Communicated 9 January 1963 by Å. PLEIJEL and L. GÅRDING

Bilateral Tauberian theorems of Keldyš type

By TORE SELANDER

Introduction

Let T be the class of increasing (i.e. non-decreasing) functions defined for $x \ge 0$ and identically zero in neighbourhoods of the origin. Let $\varphi \in T(\alpha, \beta, a)$ or shorter $\varphi \in T(\alpha, \beta)$ if $\varphi \in T$, is differentiable and satisfies the basic inequality

$$\alpha\varphi(x) \leq x\varphi'(x) \leq \beta\varphi(x) \tag{1}$$

for x > a, a = constant > 0. Here α and β are constants for which always $0 \le \alpha < \beta < \alpha + 1$. Avoiding the case $\varphi \equiv 0$ we can and shall also always assume $\varphi(a) > 0$.

We write $f \sim g$ if $f(x)/g(x) \rightarrow 1$ as $x \rightarrow +\infty$, later on also when the independent variable tends to $-\infty$ or tends to infinity in the complex plane in certain ways. The integral part of a number β is denoted [β].

Keldyš [1] has proved

Theorem A. Let $\varphi \in T(\alpha, \beta)$ and suppose in case $\alpha = 0$ that $\varphi(x) \rightarrow \infty$ as $x \rightarrow \infty$. Write $[\beta] = m$. If for $\psi \in T$

$$\int_0^\infty (u+x)^{-m-1} d\varphi(u) \sim \int_0^\infty (u+x)^{-m-1} d\psi(u)$$

then $\varphi \sim \psi$.

In his proof Keldyš first deduces the following theorem which, however, is not explicitly formulated in his paper.

Theorem B. Let φ and ψ satisfy the same conditions as in Theorem A. Let k be a constant such that $\beta < k < \alpha + 1$. It then follows from

$$\int_0^\infty (u+x)^{-k} d\varphi(u) \sim \int_0^\infty (u+x)^{-k} d\psi(u)$$

that $\varphi \sim \psi$.

In this paper we deduce theorems of similar type (with $\alpha > 0$) in the bilateral case in which integrals are considered over $(-\infty, +\infty)$ instead of over $(0, \infty)$. As preparation we study in section 1 unilateral Tauberian and Abelian theorems with the kernel $u^{\delta}(u+x)^{-1}$, where δ is a constant with $0 \leq \delta < 1$. Section 2 deals with the bilateral case

for the kernel $(u+x)^{-1}$. In section 3 a unilateral Tauberian theorem is deduced for the kernel $u^{-h}(u+x)^{-m-1}$. By the help of these results a bilateral theorem with kernel $(u+x)^{-m-1}$ is obtained in the last section.

Å. Pleijel [2] has investigated the bilateral case with the kernel $u^{-h}(u+x)^{-1}$ for special explicitly given functions φ . I thank him for directing my interest to the problem of generalizing the results by Keldyš.

1. The unilateral case with the kernel $u^{\delta}(u+x)^{-1}$

In Keldyš's paper [1] we find

Lemma 1. If $\varphi \in T(\alpha, \beta, a)$ then $x^{-\alpha}\varphi(x)$ increases and $x^{-\beta}\varphi(x)$ decreases for $x \ge a$.

For our estimates we also need

Lemma 2. Let $\varphi \in T(\alpha, \beta, a)$ with $0 < \alpha < \beta < 1$ and let δ be a constant such that $0 \le \delta < 1 - \beta$. Then there are positive constants A_1, A_2 so that

$$A_1 x^{\delta^{-1}} \varphi(x) \leq \int_0^\infty u^{\delta} (u+x)^{-1} d\varphi(u) \leq A_2 x^{\delta^{-1}} \varphi(x)$$

$$\tag{2}$$

is valid for all x > a.

Proof. The integral is diminished if taken only over (x, 2x). Since φ is increasing and since according to (1) $d\varphi(u) \ge \alpha u^{-1}\varphi(u) du$ for $u \ge a$, it is clear that $d\varphi(u) \ge \alpha \varphi(x)u^{-1} du$ in (x, 2x) provided $x \ge a$. This proves the left hand side of (2). To show the right-hand side the domain of integration is divided into (0, a), (a, x) and $(x, +\infty)$. The integral over (0, a) is evidently $O(x^{-1})$ which can be replaced by $O(x^{\delta-1}\varphi(x))$ since $x^{\delta}\varphi(x)$ has a positive lower bound when $x \ge a$. According to Lemma 1, $u^{-\alpha}\varphi(u) \le x^{-\alpha}\varphi(x)$ for $a \le u \le x$ and $u^{-\beta}\varphi(u) \le x^{-\beta}\varphi(x)$ for $x \le u < \infty$. These estimates added to $d\varphi(u) \le \beta u^{-1}\varphi(u) du$ give the appropriate estimates for the integrals over (a, x) and $(x, +\infty)$. The convergence of the occurring integrals is clear since $\alpha \ge 0$, $\delta \ge 0$ and $\beta + \delta < 1$.

Theorem 1. Let $\varphi \in T(\alpha, \beta, a)$ with $0 < \alpha < \beta < 1$ and let $\psi \in T$. Let δ be a constant such that $0 \leq \delta < 1 - \beta$ and write

$$f(x) = \int_0^\infty u^{\delta} (u+x)^{-1} d\varphi(u),$$
$$g(x) = \int_0^\infty u^{\delta} (u+x)^{-1} d\psi(u).$$

Then $f \sim g$ if and only if $\varphi \sim \psi$.

Proof. Assume first $j \sim q$. If $\delta = 0$ theorem A shows that $\varphi \sim \psi$. Only the case $\delta > 0$ remains to be considered. Write

$$F(x) = \int_0^x t^{-\delta} (x-t)^{\delta-1} t(t) dt,$$
$$G(x) = \int_0^x t^{-\delta} (x-t)^{\delta-1} g(t) dt.$$

If the expressions for f and g as integrals are introduced and the order of integration inverted one finds

$$F(x) = \pi(\sin \pi \delta)^{-1} \int_0^\infty (u+x)^{\delta-1} d\varphi(u),$$
(3)
$$G(x) = \pi(\sin \pi \delta)^{-1} \int_0^\infty (u+x)^{\delta-1} d\psi(u).$$

If we can prove that $f \sim g$ implies $F \sim G$ the result $\varphi \sim \psi$ follows from Theorem B.

To every $\varepsilon > 0$ we can choose c > a so large that if $g(t) = f(t) + \eta(t)f(t)$ the function $\eta(t)$ satisfies $|\eta(t)| < \varepsilon$ for $t \ge c$. Take $x \ge 2c$ and write.

$$\begin{split} F(x) &= F_1(x) + F_2(x) = \int_0^c t^{-\delta} (x-t)^{\delta-1} f(t) dt + \int_c^x t^{-\delta} (x-t)^{\delta-1} f(t) dt, \\ G(x) &= G_1(x) + G_2(x) = \int_0^c t^{-\delta} (x-t)^{\delta-1} g(t) dt + \int_c^x t^{-\delta} (x-t)^{\delta-1} g(t) dt. \end{split}$$

We evidently have

$$F_1(x) = O(x^{\delta - 1}),$$

$$G_1(x) = O(x^{\delta - 1}).$$
(4)
(4)
(4)

We want to get a lower bound for $F_2(x)$. A partial integration of (3) shows that

$$F(x) = \pi(1-\delta)[\sin \pi\delta]^{-1}\int_0^\infty (u+x)^{\delta-2}\varphi(u)du.$$

The last integral is diminished if taken only over (x, 2x) and since $\varphi(u \ge \varphi(x))$ in this interval we get a constant A > 0 such that

 $F(x) \ge 2A\varphi(x)x^{\delta-1}.$

Since $F_2(x) = F(x) - F_1(x)$ and $\varphi(x) \rightarrow \infty$ when $x \rightarrow \infty$ we conclude by (4) that

$$F_2(x) > A\varphi(x) x^{\delta-1} \tag{5}$$

for large values of x. Because of the choice of c

 $f(t)(1-\varepsilon) < g(t) < f(t)(1+\varepsilon)$

when t > c. It follows that

$$F_{2}(x)(1-\varepsilon) < G_{2}(x) < F_{2}(x)(1+\varepsilon).$$

$$\frac{F}{G} = \frac{F_{1}/F_{2}+1}{G_{1}/F_{2}+G_{2}/F_{2}}$$
(6)

Writing

and observing that $\varphi(x) \to \infty$ when $x \to \infty$ we see from (4), (4'), (5) and (6) that $F \sim G$. As was already mentioned this implies that $\varphi \sim \psi$ is a consequence of $f \sim g$.

We proceed to prove that $f \sim g$ is a consequence of $\varphi \sim \psi$. The cases $\delta = 0$ and $\delta > 0$ are now considered simultaneously. If

$$\psi(u) = \varphi(u) + \eta_1(u)\varphi(u) \tag{7}$$

our assumption means that $\eta_1(u) \rightarrow 0$ as $u \rightarrow \infty$. Relation (7) certainly holds for $u \ge a$. The proof is however easily adapted also to cover the case when ψ cannot be written in this way for u < a. Partial integrations of the formulas for f and g lead to the relations

$$f(x) = \int_0^\infty K(x, u) \varphi(u) du,$$
$$g(x) = \int_0^\infty K(x, u) \psi(u) du,$$

where $K(x, u) = u^{\delta}(u+x)^{-2} - \delta u^{\delta-1}(u+x)^{-1}$. From (7) it follows that

$$g(x) = f(x) + \int_0^\infty K(x, u) \eta_1(u) \varphi(u) du.$$

For $u > C = C(\varepsilon)$ we have $|\eta_1(u)| < \varepsilon$. The integral from C to $+\infty$ is less than

$$\varepsilon \int_c^\infty (u^{\delta}(u+x)^{-2}+\delta u^{\delta-1}(u+x)^{-1})\varphi(u)du.$$

Assume x > C > a. Then, according to Lemma 1, $u^{-\alpha}\varphi(u) \le x^{-\alpha}\varphi(x)$ in (C, x) and $u^{-\beta}\varphi(u) \le x^{-\beta}\varphi(x)$ in (x, ∞) . It follows that

$$\left|\int_{C}^{\infty} K(x,u)\eta_{1}(u)\varphi(u)du\right| < \varepsilon C' x^{\delta-1}\varphi(x)$$

where C' is independent of $C = C(\varepsilon)$. By a rough estimate of K(x, u) it is easily seen that

$$x\int_0^C K(x,u)\eta_1(u)\varphi(u)du$$

is bounded. By the help of (2) it then follows that $g \sim f$.

2. The bilateral case with the kernel $(u+x)^{-1}$

Lemma 3. If φ , $\varphi \equiv \text{constant}$, and ψ are monotone in the same way for x > 0 and for x < 0 and if

$$\int_{-\infty}^{+\infty} (u-z)^{-1} d\varphi(u) \sim \int_{-\infty}^{+\infty} (u-z)^{-1} d\psi(u)$$
 (8)

as z tends to infinity along one non-real half-ray from the origin, then the same relation holds for all such half-rays.

arkiv för matematik. Bd 5 nr 6

It is evidently no restriction to assume $0 < c < \pi$ for the argument of the given half-ray. Denote the left- and right-hand sides of (8) by f(z) and g(z). If z = x + iy then

$$f(z) = I_1 - xI_2 + iyI_2,$$

 $I_{1} = \int_{-\infty}^{+\infty} \frac{u d\varphi(u)}{(u-x)^{2} + y^{2}}, \quad I_{2} = \int_{-\infty}^{+\infty} \frac{d\varphi(u)}{(u-x)^{2} + u^{2}}.$

where

We first treat the case $d\varphi(u) \ge 0$ for all u. Since $\varphi \equiv \text{constant}$ we have $I_2 \ge 0$ and we can assume $0 < \arg f(z) < \pi$ in the upper half-plane. Similar considerations allow us to assume $0 < \arg g(z) < \pi$. Hence we get $-\pi < \arg f(z) - \arg g(z) < \pi$ and a consequence is that every branch of $\log (f(z)/g(z))$ is univalent and analytic in the upper half-plane. Thus $h(z) = \exp\{\operatorname{ilog}[f(z)/g(z)]\}$ is analytic if $y \ge 0$ and we get $\exp(-\pi) < |h(z)| < \exp \pi$. Our assumption $f \sim g$ when z tends to infinity along $\arg z = c$ yields $h(z) \rightarrow 1$ when $|z| \rightarrow \infty$ along the same half-ray. It follows from Montel's theorem that $h(z) \rightarrow 1$ uniformly in $\delta \leq \arg z \leq \pi - \delta$ for every $\delta \ge 0$. In consequence $f \sim g$ when $|z| \rightarrow \infty$ along any half-ray in the upper half-plane.

When $d\varphi(u) \ge 0$ for $u \ge 0$ and $d\varphi(u) \le 0$ for u < 0 we consider

$$zf(z) = xI_1 - (x^2 + y^2)I_2 + iyI_1.$$

We observe that $I_1 > 0$ and repeating the discussion above with zf(z) and zg(z) instead of f(z) and g(z) we obtain the desired result.

Now we can prove the following Tauberian theorem.

Theorem 2. Let for $x \ge 0$, $\varphi(x) \in T(\alpha, \beta, a)$ with $0 < \alpha < \beta < 1$ and $\psi(x) \in T$. Suppose also that either $\varphi(-x) \in T(\alpha, \beta, a)$, $\psi(-x) \in T$ or $-\psi(-x) \in T(\alpha, \beta, a)$, $-\psi(-x) \in T$ when $x \ge 0$. Assume

$$A_1 \leq |\varphi(-x)/\varphi(x)| \leq A_2 \tag{9}$$

for x > a where A_1 , A_2 are positive constants. If under these assumptions

$$\int_{-\infty}^{\infty} (u-z)^{-1} d\varphi(u) \sim \int_{-\infty}^{\infty} (u-z)^{-1} d\psi(u)$$

when $|z| \rightarrow \infty$ along a non-real half-ray from the origin then $\varphi(x) \sim \psi(x)$ as $x \rightarrow +\infty$ and as $x \rightarrow -\infty$.

According to Lemma 3 we may assume the half-ray to be z = it, t > 0. The assumption of the theorem then reads

$$\int_{-\infty}^{\infty} (u-it)^{-1}d\psi(u) = (1+\eta(t))\int_{-\infty}^{\infty} (u-it)^{-1}d\varphi(u),$$

where $\eta(t) = \eta_1(t) + i\eta_2(t)$ tends to zero when $t \to +\infty$. Splitting real and imaginary parts we obtain after simple transformations of the occurring integrals the formulas

$$\int_{0}^{\infty} \sqrt{u}(u+t^{2})^{-1}d\psi_{1}(u) = (1+\eta_{1}(t)) \int_{0}^{\infty} \sqrt{u}(u+t^{2})^{-1}d\varphi_{1}(u) - t\eta_{2}(t) \int_{0}^{\infty} (u+t^{2})^{-1}d\varphi_{2}(u),$$
(10)

$$\int_{0}^{\infty} (u+t^2)^{-1} d\psi_2(u) = (1+\eta_1(t)) \int_{0}^{\infty} (u+t^2)^{-1} d\varphi_2(u) + t^{-1}\eta_2(t) \int_{0}^{\infty} \sqrt{u} (u+t^2)^{-1} d\varphi_1(u),$$
(11)

where $\psi_1(u) = \psi(\sqrt{u}) + \psi(-\sqrt{u}), \quad \psi_2(u) = \psi(\sqrt{u}) - \psi(-\sqrt{u}), \quad \varphi_1(u) = \varphi(\sqrt{u}) + \varphi(-\sqrt{u}), \quad \varphi_2(u) = \varphi(\sqrt{u}) - \varphi(-\sqrt{u}).$

Let us first consider the case when $d\varphi(u) \ge 0$ for u > 0 and $d\varphi(u) \le 0$ for u < 0. On account of the conditions for φ and ψ it is easily seen that $\varphi_1(u) \in T(\alpha/2, \beta/2)$ and $\psi_1(u) \in T$. It is also clear that $|\varphi_2(u)| \le \varphi_1(u)$. According to the last remark

$$\left|\int_{0}^{\infty} (u+t^{2})^{-1} d\varphi_{2}(u)\right| \leq \int_{0}^{\infty} (u+t^{2})^{-1} d\varphi_{1}(u)$$

and by Lemma 2 the right-hand side is unformly $O(t^{-2}\varphi_1(t^2))$. This lemma also shows that

$$\int_{0}^{\infty} \sqrt{u} (u+t^2)^{-1} d\varphi_1(u) > Bt \varphi_1(t^2)$$

with B positive for large values of t. Since $\eta_1(t)$ and $\eta_2(t)$ tends to zero as $t \to \infty$ it so follows from (10) that

$$\int_0^\infty \sqrt{u}(u+t^2)^{-1}d\psi_1(u) \sim \int_0^\infty \sqrt{u}(u+t^2)^{-1}d\varphi_1(u).$$

Here $\psi_1 \in T$ and $\varphi_1 \in T(\alpha/2, \beta/2)$ where according to the conditions on α and β the inequalities $\beta/2 < \frac{1}{2}$ and $\alpha/2 > 0$ are valid. Theorem 1 gives $\psi_1(x) \sim \varphi_1(x)$ when $x \to +\infty$, and from the Abelian part of the same theorem it then follows that

$$\int_{0}^{\infty} (u+t^{2})^{-1} d\psi_{1}(u) = (1+\eta_{3}(t)) \int_{0}^{\infty} (u+t^{2})^{-1} d\varphi_{1}(u), \qquad (12)$$

where $\eta_3(t) \rightarrow 0$ when $t \rightarrow +\infty$. The result of adding (11) and (12) is

$$2\int_{0}^{\infty} (u+t^{2})^{-1}d\psi(\sqrt{u}) = 2\int_{0}^{\infty} (u+t^{2})^{-1}d\varphi(\sqrt{u}) + \eta_{1}(t)\int_{0}^{\infty} (u+t^{2})^{-1}d\varphi_{2}(u) + \eta_{2}(t)t^{-1}\int_{0}^{\infty}\sqrt{u}(u+t^{2})^{-1}d\varphi_{1}(u) + \eta_{3}(t)\int_{0}^{\infty} (u+t^{2})^{-1}d\varphi_{1}(u).$$
(13)

The factor of η_1 is $O(t^{-2}\varphi_1(t^2))$ and the same holds for the factors of η_2 and η_3 . An application of Lemma 2 shows that for large values of t

$$\int_{0}^{\infty} (u+t^{2})^{-1} d\varphi(\sqrt{u}) > B't^{-2}\varphi(t),$$

where B' is a positive constant. Since $\varphi(-t)/\varphi(t)$ is bounded it then follows from (13) that

ARKIV FÖR MATEMATIK. Bd 5 nr 6

$$\int_{0}^{\infty} (u+t^{2})^{-1} d\psi(\sqrt{u}) \sim \int_{0}^{\infty} (u+t^{2})^{-1} d\varphi(\sqrt{u}).$$

Theorem 1 then shows that $\varphi(x) \sim \beta(x)$ as $x \to +\infty$. On the other hand, if we subtract (11) and (12) we obtain by similar considerations as above that

$$\int_{0}^{\infty} (u+t^{2})^{-1} d\psi(-\sqrt{u}) \sim \int_{0}^{\infty} (u+t^{2})^{-1} d\varphi(-\sqrt{u})$$

and we conclude by theorem 1 that $\varphi(x) \sim \psi(x)$ as $x \to -\infty$. Then we have proved the theorem under the assumption $d\varphi(u) \leq 0$ for u < 0.

Suppose $d\varphi(u) \ge 0$ for u < 0. Then we first consider (10) and by the help of Lemma 2 and the Tauberian part of theorem 1 we get $\psi_2 \sim \varphi_2$. The next step is to apply the Abelian part of theorem 1 with $\delta = \frac{1}{2}$ to the functions φ_2 and ψ_2 and combining this result and (10) we get in the same way as above the desired result.

Remark. Without (9) our proof only shows that $\varphi_1 \sim \psi_1$ if $d\varphi(u) \leq 0$ for u < 0 and $\varphi_2 \sim \psi_2$ in case $d\varphi(u) \geq 0$ for u < 0. If we are interested in obtaining $\varphi \sim \psi$ as $x \to +\infty$ we only use the right part of (9) and if we want $\varphi(x) \sim \psi(x)$ as $x \to -\infty$ we use the left part of (9).

3. The unilateral case with the kernel $u^{-h}(u+x)^{-m-1}$

In this section we shall prove a Tauberian theorem for integrals of the form

$$\int_{0}^{\infty} u^{-h} (u+x)^{-m-1} d\varphi(u), \qquad (14)$$

where h is a positive constant. Writing $\varphi_1(x) = \int_0^x u^{-h} d\varphi(u)$ we get (14) equal to

$$\int_0^\infty (u+x)^{-m-1} d\varphi_1(u)$$

and the integral is of the form already treated in Theorem A. Hence we start proving some properties of integrals like φ_1 .

Lemma 4. Let $\varphi \in T(\alpha, \beta, a)$. Consider $\varphi_1(x) = \int_0^x t^{-h} d\varphi(t)$ where h > 0 is a constant and assume $\varphi_1(x) \to +\infty$ when $x \to +\infty$. Then $x^{-\alpha'}\varphi_1(x)$ increases for every $\alpha' < \alpha - h$ and $x^{-\beta'}\varphi_1(x)$ decreases for every $\beta' > \beta - h$ when x is sufficiently large. If $\alpha > h$ the condition $\varphi_1(x) \to +\infty$ is fulfilled by itself and $\varphi_1 \in T(\alpha', \beta')$ provided $\alpha' < \alpha - h$ and $\beta' > \beta - h$ are chosen so that $0 < \beta' < \alpha' + 1$.

It is easily seen that

$$\boldsymbol{x}\varphi_{1}'(\boldsymbol{x})-(\alpha-h)\varphi_{1}(\boldsymbol{x})=\boldsymbol{x}^{-h}(\boldsymbol{x}\varphi'(\boldsymbol{x})-\boldsymbol{\alpha}\varphi(\boldsymbol{x}))+h\int_{0}^{\boldsymbol{x}}t^{-h-1}(t\varphi'(t)-\boldsymbol{\alpha}\varphi(t))dt.$$

In fact the terms $x\varphi_1(x)$ and $x^{-h+1}\varphi'(x)$ as well as the other terms not containing α cancel. The rest of the identity is the result of a partial integration in the integral

defining $\varphi_1(x)$. Since $\varphi \in T(\alpha, \beta, a)$ relation (1) shows that $x\varphi'(x) - \alpha\varphi(x) \ge 0$ for $x \ge a$. Thus for these x

$$x\varphi_1'(x)-(\alpha-h)\varphi_1(x) \ge C$$

where C is a constant. If $\varphi_1(x) \rightarrow +\infty$ this implies that for a given $\varepsilon > 0$

$$x \varphi_1'(x) \ge (\alpha - h - \varepsilon) \varphi_1(x)$$

when x is greater than a certain constant $a' = a'(\varepsilon)$. If the same identity is applied with β instead of α the result is

$$x\varphi_1'(x) \leq (\beta - h + \varepsilon)\varphi_1(x)$$

when x is sufficiently large.

 φ_1 is clearly positive, increasing and identically zero near the origin. To prove the last part of the lemma it remains to show that in case $\alpha > h$, $\varphi_1(x) \rightarrow +\infty$ when $x \rightarrow +\infty$. A partial integration of the integral defining φ_1 gives

$$\varphi_1(x) = x^{-h} \varphi(x) + h \int_0^x t^{h+1} \varphi(t) dt.$$
 (15)

We write $x^{-h}\varphi(x) = x^{\alpha-h}(x^{-\alpha}\varphi(x))$ and since $\alpha > h$ and $x^{-\alpha}\varphi(x)$ increases we get $x^{-h}\varphi(x) \to +\infty$ as $x \to +\infty$. Since h > 0 we diminish $\varphi_1(x)$ by omitting the integral in (15) and hence $\varphi_1(x) \to +\infty$ as $x \to +\infty$.

Lemma 5. Let $\varphi \in T(\alpha, \beta, a)$. Assume $\alpha > h > 0$. Then with a constant C

$$x^{-h}\varphi(x) \leq \varphi_1(x) = \int_0^x t^{-h} d\varphi(t) \leq C x^{-h} \varphi(x)$$
(16)

for large values of x.

The first part of the inequality follows from (15). The second part is a consequence of

$$\int_{a}^{x} t^{-h-1}\varphi(t)dt \leq x^{-\alpha}\varphi(x) \int_{0}^{x} t^{\alpha-h-1}dt$$

if we observe that $x^{-h}\varphi(x) = x^{\alpha-h}(x^{-\alpha}\varphi(x))$ tends to infinity as $x \to +\infty$.

Lemma 6. Let $\varphi \in T(\alpha, \beta)$ and let $\psi \in T$. Assume $0 < h < \alpha$. If $\varphi_1 \sim \psi_1$ where

$$\varphi_1(x) = \int_0^x t^{-h} d\varphi(t), \ \psi_1(x) = \int_0^x t^{-h} d\psi(t)$$

then $\varphi \sim \psi$.

We normalize ψ and ψ_1 by $\psi(x) = \lim_{t \to x \neq 0} \psi(t)$ and the corresponding for ψ_1 . Then

$$\psi(x) = \int_0^x t^h d\psi_1(t) = x^h \psi_1(x) - h \int_0^x t^{h-1} \psi_1(t) dt.$$
(17)

ARKIV FÖR MATEMATIK. Bd 5 nr 6

The continuity of φ_1 shows that we still have $\varphi_1 \sim \psi_1$. This assumption can be written $\psi_1(x) = (1 + \eta(x))\varphi_1(x)$ where $\eta(x) \rightarrow 0$ as $x \rightarrow \infty$. Formula (17) together with the corresponding formula for φ leads to the relation

$$\psi(x) = \varphi(x) + x^{h} \eta(x) \varphi_{1}(x) - h \int_{0}^{x} t^{h-1} \eta(t) \varphi_{1}(t) dt.$$
 (18)

Given $\varepsilon > 0$ we get if A is sufficiently large (compare (17))

$$\left|\int_{A}^{x} t^{h-1}\eta(t)\varphi_{1}(t)dt\right| < \varepsilon \int_{0}^{x} t^{h-1}\varphi_{1}(t)dt = \varepsilon h^{-1}(\varphi(x) - x^{h}\varphi_{1}(x)).$$

We know that $\varphi(x) \rightarrow +\infty$ when $x \rightarrow +\infty$ and according to (16) it follows that (17) can be written

$$\psi(x)/\varphi(x) = 1 + \varepsilon M(x)$$

where M(x) is uniformly O(1) when $x \rightarrow \infty$. The conclusion of the theorem follows.

Now we can prove the following theorem.

Theorem 3. Let $\varphi \in T(\alpha,\beta)$ and $\psi \in T$. Assume $0 < h < \alpha$ and let m be the integral part of $\beta - h$. If

$$\int_{0}^{\infty} u^{-h} (u+x)^{-m-1} d\psi(u) \sim \int_{0}^{\infty} u^{-h} (u+x)^{-m-1} d\varphi(u)$$
(19)

then $\varphi \sim \psi$.

As was already mentioned in the beginning of this section, (19) can be written

$$\int_0^\infty (u+x)^{-n-1} d\psi_1(u) \sim \int_0^\infty (u+x)^{-m-1} d\varphi_1(u),$$

where $\psi_1(x) = \int_0^x u^{-h} d\psi(u)$ and $\varphi_1(x) = \int_0^x u^{-h} d\varphi(u)$. By lemma 4 we conclude that $\varphi_1 \in T(\alpha', \beta')$ where the integral part of β' equals m and $\alpha' > 0$. Evidently $\psi_1 \in T$ and Theorem A then shows that $\psi_1 \sim \varphi_1$. The theorem then follows from Lemma 6.

4. The bilateral case with the kernel $(u+x)^{-m-1}$

In this section we shall prove the following generalization of Theorem 2.

Theorem 4. Let $\varphi(x) \in T(\alpha', \beta')$ and $\psi(x) \in T$ for $x \ge 0$. Suppose also that either $\varphi(-x) \in T(\alpha', \beta')$, $\psi(-x) \in T$ or $-\varphi(-x) \in T(\alpha', \beta')$, $-\psi(-x) \in T$ when $x \ge 0$. Assume

$$A_1 \leq |\varphi(-x)/\varphi(x)| \leq A_2$$

for large values of x, where A_1 and A_2 are positive constants. Suppose that the relation $m < \alpha' < \beta'$ holds where $m = [\beta']$. If

$$\int_{-\infty}^{+\infty} (u-z)^{-m-1} d\varphi(u) \sim \int_{-\infty}^{+\infty} (u-z)^{-m-1} d\psi(u)$$
(20)

when $|z| \rightarrow \infty$ along a non-real half-ray from the origin then $\varphi(x) \sim \psi(x)$ when $x \rightarrow +\infty$ and when $x \rightarrow -\infty$.

At first we observe that it is no restriction to assume the half-ray to lie in the upper half-plane. For m=0 the theorem is already proved so we can assume $m \ge 1$. We denote the left part of (20) by $f_m(z)$ and the right by $g_m(z)$. Put

$$F_m(z) = \int_0^z (u-z)^{m-1} f_m(u) du,$$

$$G_m(z) = \int_0^z (u-z)^{m-1} g_m(u) du,$$

where the way of integration does not cut the real axis. If we insert the expressions for f_m and g_m as integrals and invert the order of integration we find

$$F_m(z) = -(-z)^m m^{-1} \int_{-\infty}^{\infty} u^{-m} (u-z)^{-1} d\varphi(u),$$

$$G_m(z) = -(-z)^m m^{-1} \int_{-\infty}^{\infty} u^{-m} (u-z)^{-1} d\psi(u).$$

Put $\varphi_1(x) = \int_0^x u^{-m} d\varphi(u)$ and $\psi_1(x) = \int_0^x u^{-m} d\psi(u)$. Lemma 4 then proves that $\varphi_1(x) \in T(\alpha, \beta, a)$ and either $\varphi_1(-x)$ or $-\varphi_1(-x)$ belongs to $T(\alpha, \beta, a)$ for $x \ge 0$ where $0 < \alpha < \beta < 1$. We also get $\psi_1(x) \in T$ and we see that either $\psi_1(-x)$ or $-\psi_1(-x)$ belongs to T for $x \ge 0$ and that ψ_1 is monotone in the same way as φ_1 . Introducing φ_1 and ψ_1 in the integrals of F_m and G_m we get

$$F_m(z) = -(-z)^m m^{-1} \int_{-\infty}^{\infty} (u-z)^{-1} d\varphi_1(u),$$

$$G_m(z) = -(-z)^m m^{-1} \int_{-\infty}^{\infty} (u-z)^{-1} d\psi_1(u).$$

If we can prove $F_m(z) \sim G_m(z)$ when $|z| \to \infty$ along the given half-ray we can use theorem 2 to get the result. The idea of this proof is the same as in the Tauberian part of Theorem 1.

Let the half-ray be given by $re^{i\nu}$, r>0. Take $\varepsilon>0$. The assumption (20) can be written

$$g_m(re^{iv}) = f_m(re^{iv}) + h(re^{iv}) f_m(re^{iv}), \qquad (21)$$

where $|h(re^{iv})| < \varepsilon$ for $r > c = c(\varepsilon)$. Let r > 2c and c > a. Put

$$\begin{split} F_m(re^{iv}) &= F_m^{(1)}(re^{iv}) + F_m^{(2)}(re^{iv}) \\ &= \int_0^{ce^{iv}} (u - re^{iv})^{m-1} f_m(u) du + \int_{ce^{iv}}^{re^{iv}} (u - re^{iv})^{m-1} f_m(u) du, \\ G_m(re^{iv}) &= G_m^{(1)}(re^{iv}) + G_m^{(2)}(re^{iv}) \\ &= \int_0^{ce^{iv}} (u - re^{iv})^{m-1} g_m(u) du + \int_{ce^{iv}}^{re^{iv}} (u - re^{iv})^{m-1} g_m(u) du, \end{split}$$

ARKIV FÖR MATEMATIK. Bd 5 nr 6

where the way of integration coincides with the given half-ray. Evidently $F_m^{(i)}(re^{iv})$ and $G_m^{(1)}(re^{iv})$ are uniformly $O(r^{m-1})$. We want a lower bound for $F_m^{(2)}(re^{iv})$ and hence we study $F_m(r e^{iv})$.

$$F_m(re^{iv}) = (I_1 - rI_2 \cos v + i rI_2 \sin v) r^m e^{im(v+n) + i\pi} m^{-1},$$
(22)

where

$$I_{1} = \int_{-\infty}^{\infty} u \left| u - r e^{iv} \right|^{-2} d\varphi_{1}(u), \quad I_{2} = \int_{-\infty}^{\infty} \left| u - r e^{iv} \right|^{-2} d\varphi_{1}(u).$$

At first the case $d\varphi_1(u) \ge 0$ for all u is discussed. Owing to $|u - re^{iv}| \le |u| + r$,

$$I_2 \ge \int_{-\infty}^{\infty} \left(\left| u \right| + r \right)^{-2} d\varphi_1(u)$$

and by the same argument used to prove the left part of (2) we get a positive constant c_1 such that $2c_1(\varphi_1(r) + |\varphi_1(-r)|)r^{-2}$ is a lower bound for I_2 . Relation (22) then yields

$$|F_m(re^{iv})| \ge 2c_1(\sin v)m^{-1}r^{m-1}(\varphi_1(r) + |\varphi_1(-r)|).$$

Since $F_m^{(2)}(re^{iv}) = F_m(re^{iv}) - F_m^{(1)}(re^{iv})$ we get

$$\left| F_{m}^{(2)}(r e^{iv}) \right| \ge c_{1}(\sin v) m^{-1} r^{m-1}(\varphi_{1}(r) + \left| \varphi_{1}(-r) \right|)$$

for large values of r. To get the relation corresponding to (6) we insert (21) in the expression defining $G_m^{(2)}(r e^{iv})$ and obtain

$$G_m^{(2)}(r e^{iv}) = F_m^{(2)}(r e^{iv}) = \int_{ce^{iv}}^{re^{iv}} (u - re^{iv})^{m-1} f_m(u) h(u) du.$$

Here

Here
$$\left| \int_{ce^{iv}}^{re^{iv}} (u - re^{iv})^{m-1} f_m(u) h(u) du \right| < \varepsilon \int_c^r (t+r)^{m-1} \left| f_m(te^{iv}) \right| dt.$$
Using the inequality $|u - te^{iv}|^{m+1} \ge 2^{-m-1} (\sin v)^{m+1} \sqrt{(u^2 + t^2)} |u|^m$ we get, by the same methods as in the proof of the right-hand side of (2), $|f_m(te^{iv})|$ uniformly bounded by

m d bv $(\varphi_1(t) + |\varphi_1(-t)|)t^{-1}$. Since $\varphi_1(t)$ and $|\varphi_1(-t)|$ belong to $T(\alpha, \beta, a)$ the function $t^{-\alpha}(\varphi_1(t) + |\varphi_1(-t)|)$ increases and we obtain with a constant c_2 that

$$\int_{c}^{r} (t+r)^{m-1} \left| f_{m}(t e^{iv}) \right| dt \leq c_{2}(\varphi_{1}(r) + \left| \varphi_{1}(-r) \right|) r^{-\alpha} \int_{0}^{r} (r+t)^{m-1} u^{\alpha-1} dt$$

and the last expression is uniformly $O((\varphi_1(r) + |\varphi_1(-r)|)r^{m-1})$. Now $F_m(re^{iv}) \sim G_m(re^{iv})$ when $r \rightarrow +\infty$ by the same arguments as in Theorem 1. The result of the theorem then follows from Theorem 2 and Lemma 6.

Corollary 1. Let m be a non-negative integer and let q be a constant with 0 < q < 1. Let A and B be two real constants different from zero. For $u \ge 0$ we assume that $\psi(u) \in T$ if A > 0 and $-\psi(u) \in T$ if A < 0 and also $\psi(u) \in T$ if $(-1)^m B > 0$ and $-\psi(-u) \in T$ if $(-1)^m B < 0.$ If

$$\int_{-\infty}^{\infty} (u-z)^{-m-1} d\psi(u) \sim A(-z)^{-1+q} + Bz^{-1+q},$$

where $(-z)^{-1+q}$ is positive on the negative real axis and z^{-1+q} is positive on the positive real axis, then

$$\psi(u) \sim \frac{Am! \sin \pi q}{\pi q(q+1) \dots (q+m)} u^{q+m}$$

when $u \rightarrow +\infty$ and

$$\psi(u) \sim \frac{Bm! \sin \pi q}{\pi q(q+1) \dots (q+m)} |u|^{m+q} (-1)^m$$

when $u \rightarrow -\infty$.

The corollary is easily proved if we use the asymptotic expressions for ψ above as our φ in Theorem 4.

Remark. A bilateral Tauberian theorem for kernels of the type $u^{-h}(u+x)^{-m-1}$ (compare Theorem 3) can be proved by the same method as in Theorem 4.

REFERENCES

- KELDYŠ, M. V., On a Tauberian theorem, Trudy Matematičeskogo Instituta Imeni V. A. Steklova, t. XXXVIII, 77-86 (1951).
- 2. PLEIJEL, Å., A bilateral Tauberian theorem. Arkiv för Matematik 4, 561-571 (1962).

Tryckt den 26 juni 1963