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Introduction 

Let  T be the class of increasing (i.e. non-decreasing) functions defined for x>~0 
and identically zero in neighbourhoods of the origin. Let  CE T(cc,fl, a) or shorter 

E T(~,fl) if ~ E T, is differentiable and satisfies the basic inequality 

O) 

for x > a, a = constant > O. Here cr and fl are constants for which always 0 ~< ~ <fl < ~ + 1. 
Avoiding the case ~ - - 0  we can and shall also always assume r  O. 

We write /,,~ g if [(x)]g(x) --> 1 as x --> + c~, later on also when the independent 
variable tends to - oo or tends to infinity in the complex plane in certain ways. The 
integral par t  of a number  fl is denoted [fl]. 

Keldyfi [1] has proved 

Theorem A. Let r  T(~,f l)  and sup,pose in  case a = O  that q~(x)-->oo as x--~oo. Write 
[fl] = m.  I ! / o r  y E T 

then ~ ,~ % 

In  his proof Keldyfi first deduces the following theorem which, however, is not 
explicitly formulated in his paper. 

Theorem B. Let  q) and ~ satis/y  the, same conditicovs as in  Theorem A . Let k be a constant 
such that fl < k < o: + 1. I t  then ]oUows /rom 

that q~ ,,, ~o. 

In  this paper  we deduce theorems of similar type (with ~ > 0) in the bilateral case 
in which integrals are considered over ( - c~, § oo) instead of over (0, oo). As prepara- 
tion we s tudy in section 1 unilateral Tauberian and Abelian theorems with the kernel 
n~(u + x) -1, where ~ is a constant with 0 ~ ~ < 1. Section 2 deals with the bilateral case 
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for the kernel (u + x)-L In  section 3 a unilateral Tauberian theorem is deduced for 
the kernel u-h(u + x)-m-L By the help of these results a bilateral theorem with kernel 
(u +x) -m-1 is obtained in the last section. 

/~. Pleijel [2] has investigated the bilateral case with the kernel u-h(u+x)  -1 for 
special explicitly given functions 9. I thank him for directing my  interest to the 
problem of generalizing the results by  Keldyw 

1. The unilateral  case  w i t h  the  kerne l  u~(u + x) -1 

In  Keldyw paper [1] we find 

Lemma 1. I /cpe  T(cc,fl, a) then x-~q~(x) increases and x-~q)(x) decreases/or x ~ a .  

For our estimates we also need 

Lernma 2. Let q~ E T( :t,fl, a) with 0 < c r  and let (~ be a constant such that 0~<5< 
1 - f t .  Then there are positive constants A1, A 2 so that 

A l  x~-lqj(x) <. f ? ue(u + x)-Id~o(u) ~ A2x~-~q~(x) (2) 

i8 valid/or all x > a. 

Proo]. The integral is diminished if taken only over (x, 2x). Since ~0 is increasing and 
since according to (1) dqJ(u) ~ o~u-lg(u)du for u >a ,  it is clear tha t  d~(u) ~o~q~(x)u-ldu 
in (x, 2x) provided x >a .  This proves the left hand side of (2). To show the right-hand 
side the domain of integration is divided into (0,a), (a,x) and {x, + oo). The integral 
over (0,a) is evidently O(x -1) which can be replaced by  O(xO-Xcp(x)) since x%f(x) has 
a positive lower bound when x > a .  According to Lemma 1, u-~q~(u)<x-~q~(x) for 
a<u<<.x and u-~9(u)<x-~9(x)  for x < u < o o .  These estimates added to d~(u)~< 
flu-19 (u)du give the appropriate estimates for the integrals over (a, x) and (x, + oo). 
The convergence of the occurring integrals is clear since ~ > 0, $ >~ 0 and fi + ~ < 1. 

Theorem 1. Let q~ E T ( o~, fl , a ) with 0 < : r  and let y~ E T. Let ~ be a constant such 
that 0 < 5 < 1 - fl and write 

/(x)ffif:u~(u+x)-ldq~(u), 
g(x)--f?u~(u+x)-ldw(u). 

Then / , , ,g  i/ and only i~ ~ N ~p. 

Proo/. Assume first ! ~ g. I f  (~ = 0 theorem A shows tha t  ~ N ~. Only the case ~ > 0 
remains to be considered. Write 

F(x)=f:t-~(x-t)'-lt(t)dt, 
G(x)=f:t-%-t)~-lg(t)dt. 

86 



ARKIV FOR MATEMATIK. B d  5 n~ 6 

H the expressions for f and g as integrals are introduced and the order of integration 
inverted one finds 

F(x) = ~(sin ~)-1  f ?  (u + x)~-~dq~(u), (3) 

G(x)= ~(sin reO) -1 f :  (u + xf-Xd~/(u ). 

If we can prove that  ] ~ g  implies F ~ G  the result ~ N v  2 follows from Theorem B. 
To every e > 0  we can choose e>a so large that  if g(t)=[(t)+~l(t)/(t) the function 

~(t) satisfies IT(t)] <e  for t>~c. Take x>2c and write. 

F(x)=Ft(z)+F,(x)ff:t-~(z-t)~-l/(t)dt+f:t-~(x-t)~-ll(t)dt, 
O(z)=O~(z)+O~(z)=f:t-2z-t)~-~g(t)dt+f:t-~(x-t)~-~a(t)dt. 

We evidently have 

PI(x) = O(xa-1), (4) 

a & )  = o(x~-~). (4') 

We want to get a lower bound for F,(x). A partial integration of (3) shows that  

F(x) = ~(1 - (~)[sin ~t~] -1 f :  (u x)~ + 

The last integral is diminished if taken only over (x,2x) and since cp(u>~cp(x) in this 
interval we get a constant A > 0 such tha t  

F(x) >~ 2A~o(x) x ~-1. 

Since F~(x)=F(x)-Fl(x ) and ~ 0 ( x ) - ~  when x-->oo we conclude by  (4) that  

F~(x) > h~(x) x ~ -~ (5) 

for large values of x. Because of the choice of c 

l(t)(1 -~ )  <g(t) </(t)(1 +~) 
when t > c. I t  follows tha t  

.Fz(x)(1 - e )  < Ga(x) <Fa(x)(1 +e). (6) 

Writing F =  F1/F2+ 1 

and observing that  ~(z)-~oo when x-->oo we see from (4), (4'), (5) and (6) tha t  F ~ G. 
As was already mentioned this implies that  ~Ny~ is a consequence of / -~g .  
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We proceed to prove tha t  / ~  g is a consequence of r ~ p .  The eases 5 = 0  and ~ > 0  
are now considered simultaneously. I f  

~(u)=~(u)+~(u)~(u) (7) 

our assumption means tha t  ~l(u)-->O as u->c~. Relation (7) certainly holds for u ~>a. 
The proof is however easily adapted also to cover the ease when yJ cannot be written 
in this way for u<a.  Partial  integrations of the formulas for ] and g lead to the 
relations 

/(x)=f:K(x,u)r 

ff(x)=f?K(x,u)W(u)au, 
where K(x, u) = uS(u + x) -2 - 8uS-'(u + 2)-1. From (7) it  follows tha t  

V g(x) = l(x) + K(x, u)~,(u) f(u)du.  
0 

For u > C = O(e) we have [ ~1(u) [ < e. The integral from G to + oo is less than 

d v  

Assume x >  C>a.  Then, according to Lemma 1, u-~q~(u)<.x-~(x) in (G, x ) a n d  
u - ~ ( u )  <. x-a~(x) in (x, ~ ). I t  follows tha t  

[ f u),7,(u) o(u)aul < w'e'-' 
where G' is independent of G =  G(e). By  a rough estimate of K(z, u) i t  is easily 
seen tha t  

x (~ K(x, u) ~l(u)q~(u) du 
J o  

is bounded. By the help of (2) it then follows tha t  g"l. 

2. The bilateral case with the kernel (u + z) -I 

I~mma 3. I] ~, ~ ~ constant, and ~ are monotone in the same way/or  x > 0 and/or 
z < O  and i/ 

(s) 

as z tends to in/inity along one non-real hall-ray/rom the origin, then the same retatior, 
holds/or all such halt rays 
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I t  is evidently no restriction to assume 0 < c < z  for the argument of the given 
half-ray. Denote the left- and right-hand sides of (8) by  ](z) and g(z). I f  z = x + i y  then 

/(z) = I1 - zI2 + iy 12, 

I = ['§ ud~(u) = ['§ where 1 J _ ~ ( u - x )  ~ +y2' i2 J ~ dq~(u) 
_ ( u - x )  2 + y 2 "  

We firs~ t rea t  the case d~(u)/>0 for all u. Since ~ ~ constant we have 12 > 0 and we 
can assume O < a r g / ( z ) < g  in the upper half-plane. Similar considerations allow us 
to assume 0 <a rgg(z )<~ .  Hence we get - ~ <  a r g / ( z ) - a r g g ( z ) < g  and a consequence 
is tha t  every branch of log (/(z)/g(z)) is univalent and analytic in the upper half-plane. 
Thus h(z)=exp(ilog[/(z)/g(z)]} is analytic if y > 0  and we get exp ( - ~ ) <  Ih(z)[ 
exp g. Our assumption / ~ g  when z tends to infinity along a r g z = c  yields h(z)->l 
when [ z [ - + ~  along the same half-ray. I t  follows from Montel's theorem tha t  h(z)-->l 
uniformly in ~ ~ argz ~<g - ~ for every ~ > 0. In  consequence / ~ g when I z I --> r along 
any  half-ray in t h e  upper half-plane. 

When d~(u)>/0 for u > 0  and d ~ ( u ) ~ 0  for u < 0  we consider 

z/(z) = x I  1 - (x 2 + y2) 12 + i y l r  

We observe tha t  11>0 and repeating the discussion above with z/(z) and zg(z) 
instead of ](z) and g(z) we obtain the desired result. 

Now we can prove the following Tauberian theorem. 

Theorem 2. Let /or  x >~0, q~( x ) E T ( ~,fl, a ) with O < a < fl < l and v2( x ) E T. S u ~ o s e  also 
that either q)( - x )  E T(a, fl, a), v2( - x )  E T or - l  o ( - x )  E T(~,fl, a), - lo( - x) E T when x >10. 
Assume 

A1 < I~(-~)/~(~)J <A2 (9) 

/or x > a  where A1, A 2 are ~ i t i v e  constants. I / u n d e r  these assumptions 

f~_~ (u-z)-Id~(u)~ f~ (u-z)-idw(u) 
when I z]---> oo along a non-real bal i -ray/ tom the origin then q)(x)N ~o(x) as x---> + r and 
a 8  gg.-->-- c ~ .  

According to Lemma 3 we may  assume the half-ray to be z = it, t > 0. The assump- 
tion of the theorem then reads 

f _ ~  (u-it)-ld~o(u)= (1 +~(t))f~_.. (u-it)-Idq~(u), 

where ~7(t)=~h(t)+i~2(t ) tends to zero when $-~§ ~ .  Splitting real and imaginary 
parts we obtain after simple transformations of the occurring integrals the formulas 

f : ~(u + t2)-ld~ol(u)= (l + ~l(t) ) f : U~(u + t')-ld~l(n)-t~(t) f : (u + t2)-ld~,(u), 
(10) 
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f~(u+t~)-ldv2z(u)=(l+rh(t))f? (u+*2)-Id~odu)+t-in2(t)f?~(u+t2)-ld%(u), 
(11) 

where v2x(u) = ~(l/u) + v2( -- ~u), ~z(u) = ~(~u) -- ~0( -- ~/u), q01(u ) = ~(~u) + ~0( -- ~u), 
~2(u) = ~ ( ~ )  - ~( - ~). 

Let  us first  consider the  case when &p(u)>~0 for u > 0  and dq)(u)<~0 for  u < 0 .  On 
account  of the  conditions for ~0 and  y) i t  is easily seen t h a t  ~01(u)E T(~c/2,fl/2) and 
y)i(u)ET. I t  is also clear t h a t  IVz(u)l ~<W(u). According to  the  last  r e m a r k  

and by  L e m m a  2 the  r ight -hand side is u! l . ;grmly O(t-2~l(t2)). This l emma  also shows 
tha t  

f ?  IFu(u + t ~) ~d~l(U) > Btcf~(t ~) 

with B posit ive for  large values of t. ,Since ~h(t) and  ~72(t) tends  to  zero as t - ->~ it  so 
follows f rom (10) t h a t  

Here :y )xeT and q~leT(~/2,[3/2) where according to  the conditions on :r and  fl the  
inequalities fl[2 < �89 and  ~/2 > 0 are valid. Theorem 1 gives ~Pl(x) N ~0 a(x) when x -+  + oo, 
and f rom the Abelian pa r t  of the  same theorem it  then  follows t h a t  

(u + t~)-~dy, x(u) = (1 + ~Ts(t)) (u + t~)-~dqJx(u), (12) 
0 0 

where ~?a(t)-~0 when  t--> + oo. The  resul t  of adding (11) and  (12) is 

2 f ? (u + t2)-ldve(i/u)=2 f? (u +t2)-ld~(lFu) + ~(O f ? (u +t2)-ld~du) 

+ r12(t)t-~ f ? l/-u(u + tz)-ldr + rla(t) f ? (u + t2)-ldepx(u). (13) 

The  factor  of 71 is O(t-2~l(tz)) and  the  same  holds for the  factors  of ~/2 and  %. An 
applicat ion of L e m m a  2 shows t h a t  for large values of t 

? ( u  + t 2)-ld~0(lfu) > B't-2~(t), 

where B '  is a posit ive constant .  Since ~0(-t)/qJ(t) is bounded it  then  follows f rom (13) 
t h a t  
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f: (u + t2)-ld~(~u) N (u -t- f)-Idcp(]/u). 
0 

Theorem 1 then shows t h a t  ~(x) ~ fl(x) as x--> + oo. On the other hand,  if we subtract  
( l l )  and (12) we obtain b y  similar considerations as above tha t  

f: j (u + t2)-~dy~( - ~u) ~ (u + t ' ) - ld~(  - ~/u) 
0 

and we conclude by  theorem 1 t h a t  ~(x) ~yJ(x) as x - ->-  oo. Then  we have proved the 
theorem under  the assumption dep(u)<~0 for u < 0 .  

Suppose d~(u) >~0 for u < 0 .  Then  we first consider (10) and by  the help of Lemma 2 
and the  Tauber ian par t  of theorem 1 we get  yJ~ ~ ~2. The next  step is to  apply the 
Abelian pa r t  of theorem 1 with (~ = �89 to  the  functions ~2 and V2 and combining this 
result and (10) we get in the same wa y  as above the desired result. 

Remark. Without  (9) our  proof only shows tha t  r  if dqD(u)<.0 for u < 0  and 
~2 ~ ~z in case d~(u)>~0 for u <0 .  I f  we are interested in obtaining ~0 ~y~ as x--> + oo 
we only use the  r ight par t  of (9) and if we want  ~(x) ~ y~(x) as x - ->-  oo we use the left 
pa r t  of (9). 

3. The  - n i l a t e r a l  case  w i th  the  kerne l  u-h(u + x) -rn-1 

I n  this section we shall prove a Tauberian theorem for integrals of the form 

u-a( u + x)-~-ldq~(u), (14) 
0 

where h is a positive constant.  Wri t ing  ~/~1(~)= ~ u-~dq~(u) we get  (14) equal to 

f :  (u + x) -m-ldq~l(u } 

and the integral is of the form already t reated in Theorem A. Hence we star t  proving 
some properties of integrals like ~1. 

Lemma 4. Let q)e T ( o:, fl, a ). Consider q~l ( x ) = ~ ~ t-~ d~( t ) where h > 0 is a ~nstant  and 
assume epl(x)-->+ 0o when x---~§ 00. Then x-~'cpj(x) increases for every ot < ~ - h  and 
x-~'q~j(x) decreases for every fl' > f l - h  when x is sufficiently large. I f  ~ > h the condition 
q~l(x)--> q- oo is fulfilled by itself and ~1 e T(o~',fl') provided o~' < or h and fl' > f l -  h are 
chosen so that 0 <fl' <~'  + 1. 

I t  is easily seen tha t  

- - = - + h t -  - d~(t)) d$. 
d0 

I n  fact  the terms xqD~(x) and X--h+l~t(~) as well as the other terms not  containing :r 
cancel. The rest of the ident i ty  is the result of a partial integration in the integral 
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defining ~01(f17 ), Since ~E T(a,fl ,  a) relat ion (1) shows tha t  xqr for x > a .  
Thus for these x 

where C is a constant .  I f  ~l(x)--> + co this implies t ha t  for a given e > 0  

when x is greater  t han  a certain constant  a '  =a ' (e) .  I f  the  same ident i ty  is applied 
with fl instead of ~ the  result  is 

x~;(~r) < ( / / -  h + e),p~(x) 

when x is sufficiently large. 
~01 is clearly positive, increasing and  identically zero near  the  origin. To  prove  the  

last  pa r t  of the  l e m m a  it  remains  to  show t h a t  in case ~ > h ,  ~01(x)-->+ oo when 
x--> + oo. A part ia l  in tegrat ion of the  integral  defining ~01 gives 

f 
z 

epl(x ) = x-%p(x) + h th+acp(t)dt. (15) 
0 

We write x-%p(x) = x ~- n(x-~o(x)) and since ~ > h and  x-~q~(x) increases we get  x-%p(x) 
- 4 +  oo as x-->+ oo. Since h > 0  we diminish 901(x) b y  omit t ing  the  integral  in (15) and  
hence ~l(x)-->+ c~ as x-->+ co. 

I ~ m m a  5. Let ~E T(0~,fl, a). Assume ~ > h > 0 .  Then with a constant C 

x -hop(x) <~ epl(x ) = f l  t-ndcP(t) <~ Cx-h~(x) (16) 

/or large values o I x. 

The first pa r t  of the  inequal i ty  follows f rom (15). The second p a r t  is a consequence 
of 

ff we observe t ha t  x-hop(x)=x~-n(x-%p(x)) tends  to  infinity as x-->+ oo. 

][,emma 6. Let 90ET(ct, fl) and let ~pET. Assume 0 < h < ~ .  I[ cplNy h where 

~l(X)= f :  t-hd~(t), ~l(X) = f:t-I*d~(t) 

then cp ~ v 2. 

We normalize ~0 and  v21 b y  ~0(x)~ l~a+0~(t ) and  the corresponding for  Y)I. Then  

W(x)=f:, dw,(O=x%(z)-hfSthlWx(Odt. (17) 
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The continuity of ~01 shows that  we still have ~01 ~~01. This assumption can be written 
~oj (x)= (1 +~/(x))~01(x ) where U(x)-+0 as x-+oo. Formula (17) together with the corre- 
sponding formula for ~ leads to the relation 

= ~(x) + ~h~(x)~1(~) - h f [  t ~-'~(e) ~l(t)~t. (18) ~0(x) 

Given e >0  we get if A is sufficiently large (compare (17)) 

] f: ?'-lV(t)qJdOdt[< e f:th-~gdOdt= ~h-~(9(x)-xhq~dx)). 
We know that  ~0(x)-++ co when x ->+  co and according to (16) it follows that  (17) 
can be written 

~ ( x ) / ~ ( x )  = 1 +~M(x) 

where M(x) is uniformly 0(1) when x-+oo. The conclusion of the theorem follows. 
Now we can prove the follo~ing theorem. 

Theorem 3. Let q~E T(~,fl) and ~oE T. Assume 0 < h < ~  and let m be the integral part 
o/~-h.i/ 

f~ fo. 
u-h(u + x)-~-ad~p(u) N u-a(u + x.)-=-ldg(u) (19) 

0 0 

then q~ ,,, ~o. 

As was already mentioned in the beginning of this section, (19) can be written 

f : ( u •  

where ~o~(x)=~u-ady~(u) and q~i(x)=~u-adg(u).  By lemma 4 we conclude that  
9x~T(a' ,f l ' )  where the integral part  of 8' equals m and a ' > 0 .  Evidently ~oI~T and 
Theorem A then shows that  Wx ,~ 91. The theorem then follows from Lemma 6. 

4. The  bi lateral  case w i t h  the  kerne l  (u + x) -m-1 

In this section we shall prove the following generalization of Theorem 2. 

Theorem 4. Let q)(x) E T(ar and ~o(x) E T ]or x >~0. Suppose also that either q)( - x )  E 
T(o~',fl'), ~p(-x) 6 T or - q ) ( - x )  6 T(~',fl'), -~o ( - x )  6 T when x>.O. Assume 

/or large values o /x ,  where A 1 and A~ are positive constants. Suppose that the relation 
m < = ' < / r  holds where m=[/~']. U 

f::(u-z)-m-ldg(u)~f;:(u-z)-~-ld~o(u) (20) 
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when [z]-->oo along a non-real bal i .ray ]rom the origin then q~(x)~,v2(x ) when x--->+ oo 
and when x - - > - o o .  

At first we observe tha t  it is no restriction to  assume the half-ray to  lie in the 
upper half-plane. For  m = 0  the theorem is already proved so we can assume m >/1. 
We denote the left par t  of (20) by/re(z) and the  r ight  by  g,.(z). P u t  

F , . ( z ) = f : ( u - z ) m - ~ b . ( u ) d u ,  

where the way  of integrat ion does no t  cut  the  real axis. I f  we insert the  expressions 
for fm and gm as integrals and inver t  the  order of integrat ion we find 

$'m(z) = - ( - z )~m -1 u - r e ( u -  z)-ldq~(u), 
- - 0 o  

V Gm(Z) = -- ( -- z)'nm -1 u-m(u-- z)- ldv/(u) .  
- -  Oo 

Put  ~l(x) = Sg u-mdq~(u) and ~l(x) = S~ u-md~v(u). Lemma 4 then proves tha t  ql(X) E 
T(~,f l ,  a) and either ~x( - x) or - Cx( - x) belongs to  T(a,f l ,a)  for x/> 0 where 0 < a <fl  < 1. 
We also get  ~Vx(X)E T and we see t h a t  either ~Pl(-x) or - ~ v l ( - x )  belongs to  T f o r x  >~0 
and tha t  ~ is monotone in the same wa y  as ql. In t roducing qa and ~a in the integrals 
of F a  and ~m we get 

V F r o ( z )  = - ( - ~ ) m ~ - ~  ( u  - z ) - l ~ l ( u ) ,  

~ o 0  

~ ( z )  = - ( -  z ) ' m  -1 ( u - z ) - l d v ; l ( u ) .  
- - 0 o  

If  we can prove Fm(z)' , ,Gm(z ) when Iz[-+oo along the given half-ray we can use 
theorem 2 to  get the result. The. idea of this proof is the same as in the Tauber ian 
par t  of Theorem 1. 

Let  the half-ray be given by  re i~, r > 0 .  Take e > 0 .  The assumption (20) can be 
writ ten 

g,a(r e")  = ],n(r e fv) + h(r e~V) /m(r e'~), (21) 

where ]h(re~")] < e  for r > c  = c(e). Let  r > 2 c  and e > a .  Pu t  

Fm(r e ~') = F~)(r e '~ ) + av~)(r e Iv) 

= ( u - r e t ' ) • - l l m ( u ) d u +  | (u-rel~)m-Xlm(U)dU, 
. I C e  i v  

Gm(r d v ) = G~)(r e '~ ) + G~)(r e ~') 

= f [ " ( u - ~ e " ) ' - ' g . ( u ) a u  + f : : ] :  ( u - r e ' " ) ' - ' g m ( u ) a u ,  
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where the way of integration coincides with the given half-ray. Evidently F~)(r d ~) 
and G~l)(re '~) are uniformly O(rm-1). We want a lower bound for F~)(r e iv) and hence 
we s tudy F,,(r d'). 

-Fro(re iv) = (11 -- rI  s cos v + i rI  s sin v)r m e*m('+~)+~'~ m a, (22) 

wh re ,l= f ;   l -re'Ol-s#l(u), Is= f; In- 

At first the case dcf~(u) >~ 0 for all u is discussed. Owing to l u -  re~Vl<<, l ul § r, 

I2 ~ (I u I § r)-2dCfl(u) 

and by the same argument used to prove the left par t  of (2) we get a positive constant 
c I such tha t  2c1(~1(r ) § ]%( - r )  l)r-S is a lower bound for I s. Relation (22) then yields 

] Fm(re") l >~2cl(sinv)m-lrm-~(cfl(r) § Iq~,( - r )  ] ). 

Since F~)(r e iv) = Fm(r e ~v) - F~)(r e ~) we get 

I F~)(re'V)l >i c~(sin v)m-lr'~-l(T~(r) + I q~l( - r) l ) 

for large values o f  r. To get the relation corresponding to (6) we insert (21) in the 
expression defining G~)(r d v) and obtain 

�9 f r e i V  ~mgJ~(2)/~-~niv~! --~'-- i~(2)/a'm X - ~  vtv~] = (u - re ~') m-l/re(u) h(u)du. 
J c e t V  

V Here (u - r e~~ m-1/m(u ) h(u)du I < e (t + r) m-1 I/m(t e~V) ldt. 
�9 very 

Using the inequality l u -  te*olm+ 1 >~ 2-m-l(sinv) m+l ( ( U - - ~ 2 ~  ~ 2) U I m "we get, by  the same 
methods as in the proof of the right-hand side of (2), [/m(t e ~') uniformly bounded by 
( ~ ( t ) +  qg~(-t)[)t-L Since q~(t) and [ f l ( - t ) l  belong to T(:c,[3,a) the function 
t-  (9~1(t)+ ~ l ( - t ) l  ) increases and we obtain with a constant c s tha t  

f l  ( t+r)m-ll /m(te~')]dt<cs(qpl(r)+lq~l(-r)l)r-~ f l  (r§ 

and the last expression is uniformly O((qJl(r ) + ]~1( - r )  [ ) rm-X) �9 Now Fro(re ~v) ,,~ G~(re ~) 
when r--> + c~ by the same arguments as in Theorem 1. The result of the theorem then 
follows from Theorem 2 and Lemma 6. 

Corollary 1. Let m be a non-negative integer and let q be a constant with 0 <q < 1. Let 
A and B be two real constants di//erent/rom zero. For u >~0 we assume that ~v(u)E T i/ 
A > 0  and - V ( u ) 6 T  i/ A < 0  and also V ( u ) 6 T  i/ ( - 1 ) r o B > 0  and - V ( - u ) 6 T  i/ 
( -  1)roB<:0. 1/ 
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f :oo  (U -- Z)- ra- ld~(.a, ) N A ( - z ) -  1 + q + B z -  x + q, 

where ( -  z) -a+q is positive on the negative real ax is  and Z - 1  + q is positive on the positive 
real axis,  then 

A m !  singq uq+m 
~o(u) ~ :~q(q + 1) . . .  (q + m)  

when u --> + ~ and 

w h e n  u - - > -  co .  

Brat sin~q lup+~(_l), . 
V,(u) ~ ~q(q + 1) . . .  (q + m) 

The corollary is easily proved ff we use the asymptotic expressions for ~ above as 
our ~ in Theorem 4. 

Remark. A bilateral Tauberian theorem for kernels of the type u - ~ ( u + x )  -m-x 
(compare Theorem 3) can be proved by the same method as in Theorem 4. 

R E ' F E R E N C E S  

1. KELDY~, M. V., On a Tauberian theorem, Trudy Matemati~eskogo Inst i tuta  Imeni V. A. 
Steklova, t. X X X V I I I ,  77-86 (1951). 

2. PLEIJEL, ~. ,  A bilateral Tauberian theorem. Arkiv f6r Matematik 4, 561-571 (1962). 

96  

Tryckt den 26 juni 1963 

Uppsala 1963. Almqv~t & Wiksells Boktryckeri AB 


