infty}^{+\infty}(u-z)^{-1} d \psi(u) \tag{8}
\end{equation*}
$$

as z tends to infinity along one non-real half-ray from the origin, then the same relation holds for all such half-rays.

It is evidently no restriction to assume $0<c<\pi$ for the argument of the given half-ray. Denote the left- and right-hand sides of (8) by $f(z)$ and $g(z)$. If $z=x+i y$ then

$$
f(z)=I_{1}-x I_{2}+i y I_{2},
$$

where

$$
I_{1}=\int_{-\infty}^{+\infty} \frac{u d \varphi(u)}{(u-x)^{2}+y^{2}}, \quad I_{2}=\int_{-\infty}^{+\infty} \frac{d \varphi(u)}{(u-x)^{2}+y^{2}} .
$$

We first treat the case $d \varphi(u) \geqslant 0$ for all u. Since $\varphi \neq$ constant we have $I_{2}>0$ and we can assume $0<\arg f(z)<\pi$ in the upper half-plane. Similar considerations allow us to assume $0<\arg g(z)<\pi$. Hence we get $-\pi<\arg f(z)-\arg g(z)<\pi$ and a consequence is that every branch of $\log (f(z) / g(z))$ is univalent and analytic in the upper half-plane. Thus $h(z)=\exp \{\operatorname{ilog}[f(z) / g(z)]\}$ is analytic if $y>0$ and we get $\exp (-\pi)<|h(z)|<$ $\exp \pi$. Our assumption $f \sim g$ when z tends to infinity along $\arg z=c$ yields $h(z) \rightarrow 1$ when $|z| \rightarrow \infty$ along the same half-ray. It follows from Montel's theorem that $h(z) \rightarrow 1$ uniformly in $\delta \leqslant \arg z \leqslant \pi-\delta$ for every $\delta>0$. In consequence $f \sim g$ when $|z| \rightarrow \infty$ along any half-ray in the upper half-plane.

When $d \varphi(u) \geqslant 0$ for $u>0$ and $d \varphi(u) \leqslant 0$ for $u<0$ we consider

$$
z f(z)=x I_{1}-\left(x^{2}+y^{2}\right) I_{2}+i y I_{1}
$$

We observe that $I_{1}>0$ and repeating the discussion above with $z f(z)$ and $z g(z)$ instead of $f(z)$ and $g(z)$ we obtain the desired result.

Now we can prove the following Tauberian theorem.
Theorem 2. Let for $x \geqslant 0, \varphi(x) \in T(\alpha, \beta, a)$ with $0<\alpha<\beta<1$ and $\psi(x) \in T$. Suppose also that either $\varphi(-x) \in T(\alpha, \beta, a), \psi(-x) \in T$ or $-\psi(-x) \in T(\alpha, \beta, a),-\psi(-x) \in T$ when $x \geqslant 0$. Assume

$$
\begin{equation*}
A_{1} \leqslant|\varphi(-x) / \varphi(x)| \leqslant A_{2} \tag{9}
\end{equation*}
$$

for $x>a$ where A_{1}, A_{2} are positive constants. If under these assumptions

$$
\int_{-\infty}^{\infty}(u-z)^{-1} d \varphi(u) \sim \int_{-\infty}^{\infty}(u-z)^{-1} d \psi(u)
$$

when $|z| \rightarrow \infty$ along a non-real half-ray from the origin then $\varphi(x) \sim \psi(x)$ as $x \rightarrow+\infty$ and as $x \rightarrow-\infty$.

According to Lemma 3 we may assume the half-ray to be $z=i t, t>0$. The assumption of the theorem then reads

$$
\int_{-\infty}^{\infty}(u-i t)^{-1} d \psi(u)=(1+\eta(t)) \int_{-\infty}^{\infty}(u-i t)^{-1} d \varphi(u)
$$

where $\eta(t)=\eta_{1}(t)+i \eta_{2}(t)$ tends to zero when $t \rightarrow+\infty$. Splitting real and imaginary parts we obtain after simple transformations of the occurring integrals the formulas

$$
\begin{equation*}
\int_{0}^{\infty} \sqrt{u}\left(u+t^{2}\right)^{-1} d \psi_{1}(u)=\left(1+\eta_{1}(t)\right) \int_{0}^{\infty} \sqrt{u}\left(u+t^{2}\right)^{-1} d \varphi_{1}(u)-t \eta_{2}(t) \int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \varphi_{2}(u), \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \psi_{2}(u)=\left(1+\eta_{1}(t)\right) \int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \varphi_{2}(u)+t^{-1} \eta_{2}(t) \int_{0}^{\infty} \sqrt{u}\left(u+t^{2}\right)^{-1} d \varphi_{1}(u), \tag{11}
\end{equation*}
$$

where $\quad \psi_{1}(u)=\psi(\sqrt{u})+\psi(-\sqrt{u}), \quad \psi_{2}(u)=\psi(\sqrt{u})-\psi(-\sqrt{u}), \quad \varphi_{1}(u)=\varphi(\sqrt{u})+\varphi(-\sqrt{u})$, $\varphi_{2}(u)=\varphi(\sqrt{u})-\varphi(-\sqrt{u})$.

Let us first consider the case when $d \varphi(u) \geqslant 0$ for $u>0$ and $d \varphi(u) \leqslant 0$ for $u<0$. On account of the conditions for φ and ψ it is easily seen that $\varphi_{1}(u) \in T(\alpha / 2, \beta / 2)$ and $\psi_{1}(u) \in T$. It is also clear that $\left|\varphi_{2}(u)\right| \leqslant \varphi_{1}(u)$. According to the last remark

$$
\left|\int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \varphi_{2}(u)\right| \leqslant \int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \varphi_{1}(u)
$$

and by Lemma 2 the right-hand side is un iormly $O\left(t^{-2} \varphi_{1}\left(t^{2}\right)\right)$. This lemma also shows that

$$
\int_{0}^{\infty} \sqrt{u}\left(u+t^{2}\right)^{-1} d \varphi_{1}(u)>B t \varphi_{1}\left(t^{2}\right)
$$

with B positive for large values of t. Since $\eta_{1}(t)$ and $\eta_{2}(t)$ tends to zero as $t \rightarrow \infty$ it so follows from (10) that

$$
\int_{0}^{\infty} \sqrt{u}\left(u+t^{2}\right)^{-1} d \psi_{1}(u) \sim \int_{0}^{\infty} \sqrt{u}\left(u+t^{2}\right)^{-1} d \varphi_{1}(u) .
$$

Here $\psi_{1} \in T$ and $\varphi_{1} \in T(\alpha / 2, \beta / 2)$ where according to the conditions on α and β the inequalities $\beta / 2<\frac{1}{2}$ and $\alpha / 2>0$ are valid. Theorem 1 gives $\psi_{1}(x) \sim \varphi_{1}(x)$ when $x \rightarrow+\infty$, and from the Abelian part of the same theorem it then follows that

$$
\begin{equation*}
\int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \psi_{1}(u)=\left(1+\eta_{3}(t)\right) \int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \varphi_{1}(u) \tag{12}
\end{equation*}
$$

where $\eta_{3}(t) \rightarrow 0$ when $t \rightarrow+\infty$. The result of adding (11) and (12) is

$$
\begin{gather*}
2 \int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \psi(\sqrt{u})=2 \int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \varphi(\sqrt{u})+\eta_{1}(t) \int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \varphi_{2}(u) \\
+\eta_{2}(t) t^{-1} \int_{0}^{\infty} \sqrt{u}\left(u+t^{2}\right)^{-1} d \varphi_{1}(u)+\eta_{3}(t) \int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \varphi_{1}(u) . \tag{13}
\end{gather*}
$$

The factor of η_{1} is $O\left(t^{-2} \varphi_{1}\left(t^{2}\right)\right)$ and the same holds for the factors of η_{2} and η_{3}. An application of Lemma 2 shows that for large values of t

$$
\int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \varphi(\sqrt{u})>B^{\prime} t^{-2} \varphi(t)
$$

where B^{\prime} is a positive constant. Since $\varphi(-t) / \varphi(t)$ is bounded it then follows from (13) that

$$
\int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \psi(\sqrt{u}) \sim \int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \varphi(\sqrt{u})
$$

Theorem 1 then shows that $\varphi(x) \sim \beta(x)$ as $x \rightarrow+\infty$. On the other hand, if we subtract (11) and (12) we obtain by similar considerations as above that

$$
\int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \psi(-\sqrt{u}) \sim \int_{0}^{\infty}\left(u+t^{2}\right)^{-1} d \varphi(-\sqrt{u})
$$

and we conclude by theorem 1 that $\varphi(x) \sim \psi(x)$ as $x \rightarrow-\infty$. Then we have proved the theorem under the assumption $d \varphi(u) \leqslant 0$ for $u<0$.

Suppose $d \varphi(u) \geqslant 0$ for $u<0$. Then we first consider (10) and by the help of Lemma 2 and the Tauberian part of theorem 1 we get $\psi_{2} \sim \varphi_{2}$. The next step is to apply the Abelian part of theorem 1 with $\delta=\frac{1}{2}$ to the functions φ_{2} and ψ_{2} and combining this result and (10) we get in the same way as above the desired result.

Remark. Without (9) our proof only shows that $\varphi_{1} \sim \psi_{1}$ if $d \varphi(u) \leqslant 0$ for $u<0$ and $\varphi_{2} \sim \psi_{2}$ in case $\mathrm{d} \varphi(u) \geqslant 0$ for $u<0$. If we are interested in obtaining $\varphi \sim \psi$ as $x \rightarrow+\infty$ we only use the right part of (9) and if we want $\varphi(x) \sim \psi(x)$ as $x \rightarrow-\infty$ we use the left part of (9).

3. The unilateral case with the kernel $u^{-h}(u+x)^{-m-1}$

In this section we shall prove a Tauberian theorem for integrals of the form

$$
\begin{equation*}
\int_{0}^{\infty} u^{-h}(u+x)^{-m-1} d \varphi(u) \tag{14}
\end{equation*}
$$

where h is a positive constant. Writing $\varphi_{1}(x)=\int_{0}^{x} u^{-h} d \varphi(u)$ we get (14) equal to

$$
\int_{0}^{\infty}(u+x)^{-m-1} d \varphi_{1}(u)
$$

and the integral is of the form already treated in Theorem A. Hence we start proving some properties of integrals like φ_{1}.

Lemma 4. Let $\varphi \in T(\alpha, \beta, a)$. Consider $\varphi_{1}(x)=\int_{0}^{x} t^{-n} d \varphi(t)$ where $h>0$ is a constant and assume $\varphi_{1}(x) \rightarrow+\infty$ when $x \rightarrow+\infty$. Then $x^{-\alpha^{\prime}} \varphi_{1}(x)$ increases for every. $\alpha^{\prime}<\alpha-h$ and $x^{-\beta^{\prime}} \varphi_{\mathbf{3}}(x)$ decreases for every $\beta^{\prime}>\beta-h$ when x is sufficiently large. If $\alpha>h$ the condition $\varphi_{1}(x) \rightarrow+\infty$ is fulfilled by itself and $\varphi_{1} \in T\left(\alpha^{\prime}, \beta^{\prime}\right)$ provided $\alpha^{\prime}<\alpha-h$ and $\beta^{\prime}>\beta-h$ are chosen so that $0<\beta^{\prime}<\alpha^{\prime}+1$.

It is easily seen that

$$
x \varphi_{1}^{\prime}(x)-(\alpha-h) \varphi_{1}(x)=x^{-h}\left(x \varphi^{\prime}(x)-\alpha \varphi(x)\right)+h \int_{0}^{x} t^{-h-1}\left(t \varphi^{\prime}(t)-\alpha \varphi(t)\right) d t
$$

In fact the terms $x \varphi_{1}^{\prime}(x)$ and $x^{-k+1} \varphi^{\prime}(x)$ as well as the other terms not containing α cancel. The rest of the identity is the result of a partial integration in the integral

T. SELANDER, Bilateral Tauberian theorems

defining $\varphi_{1}(x)$. Since $\varphi \in T(\alpha, \beta, a)$ relation (1) shows that $x \varphi^{\prime}(x)-\alpha \varphi(x) \geqslant 0$ for $x>a$. Thus for these x

$$
x \varphi_{1}^{\prime}(x)-(\alpha-h) \varphi_{1}(x) \geqslant C,
$$

where C is a constant. If $\varphi_{1}(x) \rightarrow+\infty$ this implies that for a given $\varepsilon>0$

$$
x \varphi_{1}^{\prime}(x) \geqslant(\alpha-h-\varepsilon) \varphi_{1}(x)
$$

when x is greater than a certain constant $a^{\prime}=a^{\prime}(\varepsilon)$. If the same identity is applied with β instead of α the result is

$$
x \varphi_{1}^{\prime}(x) \leqslant(\beta-h+\varepsilon) \varphi_{1}(x)
$$

when x is sufficiently large.
φ_{1} is clearly positive, increasing and identically zero near the origin. To prove the last part of the lemma it remains to show that in case $\alpha>h, \varphi_{1}(x) \rightarrow+\infty$ when $x \rightarrow+\infty$. A partial integration of the integral defining φ_{1} gives

$$
\begin{equation*}
\varphi_{1}(x)=x^{-h} \varphi(x)+h \int_{0}^{x} t^{h+1} \varphi(t) d t . \tag{15}
\end{equation*}
$$

We write $x^{-h} \varphi(x)=x^{\alpha-h}\left(x^{-\alpha} \varphi(x)\right)$ and since $\alpha>h$ and $x^{-\alpha} \varphi(x)$ increases we get $x^{-h} \varphi(x)$ $\rightarrow+\infty$ as $x \rightarrow+\infty$. Since $h>0$ we diminish $\varphi_{1}(x)$ by omitting the integral in (15) and hence $\varphi_{1}(x) \rightarrow+\infty$ as $x \rightarrow+\infty$.

Lemma 5. Let $\varphi \in T(\alpha, \beta, a)$. Assume $\alpha>h>0$. Then with a constant C

$$
\begin{equation*}
x^{-h} \varphi(x) \leqslant \varphi_{1}(x)=\int_{0}^{x} t^{-h} d \varphi(t) \leqslant C x^{-h} \varphi(x) \tag{16}
\end{equation*}
$$

for large values of x.
The first part of the inequality follows from (15). The second part is a consequence of

$$
\int_{a}^{x} t^{-h-1} \varphi(t) d t \leqslant x^{-\alpha} \varphi(x) \int_{0}^{x} t^{\alpha-h-1} d t
$$

if we observe that $x^{-h} \varphi(x)=x^{\alpha-h}\left(x^{-\alpha} \varphi(x)\right)$ tends to infinity as $x \rightarrow+\infty$.
Lemma 6. Let $\varphi \in T(\alpha, \beta)$ and let $\psi \in T$. Assume $0<h<\alpha$. If $\varphi_{1} \sim \psi_{1}$ where

$$
\varphi_{1}(x)=\int_{0}^{x} t^{-h} d \varphi(t), \psi_{1}(x)=\int_{0}^{x} t^{-h} d \psi(t)
$$

then $\varphi \sim \psi$.
We normalize ψ and ψ_{1} by $\psi(x)=\lim _{t \rightarrow x+0} \psi(t)$ and the corresponding for ψ_{1}. Then

$$
\begin{equation*}
\psi(x)=\int_{0}^{x} t^{h} d \psi_{1}(t)=x^{h} \psi_{1}(x)-h \int_{0}^{x} t^{h-1} \psi_{1}(t) d t . \tag{17}
\end{equation*}
$$

The continuity of φ_{1} shows that we still have $\varphi_{1} \sim \psi_{1}$. This assumption can be written $\psi_{3}(x)=(1+\eta(x)) \varphi_{1}(x)$ where $\eta(x) \rightarrow 0$ as $x \rightarrow \infty$. Formula (17) together with the corresponding formula for φ leads to the relation

$$
\begin{equation*}
\psi(x)=\varphi(x)+x^{h} \eta(x) \varphi_{1}(x)-h \int_{0}^{x} t^{h-1} \eta(t) \varphi_{1}(t) d t . \tag{18}
\end{equation*}
$$

Given $\varepsilon>0$ we get if A is sufficiently large (compare (17))

$$
\left|\int_{A}^{x} t^{h-1} \eta(t) \varphi_{1}(t) d t\right|<\varepsilon \int_{0}^{x} t^{h-1} \varphi_{1}(t) d t=\varepsilon h^{-1}\left(\varphi(x)-x^{h} \varphi_{1}(x)\right) .
$$

We know that $\varphi(x) \rightarrow+\infty$ when $x \rightarrow+\infty$ and according to (16) it follows that (17) can be written

$$
\psi(x) / \varphi(x)=1+\varepsilon M(x)
$$

where $M(x)$ is uniformly $O(1)$ when $x \rightarrow \infty$. The conclusion of the theorem follows.
Now we can prove the following theorem.
Theorem 3. Let $\varphi \in T(\alpha, \beta)$ and $\psi \in T$. Assume $0<h<\alpha$ and let m be the integral part of $\beta-h$. If

$$
\begin{equation*}
\int_{0}^{\infty} u^{-h}(u+x)^{-m-1} d \psi(u) \sim \int_{0}^{\infty} u^{-h}(u+x)^{-m-1} d \varphi(u) \tag{19}
\end{equation*}
$$

then $\varphi \sim \psi$.
As was already mentioned in the beginning of this section, (19) can be written

$$
\int_{0}^{\infty}(u+x)^{-\pi-1} d \psi_{1}(u) \sim \int_{0}^{\infty}(u+x)^{-m-1} d \varphi_{1}(u)
$$

where $\psi_{1}(x)=\int_{0}^{x} u^{-h} d \psi(u)$ and $\varphi_{1}(x)=\int_{0}^{x} u^{-h} d \varphi(u)$. By lemma 4 we conclude that $\varphi_{1} \in T\left(\alpha^{\prime}, \beta^{\prime}\right)$ where the integral part of β^{\prime} equals m and $\alpha^{\prime}>0$. Evidently $\psi_{1} \in T$ and Theorem A then shows that $\psi_{1} \sim \varphi_{1}$. The theorem then follows from Lemma 6.

4. The bilateral case with the kernel $(u+x)^{-m-1}$

In this section we shall prove the following generalization of Theorem 2.
Theorem 4. Let $\varphi(x) \in T\left(\alpha^{\prime}, \beta^{\prime}\right)$ and $\psi(x) \in T$ for $x \geqslant 0$. Suppose also that either $\varphi(-x) \in$ $T\left(\alpha^{\prime}, \beta^{\prime}\right), \psi(-x) \in T$ or $-\varphi(-x) \in T\left(\alpha^{\prime}, \beta^{\prime}\right),-\psi(-x) \in T$ when $x \geqslant 0$. Assume

$$
A_{1} \leqslant|\varphi(-x) / \varphi(x)| \leqslant A_{2}
$$

for large values of x, where A_{1} and A_{2} are positive constants. Suppose that the relation $m<\alpha^{\prime}<\beta^{\prime}$ holds where $m=\left[\beta^{\prime}\right]$. If

$$
\begin{equation*}
\int_{-\infty}^{+\infty}(u-z)^{-m-1} d \varphi(u) \sim \int_{-\infty}^{+\infty}(u-z)^{-m-1} d \psi(u) \tag{20}
\end{equation*}
$$

when $|z| \rightarrow \infty$ along a non-real half-ray from the origin then $\varphi(x) \sim \psi(x)$ when $x \rightarrow+\infty$ and when $x \rightarrow-\infty$.

At first we observe that it is no restriction to assume the half-ray to lie in the upper half-plane. For $m=0$ the theorem is already proved so we can assume $m \geqslant 1$. We denote the left part of (20) by $f_{m}(z)$ and the right by $g_{m}(z)$. Put

$$
\begin{aligned}
& F_{m}(z)=\int_{0}^{z}(u-z)^{m-1} g_{m}(u) d u \\
& G_{m}(z)=\int_{0}^{z}(u-z)^{m-1} g_{m}(u) d u
\end{aligned}
$$

where the way of integration does not cut the real axis. If we insert the expressions for f_{m} and g_{m} as integrals and invert the order of integration we find

$$
\begin{aligned}
& F_{m}(z)=-(-z)^{m} m^{-1} \int_{-\infty}^{\infty} u^{-m}(u-z)^{-1} d \varphi(u), \\
& G_{m}(z)=-(-z)^{m} m^{-1} \int_{-\infty}^{\infty} u^{-m}(u-z)^{-1} d \psi(u) .
\end{aligned}
$$

Put $\varphi_{1}(x)=\int_{0}^{x} u^{-m} d \varphi(u)$ and $\psi_{1}(x)=\int_{0}^{x} u^{-m} d \psi(u)$. Lemma 4 then proves that $\varphi_{1}(x) €$ $T(\alpha, \beta, a)$ and either $\varphi_{1}(-x)$ or $-\varphi_{1}(-x)$ belongs to $T(\alpha, \beta, a)$ for $x \geqslant 0$ where $0<\alpha<\beta<1$. We also get $\psi_{1}(x) \in T$ and we see that either $\psi_{1}(-x)$ or $-\psi_{1}(-x)$ belongs to T for $x \geqslant 0$ and that ψ_{1} is monotone in the same way as φ_{1}. Introducing φ_{1} and ψ_{1} in the integrals of F_{m} and G_{m} we get

$$
\begin{aligned}
& F_{m}(z)=-(-z)^{m} m^{-1} \int_{-\infty}^{\infty}(u-z)^{-1} d p_{1}(u) \\
& G_{m}(z)=-(-z)^{m} m^{-1} \int_{-\infty}^{\infty}(u-z)^{-1} d \psi_{1}(u) .
\end{aligned}
$$

If we can prove $F_{m}(z) \sim G_{m}(z)$ when $|z| \rightarrow \infty$ along the given half-ray we can use theorem 2 to get the result. The idea of this proof is the same as in the Tauberian part of Theorem 1.

Let the half-ray be given by $r e^{i v}, r>0$. Take $\varepsilon>0$. The assumption (20) can be written

$$
\begin{equation*}
g_{m}\left(r e^{i v}\right)=f_{m}\left(r e^{i v}\right)+h\left(r e^{i v}\right) f_{m}\left(r e^{i v}\right) \tag{21}
\end{equation*}
$$

where $\left|h\left(r e^{i v}\right)\right|<\varepsilon$ for $r>c=c(\varepsilon)$. Let $r>2 c$ and $c>a$. Put

$$
\begin{aligned}
F_{m}\left(r e^{i v}\right) & =F_{m}^{(\alpha)}\left(r e^{i v}\right)+F_{m}^{(2)}\left(r e^{i v}\right) \\
& =\int_{0}^{c e^{i v}}\left(u-r e^{i v}\right)^{m-1} f_{m}(u) d u+\int_{c e^{i v}}^{r e i v}\left(u-r e^{i v}\right)^{m-1} f_{m}(u) d u, \\
G_{m}\left(r e^{i v}\right) & =G_{m}^{(1)}\left(r e^{i v}\right)+G_{m}^{(2)}\left(r e^{i v}\right) \\
& =\int_{0}^{c e^{i v}}\left(u-r e^{i v}\right)^{m-1} g_{m}(u) d u+\int_{c e^{i v}}^{r e^{i v}}\left(u-r e^{i v}\right)^{m-1} g_{m}(u) d u,
\end{aligned}
$$

where the way of integration coincides with the given half-ray. Evidently $F_{m}^{(1)}\left(r e^{i v}\right)$ and $G_{m}^{(1)}\left(r e^{i v}\right)$ are uniformly $O\left(r^{m-1}\right)$. We want a lower bound for $F_{m}^{(2)}\left(r e^{i v}\right)$ and hence we study $F_{m}\left(r e^{i v}\right)$.

$$
\begin{equation*}
F_{m}\left(r e^{i v}\right)=\left(I_{1}-r I_{2} \cos v+i r I_{2} \sin v\right) r^{m} e^{i m(v+\pi)+i \pi} m^{-1} \tag{22}
\end{equation*}
$$

where

$$
I_{1}=\int_{-\infty}^{\infty} u\left|u-r e^{i v}\right|^{-2} d \varphi_{1}(u), \quad I_{2}=\int_{-\infty}^{\infty}\left|u-r e^{i v}\right|^{-2} d \varphi_{1}(u) .
$$

At first the case $d \varphi_{1}(u) \geqslant 0$ for all u is discussed. Owing to $\left|u-r e^{i v}\right| \leqslant|u|+r$,

$$
I_{2} \geqslant \int_{-\infty}^{\infty}(|u|+r)^{-2} d \varphi_{1}(u)
$$

and by the same argument used to prove the left part of (2) we get a positive constant c_{1} such that $2 c_{1}\left(\varphi_{1}(r)+\left|\varphi_{1}(-r)\right|\right) r^{-2}$ is a lower bound for I_{2}. Relation (22) then yields

$$
\left|F_{m}\left(r e^{i v}\right)\right| \geqslant 2 c_{1}(\sin v) m^{-1} r^{m-1}\left(\varphi_{1}(r)+\left|\varphi_{1}(-r)\right|\right) .
$$

Since $F_{m}^{(2)}\left(r e^{i v}\right)=F_{m}\left(r e^{i v}\right)-F_{m}^{(1)}\left(r e^{i v}\right)$ we get

$$
\left|F_{m}^{(2)}\left(r e^{i v}\right)\right| \geqslant c_{1}(\sin v) m^{-1} r^{m-1}\left(\varphi_{1}(r)+\left|\varphi_{1}(-r)\right|\right)
$$

for large values of r. To get the relation corresponding to (6) we insert (21) in the expression defining $G_{m}^{(2)}\left(r e^{i v}\right)$ and obtain

$$
G_{m}^{(2)}\left(r e^{i v}\right)=\boldsymbol{F}_{m}^{(2)}\left(r e^{i v}\right)=\int_{c e^{i v}}^{r e^{i v}}\left(u-r e^{i v}\right)^{m-1} f_{m}(u) h(u) d u
$$

Here

$$
\left|\int_{c e^{i v}}^{r e^{i v}}\left(u-r e^{i v}\right)^{m-1} f_{m}(u) h(u) d u\right|<\varepsilon \int_{c}^{r}(t+r)^{m-1}\left|f_{m}\left(t e^{i v}\right)\right| d t .
$$

Using the inequality $\left|u-t e^{i v}\right|^{m+1} \geqslant 2^{-m-1}(\sin v)^{m+1} \sqrt{\left(u^{2}+t^{2}\right)}|u|^{m}$ we get, by the same methods as in the proof of the right-hand side of (2), $\left|f_{m}\left(t e^{i v}\right)\right|$ uniformly bounded by $\left(\varphi_{1}(t)+\left|\varphi_{1}(-t)\right|\right) t^{-1}$. Since $\varphi_{1}(t)$ and $\left|\varphi_{1}(-t)\right|$ belong to $T(\alpha, \beta, a)$ the function $t^{-\alpha}\left(\varphi_{1}(t)+\left|\varphi_{1}(-t)\right|\right)$ increases and we obtain with a constant c_{2} that

$$
\int_{c}^{r}(t+r)^{m-1}\left|f_{m}\left(t e^{i v}\right)\right| d t \leqslant c_{2}\left(\varphi_{1}(r)+\left|\varphi_{1}(-r)\right|\right) r^{-\alpha} \int_{0}^{r}(r+t)^{m-1} u^{\alpha-1} d t
$$

and the last expression is uniformly $O\left(\left(\varphi_{1}(r)+\left|\varphi_{1}(-r)\right|\right) r^{m-1}\right)$. Now $F_{m}\left(r e^{i v}\right) \sim G_{m}\left(r e^{i v}\right)$ when $r \rightarrow+\infty$ by the same arguments as in Theorem 1. The result of the theorem then follows from Theorem 2 and Lemma 6.

Corollary 1. Let m be a non-negative integer and let q be a constant with $0<q<1$. Let A and B be two real constants different from zero. For $u \geqslant 0$ we assume that $\psi(u) \in T$ if $A>0$ and $-\psi(u) \in T$ if $A<0$ and also $\psi(u) \in T$ if $(-1)^{m} B>0$ and $-\psi(-u) \in T$ if $(-1)^{m} B<0$. If
T. SELANDER, Bilateral Tauberian theorems

$$
\int_{-\infty}^{\infty}(u-z)^{-m-1} d \psi(u) \sim A(-z)^{-1+q}+B z^{-1+q},
$$

where $(-z)^{-1+q}$ is positive on the negative real axis and z^{-1+q} is positive on the positive real axis, then

$$
\psi(u) \sim \frac{A m!\sin \pi q}{\pi q(q+1) \ldots(q+m)} u^{q \div m}
$$

when $u \rightarrow+\infty$ and

$$
\psi(u) \sim \frac{B m!\sin \pi q}{\pi q(q+1) \ldots(q+m)}|u|^{m+q}(-1)^{m}
$$

when $u \rightarrow-\infty$.
The corollary is easily proved if we use the asymptotic expressions for ψ above as our φ in Theorem 4.

Remark. A bilateral Tauberian theorem for kernels of the type $u^{-n}(u+x)^{-m-1}$ (compare Theorem 3) can be proved by the same method as in Theorem 4.

REFERENCES

1. Keldyš, M. V., On a Tauberian theorem, Trudy Matematiceskogo Instituta Imeni V. A. Steklova, t. XXXVIII, 77-86 (1951).
2. Pleijel, A., A bilateral Tauberian theorem. Arkiv för Matematik 4, 561-571 (1962).
