On Lerch's class number formulae for binary quadratic forms

by L. J. Mordell

Let $f(-d)$ be the number of classes of positive quadratic forms $a x^{2}+2 b x y+c y^{2}$ with negative determinant $-d=b^{2}-a c$, where a and c are not both even and (a, $b, c)=1$. It is well known that if $d \neq 1$,

$$
\begin{equation*}
f(-d)=\frac{2 \sqrt{d}}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{1}{n}\left(\frac{-d}{n}\right), \tag{1}
\end{equation*}
$$

and that when d is a prime $p \equiv 3(\bmod 4)$, this can be written as

$$
\begin{equation*}
f(-p)=\sum_{n=1}^{i(p-1)}\left(\frac{n}{p}\right) . \tag{2}
\end{equation*}
$$

Here (n / p) is the Legendre-Jacobi symbol. There are other formulae expressing partial sums of quadratic residues in terms of $f(-p), f(-2 p), f(-3 p)$. Such results were known to Gauss.

Many more interesting formulae of this kind have been given by Lerch [1] in his Paris Academy prize memoir for 1900. He, however, deals with Kronecker forms $a x^{2}+b x y+c y^{2}$ whose discriminant $b^{2}-4 a c$, when positive is written as D, and when negative as $-\Delta$. The corresponding class number $h(-\Delta)$ of forms with $(a, b, c)=1$ can be written, when $-\Delta$ is a fundamental discriminant and $\Delta>4$, as

$$
\begin{equation*}
h(-\Delta)=-\frac{1}{\Delta} \sum_{n=1}^{\Delta}\left(\frac{-\Delta}{n}\right) n \tag{3}
\end{equation*}
$$

The symbol $(-\Delta / n)$ is now and hereafter the Kronecker symbol. We note that $(-\Delta / m)=(-\Delta / n) \operatorname{sgn} \mathrm{mn}$ if $m \equiv n(\bmod \Delta)$ and $-\Delta$ is a negative discriminant, and that $(D / m)=(D / n)$ if $m \equiv \pm n(\bmod D)$ and D is a positive discriminant.

He then deduces many formulae of the type (2) from his
Theorem I. Let $D>0$, and $-\Delta<0$ be two fundamental discriminants with (D, Δ) =1. Then

$$
\begin{equation*}
h(-\Delta D)=2 \sum_{a=1}^{ \pm \Delta}\left(\frac{-\Delta}{a}\right) \sum_{n=1}^{a D / \Delta}\left(\frac{D}{n}\right) \tag{4}
\end{equation*}
$$

L. J. mordell, On Lerch's class number formula for binary quadratic forms

$$
\begin{equation*}
-h(-\Delta D)=2 \sum_{a=1}^{b D}\left(\frac{D}{a}\right) \sum_{n=1}^{a \Delta / D}\left(\frac{-\Delta}{n}\right) \tag{5}
\end{equation*}
$$

A sum such as $\sum_{n=1}^{N}$ means $1 \leqslant n \leqslant[N]$ where [$\left.N\right]$ is the integer part of N.
Theorem II. Let $D_{1}, D_{2}, \ldots, D_{r}$ denote fundamental discriminants relatively prime in pairs with absolute values $\Delta_{1}, \ldots, \Delta_{r}$ and with $2 s+1$ of the D negative. Then

$$
\begin{equation*}
h\left(D_{1} D_{2} \ldots D_{r}\right)=(-1)^{s} \sum\left(\frac{D_{1}}{n_{1}}\right)\left(\frac{D_{2}}{u_{2}}\right) \ldots\left(\frac{D_{r}}{n_{r}}\right)\left[\frac{n_{1}}{\Delta_{1}}+\frac{n_{2}}{\Delta_{2}}+-+\frac{n_{r}}{\Delta_{r}}\right] \tag{6}
\end{equation*}
$$

where the square bracket denotes the integer part and the summation is taken over

$$
0<n_{1}<\Delta_{1}, \ldots, 0<n_{r}<\Delta_{r} .
$$

In the enunciation of Theorem I, Lerch does not state emplicitly that $(D, \Delta)=\mathbf{1}$, but this is tacitly assumed on page 405 [2] in his formula for $h(-\Delta D)$ as a Fourier series. Similarly in Theorem II, he omits the conditions $\left(D_{1}, D_{2}\right)=1$, etc., but without these, his argument on page 374 [3], stating that a certain sum is zero, is not valid.

Lerch's proof of Theorem I is rather complicated involving various transformations of infinite series. His proof of Theorem II is also much longer than seems to be necessary. It may be worth while pointing out that (4,) (5) are particular cases of (6), and that (6) is a simple consequence of (3). In (3), write $-\Delta=D_{1} D_{2} \ldots D_{r}$ where the D are as in Theorem II. In (3), n runs through a complete set of positive residues $\bmod \Delta$. A complete set of positive residues $\bmod \Delta$ is given by

$$
R=\Delta\left(\frac{n_{1}}{\Delta_{1}}+\frac{n_{2}}{\Delta_{2}}+\ldots+\frac{n_{r}}{\Delta_{r}}\right), \quad 0 \leqslant n_{1}<\Delta_{1}, \ldots, 0 \leqslant n_{r}<\Delta_{r}
$$

These numbers, however, are not all less than Δ and so we cannot replace n by R. We can, however, put

$$
n=R-\varepsilon_{t} \Delta,
$$

where $\varepsilon_{t}=t,(t=0,1, \ldots, r-1)$ when $t \leqslant R / \Delta<t+1$, i.e., $\varepsilon_{t}=[R / \Delta]$.
Now

$$
\left(\frac{-\Delta}{n}\right)=\left(\frac{D_{1}}{n}\right) \ldots\left(\frac{D_{r}}{n}\right)=\Pi\left(\frac{D_{1}}{n}\right)
$$

say. Also when $A \Delta_{1}+B>0, B>0$,

$$
\begin{gathered}
\left(\frac{D_{1}}{A \Delta_{1}+B}\right)=\left(\frac{D_{1}}{B}\right) . \\
\left(\frac{-\Delta}{n}\right)=\Pi\left(\frac{D_{1}}{\Delta_{2} \ldots \Delta_{r}}\right)\left(\frac{D_{1}}{n_{1}}\right)=\Pi\left(\frac{D_{1}}{\Delta_{2}}\right)\left(\frac{D_{2}}{\Delta_{1}}\right)\left(\frac{D_{1}}{n_{1}}\right)
\end{gathered}
$$

Hence
say. By the law of quadratic reciprocity, this becomes

$$
\begin{aligned}
\left(\frac{-\Delta}{n}\right) & =\Pi(-1)^{\frac{1-\operatorname{sgn} D_{1}}{2}} \cdot \frac{1-\frac{\operatorname{sgn} D_{2}}{2}}{} \Pi\left(\frac{D_{1}}{n_{1}}\right) \\
& =(-1)^{\frac{(2 s+1) 2 s}{2}} \Pi\left(\frac{D_{1}}{n_{1}}\right) \\
& =(-1)^{s} \Pi\left(\frac{D_{1}}{n_{1}}\right)
\end{aligned}
$$

Hence $\quad-\Delta h(-\Delta)=(-1)^{s} \sum\left(\frac{D_{1}}{n_{1}}\right) \ldots\left(\frac{D_{r}}{n_{r}}\right)\left(\Delta\left(\frac{n_{1}}{\Delta_{1}}+\ldots+\frac{n_{2}}{\Delta_{2}}\right)-\varepsilon_{t} \Delta\right)$.
Since $\sum\left(D_{1} / n_{1}\right)=0$, etc., the first part of the sum is zero and we have (6), namely,

$$
h(-\Delta)=\sum\left(\frac{D_{1}}{n_{1}}\right) \ldots\left(\frac{D_{r}}{n_{r}}\right)\left[\frac{n_{1}}{\Delta_{1}}+\ldots+\frac{n_{r}}{\Delta_{r}}\right] .
$$

We now deduce (4), (5). Take $r=2,-\Delta=D_{1} D_{2}$ and so $s=0$.

Then

$$
\begin{equation*}
h\left(D_{1} D_{2}\right)=\sum\left(\frac{D_{1}}{n_{1}}\right)\left(\frac{D_{2}}{n_{2}}\right)\left[\frac{n_{1}}{\Delta_{1}}+\frac{n_{2}}{\Delta_{2}}\right] . \tag{7}
\end{equation*}
$$

Replace n_{1} by $\Delta_{1}-n_{1}$. Then (7) becomes

$$
\begin{aligned}
h\left(D_{1} D_{2}\right) & =\sum\left(\frac{D_{1}}{\Delta-n_{1}}\right)\left(\frac{D_{2}}{n_{2}}\right)\left(\frac{n_{2}}{\Delta_{2}}-\frac{n_{1}}{\Delta_{1}}+1\right) \\
& =\operatorname{sgn} D_{1} \sum\left(\frac{D_{1}}{n_{1}}\right)\left(\frac{D_{2}}{n_{2}}\right)\left[\frac{n_{2}}{\Delta_{2}}-\frac{n_{1}}{\Delta_{1}}+1\right] .
\end{aligned}
$$

The sum is zero unless $n_{1} / \Delta_{1}<n_{2} / \Delta_{2}$, and then we have

$$
h\left(D_{1} D_{2}\right)=\operatorname{sgn} D_{1} \sum_{n_{2}=1}^{\Delta_{2}}\left(\frac{D_{2}}{n_{2}}\right) \sum_{n_{1}=1}^{\Delta_{1} n_{2} / \Delta_{2}}\left(\frac{D_{1}}{n_{1}}\right)
$$

For $D_{1}=D, D_{2}=-\Delta$, this becomes

$$
\begin{equation*}
h(-D \Delta)=\sum_{n_{2}=1}^{\Delta}\left(\frac{-\Delta}{n_{2}}\right) \sum_{n_{1}=1}^{n_{2} D / \Delta}\left(\frac{D}{n_{1}}\right) \tag{8}
\end{equation*}
$$

For $D_{1}=-\Delta, D_{2}=D$, this becomes

$$
\begin{equation*}
h(-D \Delta)=-\sum_{n_{2}=1}^{D}\left(\frac{D}{n_{2}}\right) \sum_{n_{1}=1}^{n_{2} \Delta I D}\left(\frac{-\Delta}{n_{1}}\right) . \tag{9}
\end{equation*}
$$

We show now that the n_{2} summation in (8) and (9) need only be taken to $\frac{1}{2} \Delta$, $\frac{1}{2} D$ respectively if we insert a factor 2 on the right-hand sides of (8) and (9). We have then the results (4) and (5). It suffices to show that the sum (8) remains unaltered if we replace n_{2} by $\Delta-n_{2}$. For then with $(\Delta / 0)=0$, etc.,
L. J. mordell, On Lerch's class number formula for binary quadratic forms

$$
\sum_{n, \pm \pm}^{\Delta}=\sum_{n_{2}=0}^{1 \Delta} .
$$

Also

$$
\left(\frac{-\Delta}{\Delta-n_{2}}\right)=\left(\frac{-\Delta}{n_{2}}\right)
$$

and the n_{1} sum in (8) becomes

$$
\sum_{n_{1}=1}^{D-n_{2} D / \Delta}\left(\frac{D}{n_{1}}\right) .
$$

Replace now n_{1} by $D-n_{1}$. Then

$$
\left(\frac{D}{D-n_{1}}\right)=\left(\frac{D}{n_{1}}\right)
$$

and the sum becomes
since

$$
\begin{gathered}
\sum_{n_{1}=n_{2} D / \Delta}^{D}\left(\frac{D}{n_{1}}\right)=-\sum_{n_{1}=1}^{n_{2} D / \Delta}\left(\frac{D}{n_{1}}\right) \\
\sum_{n_{1}=1}^{D}\left(\frac{D}{n_{1}}\right)=0 .
\end{gathered}
$$

This finishes the proof.
This research was supported in part by the National Science Foundation. Washington, D.C.
University of Arizona, Tucson, Arizona U.S.A. and St. Johns College, Cambridge, England.

REFERENCES

1. Lerch, Essais sur le calcul du nombre des classes de forms quadratiques binaires aux coefficients entiers. Acta Mathematica 29 (1905) 333-424 (in particular page 407) and 30 (1906) 203-294.
2. Ibid., Vol. 29.
3. Ibid., Vol. 29.
