ARKIV FOR MATEMATIK Band 5 nr 6

Communicated 9 January 1963 by A. PLEWJEL and L. GirpIiNg

Bilateral Tauberian theorems of Keldys type

By ToRE SELANDER

Introduction

Let T be the class of increasing (i.e. non-decreasing) functions defined for 23>0
and identically zero in neighbourhoods of the origin. Let ¢ € T'(«,,a) or shorter
@€ T(x,p) if p€ T, is differentiable and satisfies the basic inequality

ap(x) <zg' () <Pp(x) (1)

for #>a, a = constant >0. Here o and f are constants for which always0<a <f<a+1.
Avoiding the case ¢ =0 we can and shall also always assume g(a)>0.

We write f~g if f(x)/g(x) =1 as 2 — - oo, later on also when the independent
variable tends to — co or tends to infinity in the complex plane in certain ways. The
integral part of a number § is denoted [£].

Keldys [1] has proved

Theorem A. Let 9 € T(a,f) and suppose in case o =0 that p(x)—>o0 asx—>oco, Wrile
[Bl=m. If for y€T

fw (w+z) " dep(u) ~ on (u+ )~ dy(u)
0 0

then @ ~y.
In his proof Keldys first deduces the following theorem which, however, is not
explicitly formulated in his paper.

Theorem B. Let @ and y satisfy the same conditions as in Theorem A. Let kbe a constant
such that f<k<a+1. It then follows from

fm (w+ ) *do(u) ~ foo (u+ x) " *dap(u)
0 0

that @ ~y.

In this paper we deduce theorems of similar type (with o >0) in the bilateral case
in which integrals are considered over (— oo, + o) instead of over (0, o). As prepara-
tion we study in section 1 unilateral Tauberian and Abelian theorems with the kernel
ub(u+2x)~!, where 4 is a constant with 0 <8<1. Section 2 deals with the bilateral case
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for the kernel (u-+x)~1. In section 3 a unilateral Tauberian theorem is deduced for
the kernel u—"(u+x)~"-. By the help of these results a bilateral theorem with kernel
(uw+x)~™1 is obtained in the last section.

A. Pleijel [2] has investigated the bilateral case with the kernel w—"(u+z)* for
special explicitly given functions . I thank him for directing my interest to the
problem of generalizing the results by Keldys.

1. The unilateral case with the kernel «’(u + x)™"
In Keldys’s paper [1] we find

Lemma 1. If p € T(a,B,a) then x~*@(x) increases and x P(x) decreases for z=>a.

For our estimates we also need

Lemma 2. Let ¢ € T(a,f,a) with 0<a<f<1 and let 8 be a constant such that 0 <6<
1 —B. Then there are positive constants Ay, A, so thai

4,8 p(a) < qu"(u +2) dp(u) < 4,2 o) 2)
0

s valid for all x>a.

Proof. The integral is diminished if taken only over (z,2t). Since @ is increasing and
since according to (1) de(u) > au—p(u)dw for > a, it is clear that de(u) > ap(z)uw'du
in (x,2x) provided z>a. This proves the left hand side of (2). To show the right-hand
side the domain of integration is divided into (0,a), (#,%) and (, + o). The integral
over (0,a) is evidently O(z~1) which can be replaced by O(a’ 'p(z)) since z’p(x) has
a positive lower bound when z>a. According to Lemma 1, u™*p(u) <z *p(z) for
a<u<z and % Ppu)<zPp(r) for x<u<oo. These estimates added to dp(u)<
pu—' @ (u)du give the appropriate estimates for the integrals over (a,z) and (z, + o).
The convergence of the occurring integrals is clear since >0, >0 and f+9<1.

Theorem 1. Let ¢ € T(«,f,a) with 0<a<f<1 and let y€T. Let § be a constant such
that 0 <0<1—p and write

Ha)= fw w(u+ ) dp(w),
]

glx)= f wd(u+ x) " dyp(u).
0
Then f~g if and only if p~yp.

Proof. Assume first 1 ~g. If =0 theorem A4 shows that ¢ ~. Only the case §>0
remains to be considered. Write

F(x)= f: =0 — £)°""4(t)dt,

G(x)= f: =0 —t)°"g(t) dt.
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If the expressions for f and ¢ as integrals are introduced and the order of integration
inverted one finds

F(z)=n(sin nd)? f : (u+2)°do(u), 3

G(x) = n(sin nd) ! fw (w+ z)° dp(w).
0

If we can prove that f ~ g implies F ~ @ the result ¢ ~y follows from Theorem B.
To every ¢>0 we can choose ¢>a so large that if g(t) =f(¢) +#(t) f(t) the function
7(t) satisfies |5(t)] <e for t=>c. Take 2>2¢ and write.

F(z)=F () + F,(x)= J: £ — ) (t)dt + f : t=%(x — 1)~ () dt,

z

G(z) = Gy(z) + Gy(x) = J =%z — 1)’ g(t)dt + f =%z —t)*g(t)dt.
0 c
We evidently have
Fy(z)=0E""), (4)
&y(2)=0(""). #)
We want to get a lower bound for Fy(x). A partial integration of (3) shows that
F(z) = n(1 — §)[sin ] " f (u+ )’ p(u)du.
]
The last integral is diminished if taken only over (z,2x) and since @(u >¢@() in this
interval we get a constant 4 >0 such that
F(z) 2 24p(x)2* .
Since F,(x)=F(x)— F,(z) and @(z)—>cc when z—>co we conclude by (4) that
Fy(x)>Ap(x)a®? )
for large values of . Because of the choice of ¢

YA —&) <g(t) <f(t)(1 +e)
when t>c. It follows that

Fy(2)(1 —¢) <Gylx) <Fy(x)(1 +e). (6)

iti F__BF,+l
Writing G GF,+GyF,

and observing that ¢(x)~>co when z—>co we see from (4), (4'), (5) and (6) that F ~@.
As was already mentioned this implies that ¢ ~y is a consequence of f~g.
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We proceed to prove that f~ g is a consequence of ¢ ~y. The cases =0and é>0
are now considered simultaneously. If

plu) = @(u) +n,(u)p(u) )

our assumption means that 7,(x)—0 as u—>co. Relation (7) certainly holds for u >a.
The proof is however easily adapted also to cover the case when y cannot be written
in this way for u<a. Partial integrations of the formulas for f and g lead to the
relations

flx)= fo K(z, u)plu)du,

glx)= f: K(z, v)p(u)du,
where K(z,u)=u’(u+2)"%~ du’Yu+x)"'. From (7) it follows that
ot =1+ | Kz wim)ptu)do.
For u>C = C(e) we have |5,(u)| <e. The integral from C to + oo is less than
P f: (w?(u+ )" + 6u’Hu + ) ) p(u)du.

Assume z>C>a. Then, according to Lemma 1, u “p(u) <2 "p(x) in (C,z) and
u Pp(u) <z Pp(z) in (x, o). It follows that

fw Kz, w)yn,(u)pu)du| < e0'2’ " p(z)
(o)

where €' is independent of C'=C(¢). By a rough estimate of K(x,u) it is easily
seen that

C
x fo K(x, u)n,(w)p(u)du
is bounded. By the help of (2) it then follows that g~ f.

2. The bilateral case with the kernel (u + z)™!

Lemma 3. If @, @ % constant, and y are monotone in the same way for >0 and for
<0 and if

fww—ﬂwﬂm~f (u—2) () (8)

as z tends to infinity ulong one non-real half-ray from the origin, then the same relation
holds for all such half-rays.
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It is evidently no restriction to assume 0<c<x for the argument of the given
half-ray. Denote the left- and right-hand sides of (8) by f(z) and g(z). If z == -+iy then

f2) =1, —xl,+iyl,,

. _ + o0 ud(p(u) -~ + co d(p(u)
where Il_f_‘w_—(u—x)2+y2’ I,= _w—-—(u—x)z—i-yz'

We first treat the case de(u)>0 for all u. Since ¢ = constant we have I,>0 and we
can assume 0<argf(z)<z in the upper half-plane. Similar considerations allow us
to assume 0 <argg(z) <z. Hence we get —n<argf(z) —argg(z)<w and a consequence
is that every branch of log (f(z)/g(2)) is univalent and analytic in the upper half-plane.
Thus h(z) =exp{ilog[f(z)/g(2)]} is analytic if y>0 and we get exp (—n)<|h(z)] <
exp 7. Our assumption f~¢g when 2z tends to infinity along argz=c yields h(z)—>1
when |z]—>co along the same half-ray. It follows from Montel’s theorem that A(z)—>1
uniformly in d < argz <z —§ for every 4 >0. In consequence f ~ g when |z|—co along
any half-ray in the upper half-plane.
When do(u) >0 for «>0 and dp(u) <0 for «<0 we consider

2f(z) = I, — (22 +y?) I, +iyl,.

We observe that I,>0 and repeating the discussion above with zf(z) and zg(z)
instead of f(z) and g(z) we obtain the desired result.
Now we can prove the following Tauberian theorem.

Theorem 2. Let for x>0, p(x) € T(a,f,a) with 0 <a<f<1 and p(z) € T. Suppose also
that either ( —x) € T'(a,f,a), p(—x) €T or —yp(—2z) € T(a,B,a), —y(— )€ T when 2>0.
Assume

A, <|p(~2)lp)| <4, (9)
for x>a where A;, A, are positive constants. If under these assumptions

fw (u—2)'do(u) ~ fw (u—2) " dp(u)

— xR

when |z| oo along a non-real kalf-ray from the origin then @(x) ~p(x) as z—>+ co and

as r—>—oo,

According to Lemma 3 we may assume the half-ray to be z=it, { >0. The assump-
tion of the theorem then reads

f " it) () = (L +7(t) f " (it g,

where 7(f) =#,(t) +17,(¢) tends to zero when {—+ co. Splitting real and imaginary
parts we obtain after simple transformations of the occurring integrals the formulas

[T - aeno [Vawsoyapw - [ e o g,
(10)
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fw (u+8%) " Mdypy(u) = (1 +7,(%)) fw (u+ 8" dipy(u) + 7 y(t) f: Valu + %) g, (u),
0 0
(11)

where  y(u)=y(/u) +y(~Vu), pytw)=p(Vu) = y(—Vu), @) =gl/w)+o(=Vu),
a(w) = p(Vu) — p(— V).

Let us first consider the case when dg(u)>0 for >0 and dg(u) <0 for «<0. On
account of the conditions for ¢ and y it is easily seen that ¢,(u)€T(«/2,8/2) and
¥ (w)E€T. Tt is also clear that |@,(u)| <g,(u). According to the last remark

f ) (u+ ) depy(u) | < f e +8%) " dep, (u)
) 0

and by Lemma 2 the right-hand side is ur. {ormly O(¢~2¢,(#?)). This lemma also shows
that

f‘” V;(u + tz)“ld%(u) > Bt‘Pl(tz)
0

with B positive for large values of £. Since #,(¢) and 7,(f) tends to zero as {—oc it so
follows from (10) that

f B Va(u + ) dy, (u) ~ fw Vau(u + ©2) e, (u).
0 [}

Here vy, €T and ¢, € T(a/2,8/2) where according to the conditions on « and B the
inequalities §/2 <} and «/2 >0 are valid. Theorem 1 gives y,(x) ~ @,(x) when x—+ oo,
and from the Abelian part of the same theorem it then follows that

f (u+ %)y (u) = (1 + 94(2)) f . (w+ ) dg,(u), (12)
[
where 2,(£)—>0 when f—> + co. The result of adding (11) and (12) is

2 f "+ ) (V) =2 f " (et ) gV u) + my(t) f : () dgry(u)
0 (]

+ 9587 f: Vu(u+ £%) "M, (u) +75(2) f : (w + ) ", (u). (13)

The factor of 7, is O(t~2¢,(t%)) and the same holds for the factors of #, and #;. An
application of Lemma 2 shows that for large values of ¢

f m(u + ) dg(Vu) > B't (1),
0

where B’ is a positive constant. Since g( —£)/@(t) is bounded it then follows from (13)
that
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-] o0 _
f . (u+ 2 (V) ~ fo (w+ 12 dp(Vu).

Theorem 1 then shows that p(z) ~ 8(x) as —+ co. On the other band, if we subtract
(11) and (12) we obtain by similar considerations as above that

f - (u +2) dyp(~ Vu) ~ fw (u+ 2y dop( — Vu)
0 (1}

and we conclude by theorem 1 that @(x) ~y(z) as z—— oo, Then we have proved the
theorem under the assumption dg(u) <0 for «<0.

Suppose dg(u) >0 for u <0. Then we first consider (10) and by the help of Lemma 2
and the Tauberian part of theorem 1 we get y, ~ ¢,. The next step is to apply the
Abelian part of theorem 1 with =1 to the functions ¢, and y, and combining thls
result and (10) we get in the same way as above the desired result.

Remark. Without (9) our proof only shows that ¢, ~, if de(u)<0 for ¥ <0 and
@z~ 1y, in case dp(u) >0 for u<0. If we are interested in obtaining ¢ ~y asz—>+ oo
we only use the right part of (9) and if we want ¢(z) ~ y(r) as x— — co we use the left
part of (9).

3. The unilateral case with the kernel % "(u +2)™™!

In this section we shall prove a Tauberian theorem for integrals of the form

fw w M u+2)"" dep(u), (14)

0

where % is a positive constant. Writing ¢, (z) = &« "dp(u) we get (14) equal to

f " (et 2) " gy (w)
0

and the integral is of the form already treated in Theorem A. Hence we start proving
some properties of integrals like ¢,.

Lemma 4. Let ¢ € T(a,B,a). Consider g,(x f ot "dep(t) where h>0 is a constant and
assume @1(x)—>+ o when x—+ oo, Then x “@,(x) ncreases for every o' <o —h and
x P p,(z) decreases for every B’ >B—h when x is sufficiently large If o> h the condition
@i(x)—> + oo s fulfilled by itself and @, € T(a',B’) provided o' <a—h and p'>B—h are
chosen so that 0<p’<a' +1.

It is easily seen that
zp1(x) — (0 — h) @y (@) = 27" (g’ (x) — aqp(x)) + b fo £t (8) — agp(t)) dt.

In fact the terms zg;(x) and 2—"+1¢’(x) as well as the other terms not containing «
cancel. The rest of the identity is the result of a partial integration in the integral
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defining @, (x). Since ¢ € T(«,f,a) relation (1) shows that z¢'(x) —ap(x) >0 for z>a.
Thus for these z

wpi(x) —(a—h)py () > C,
where C is a constant. If ¢,(x)—+ oo this implies that for a given ¢>0
2@1(2) = (e —h—&) g1 (2)

when z is greater than a certain constant a’=a'(¢). If the same identity is applied
with § instead of o the result is

2p1(2) S (B—h+e)gy(2)

when z is sufficiently large.

¢, is clearly positive, increasing and identically zero near the origin. To prove the
last part of the lemma it remains to show that in case a>h, ¢,(x)—>+co when
x—>+ oo, A partial integration of the integral defining ¢, gives

%(x)=x"'«p(x)+hf:t"+‘qo<t)dt. (15)

We write 2"@(x) =2* "(z~“p(z)) and since « >k and =~ *@(x) increases we get x~"¢(z)
—>+ oo ag z—>+ oo. Since b >0 we diminish @, () by omitting the integral in (15) and
hence @;(2)—>+ o0 as x—>+ oo,
Lemma 5. Let €T (o, 8,a). Assume a>h>0. Then with a constant C
z
" "p(x) < @, (x) = f t " de(t) < Or "p(z) (16)

0
for large values of x.

The first part of the inequality follows from (15). The second part is a consequence
of

f t " lp(t)dt < () f = h=1dg
a. 0

if we observe that z—"@(x) =2~ "(z~“@p(x)) tends to infinity as z—>+ co.

Lemma 6. Let g € T(a,f) and let p€T. Assume 0<h<a. If @~y where

z r
i) = fo £ dg(t), pu(z) = fot"‘dw(t)
then @ ~ .
We normalize y and y; by y(z)=lim y(f) and the corresponding for %,. Then
ta>2+0

p(x) = frtde1(t) = xh'l"1(“7) —k fr th_l"l’l(t) dt. (17)
0 0
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The continuity of ¢, shows that we still have ¢, ~,. This assumption can be written

(%) =(1 +9(x)) @, (x) where (x)—>0 as 2—>co. Formula (17) together with the corre-
sponding formula for ¢ leads to the relation

V(&) = (&) + (@) gy () — f R CICLe 18)

Given >0 we get if 4 is sufficiently large (compare (17))

“J " 1, () dt = b () — 2y ).

0

J (e pa(t)dt

We know that g(z)—+ co when z—>+ oo and according to (16) it follows that (17)
can be written

plx))plx) =1+eM(z)

where M (z) is uniformly O(1) when z— <. The conclusion of the theorem follows.
Now we can prove the following theorem.

Theorem 3. Let p € T(«,B) and wE€T. Assume 0<h<o and let m be the integral part
of B—h. If

fw ™M (u+ )" dyp(u) ~ fwu""(u + z)" "™ dg(u) (19)
0 0 A

then @ ~yp.
As was already mentioned in the beginning of this section, (19) can be written

f“(u +x)° " dy, (w) ~ J‘W-(u +a)" " ldg, (w),
0 0

where y,(z)=[§u"dy(u) and ¢,(z)=[ju"dp(w). By lemma 4 we conclude that
@, €T (o', ') where the integral part of 8’ equals m and o' >0. Evidently ¢, €7 and
Theorem A then shows that y, ~¢,. The theorem then follows from Lemma 6.

4. The bilateral case with the kernel (u + z)~™"!

In this section we shall prove the following generalization of Theorem 2.

Theorem 4. Let p(x) €T (o', 8) and p(x) €T for £=0. Suppose also that either p{ —x) €
T,B), p(—2)€T or —p(—x)€ET(a,B'), ~y(—%)ET when 2>0. Assume

A, < |p(—2)[p(x)| <4,

for large values of x, where A, and A, are positive constants. Suppose that the relation
m<ao’'<f’ holds where m=[p§']. If

f..w (w—2)"""dp(u) ~ f ” (u—2)"" dyp(w) (20)
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when |z|—>co along a non-real half-ray from the origin then g(x) ~y(x) when z—>+ co
and when x—>— oo,

At first we observe that it is no restriction to assume the half-ray to lie in the
upper half-plane. For m=0 the theorem is already proved so we can assume m >1.
We denote the left part of (20) by f.(z) and the right by g,(z). Put

Fr(2)= f: (u=2)" " fn(u)du,

Gml(z) = fz (u—2)""'gm(u)du,
0

where the way of integration does not cut the real axis. If we insert the expressions
for f,, and g,, as integrals and invert the order of integration we find

Fuz)=—(—2)"m™ J-w w™"(u—2) " dg(w),

Gufz)= —(—2)"m™ fm w” " (u—2) " dy(u).

Put @,(x) = [§u—"dp(u) and p,(z)=[§u"dyp(). Lemma 4 then proves that P,(2) €
T(x,B,a)and either p,( —z) or —@,(—x)belongs to T(a,S,a)forx >0 where0 <a<f<1.
We also get y,(x) €T and we see that either y,( —z) or —y,{ —x) belongs to T'forz >0
and that y, is monotone in the same way as ¢,. Introducing ¢, and y, in the integrals
of F, and G,, we get

Fag)= = (=™ [ ey tip )

Gn(z)= = (~2)"m™ r (w=2)dps o).

If we can prove F,(2)~@G,(z) when |z|—>co along the given half-ray we can use
theorem 2 to get the result. The. idea of this proof is the same as in the Tauberian
part of Theorem 1.
Let the half-ray be given by re™, r>0. Take ¢>0. The assumption (20) can be
written
Gnlre™) = fulre™) +h(re®)fofre®), (21)

where |h(re')| <e for r>c = ¢(e). Let r>2c and ¢ >a. Put

F,(re?)=FO(re®) + FO(re™)

relv

= fce ’ (u—re®)y"fo(u)du + j o (u—re*)" Y (u)du,

1]

G (7€) = GP(r ™) + GP(r ')

celv relv
= f (u—71e®)" g n(u)du + f 3 (u—re)™ g, (u)du,

0
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where the way of integration coincides with the given half-ray. Evidently FQ)(re®)
and G(re™) are uniformly O(r™ ). We want a lower bound for F@(re®) and hence
we study F,(re").

F(re®)= (I, —rI, cos v +irl,sin p)r™ ™o timy, -1, (22)

where 11=f w|u—re” |y, (u), 12=f [w—r e | %de, (u).

At first the case dg,(u) >0 for all u is discussed. Owing to |u—re®|<|u|+7,

I,> f (| u l + r)‘zd(pl(u)

and by the same argument used to prove the left part of (2) we get a positive constant
¢; such that 2¢,(¢y(r) + |@,(—7)|)r—2 is a lower bound for I,. Relation (22) then yields

| Fofre®) | =2¢,(sinv)m-1rm1(gp,(r) + [(]91( =)).
Since F3(r ™) = F,(re®) — FP(re®) we get
| FR(re)| 2 ¢y (sin o)m ™ r" e, (r) + | @ (— 1) |)

for large values of r. To get the relation corresponding to (6) we insert (21) in the
expression defining G2 (r ¢") and obtain

T freiv
GR(re'’) =FP(re)= f (u— re®)™ ", (u) h(u)du.

celv

Here “re“’ (u—re®)" () h(u)du| < ¢ fr ()" fulte™) | dt.

celv

Using the inequality |u—te®?|™+1>2-m-1(siny)™+ |/ (u?+12)| u|™ we get, by the same
methods as in the proof of the right-hand side of (2), |f,(t ¢”)| uniformly bounded by
(@u(t)+ |@y(—2)| )L, Since ¢(t) and |[@,(—t)| belong to T(x,B,a) the function
t*(@1(t) + | p1(—~£)| ) increases and we obtain with a constant ¢, that

T

fr (E+7)" " fu(t ) | dE < oy (r) + | @y (— 1) |) f (r+ )™ w1t
4 0

and the last expression is uniformly O((p,(7) + | ( —7)|) ™). Now F,(re”) ~ G, (re™)
when r—+ oo by the same arguments as in Theorem 1. The result of the theorem then
follows from Theorem 2 and Lemma 6.

Corollary 1. Let m be a non-negative integer and let q be a constant with 0 <q<1. Let
A and B be two real constants different from zero. For uw>0 we assume that w(u)€T if
A>0 and —ypu)€T if A<0 and also pu)€T if (—1)"B>0 and —y(—u)€T if
(—1)"B<0. If
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f (w—2) " dyu)~ A(—2) 1+ Bz 1Y,

-0
where (—z)71*% is positive on the negative real axis and 2z~ 17 is positive on the positive
real axis, then

Am! sin ng
nglg+1)... (g+m)

qa+m

p(u)

when w — + oo and

Bm! sin nq
g+1)...(qg+m)

pl~ Ju|" (= 1"

when u—>— oo,

The corollary is easily proved if we use the asymptotic expressions for y above as
our ¢ in Theorem 4.

Remark. A bilateral Tauberian theorem for kernels of the type w—"(u+z)-™*
(compare Theorem 3) can be proved by the same method as in Theorem 4.
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