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Studies on a convolution inequality

By Martts Esstn

Introduction

Let u be a positive, regular measure with total mass one on a locally compact
Abelian group G (we refer to Appendix E 1 in Rudin [12] for the definition of regular
measure). For certain classes of regular measures » the operation » % u can be de-
fined and gives a new regular measure. We consider classes such that, if ¥ is in a
certain class, then the same is true for (cf. Rudin [12] 1.3.4) k% v, where k is any
continuous function with compact support, and ‘

(kxv) % p=Fkx(v*p). (0.1)

The measure v % 4 can be interpreted as a “weighted mean value” of ». The
starting point of this paper is the following problem:
Let {»} be a given class and consider the inequality

y—v¥xu=0. (0.2)

Which are the solutions in the given class and what properties do they have?

Suppose » is such a solution. Let k be an arbitrary non-negative continuous func-
tion with compact support and form ¢ =k x». It easily follows from (0.1) and (0.2)
that

p—@pxp=>0. (0.3)

Obviously » can be completely described by varying the function k. Hence the solu-
tion of the original problem can be characterized using the continuous solutions of
(0.3). This gives a reason for our choice to confine the investigations of this paper
to classes of continuous solutions of (0.3). At some instances in the forthcoming
discussions, however, we shall mention the implications on the original problem.

In §2, we let u be arbitrary and study a class {¢} of continuous functions which
satisfy (0.3) and which are bounded from below. In Theorem 2.2, conditions are
given which are necessary and sufficient for the existence of such solutions of (0.3),
non-trivial in the sense that the strict inequality holds in a set of positive Haar
measure. An equivalent criterion is given in Lemma 2.1, namely that for some
neighborhood O of zero in the dual group G of @ there exists a constant € such that

f Re{‘l*”} d:ﬁ<0 for all &£>0. (04)
6 l+te—pa(#)

In special cases (0.4) has been considered by many authors, cf. e.g. Chung and Fuchs
[4]). We find that in this case we always have non-trivial solutions which are bounded.
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M. ESSEN, Studies on a convolution inequality

In §3, the criterion (0.4) is used to give more direct conditions on y when G is
n-dimensional Euclidean space R" or the space of points with integral coordinates
in R", Z*. We have only been able to treat the case when y has moments of a cer-
tain order. Since the existence of moments implies that u(£) approaches 1 rather
quickly as & approaches zero, the case treated is unfavorable for the fulfilment of
the criterion (0.4) and hence also unfavorable for the existence of bounded, non-tri-
vial solutions of (0.3).

In paragraphs 4, 5 and 6 Tauberian methods are used for the study of properties
of continuous solutions of (0.3) in B" and Z". Many proofs have been simplified by
application of results from Domar [5]. One of the problems we consider is to find a
connection between the growth of a solution @ at infinity and the magnitude of
Jolp — @ % p) (x)dx. A survey of the results obtained is given in § 7. In the paragraphs
4-6, we also study the equation

p-p*p=g (0.5)

for ¢ in certain classes of continuous functions. Measures y such that bounded, non-
trivial solutions of the inequality (0.3) exist are treated in § 4. Theorems 4.1 ¢ and
4.3 ¢ which give properties of solutions of (0.5) should be compared with a theorem
. by Feller {8]. The corollaries of Theorems 4.2 and 4.3 are related to results on the
renewal equation earlier obtained by Karlin [9] by an application of the Wiener
Tauberian theorem. Although the same theorem is applied in § 4, our approach to
(0.5) is different from the one of Karlin and in many cases, we obtain more general
results. Measures u such that no bounded, non-trivial solutions of (0.3) exist are
treated in §5 and §6. It follows from the results of § 3 that this can only occur in
one and two dimensions. The one-dimensional case is considered in §5 and the
two-dimensional case in §6.

In §8, we study functions ¢ on R? such that (0.3) is true for a certain sequence
of measures {u,} and prove that {¢} is a class of superharmonic functions.

The main tools used in this paper are taken from Fourier analysis and from the
theory of Banach algebras. The use of probabilistic methods has been avoided. For
the basic definitions of Fourier transforms, convolutions, etc., we refer for instance
to Rudin [12].

I wish to thank Professor L. Carleson and Professor Y. Domar for their kind
interest and their many valuable suggestions during the preparation of this paper,
the theme of which was suggested by Professor Domar.

1. Definitions and assumptions

Let G be a locally compact Abelian group (cf. e.g. Appendix B4 in Rudin [12]).
As group operation we choose addition. We assume that p is a positive regular
measure with total mass one on G and that u is not the Dirac measure §. We shall
study the class {gp} of real-valued, continuous functions on @ such that for every x

@ % u(x) = fap(z —y) du(y)
converges absolutely and such that on G
g—p*u=0. (1.1)
We call such functions solutions of the inequality (1.1).
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We shall also consider the corresponding class {¢} of functions which, instead of
the inequality (1.1), satisfy the equation

p-pxu=g, (1.2)

where g is chosen in certain classes of continuous functions on G. We call such a
function ¢ a solution of (1.2).
A special class of solutions of (1.1) is formed by the solutions of

p—pxu=0. (1.3)

We call such solutions of (1.1) trivial. In this paper, we are chiefly interested in the
non-trivial solutions of (1.1).

We also assume that 4 has no mass at zero. We shall prove that this is no essen-
tial restriction.

Let u have mass a at zero (where 0<a <1) and define 4, by the formula

p=ad+(1-a)p,
Since p-pxu=(1—a)(p—p*xu,)
the class of solutions of the inequality (1.1) coincides with the class of solutions of
the inequality
p—@¥u =0 (1.4)

and it is sufficient to consider (1.4). Since u, has no mass at zero, our assertion is
proved.

Starting from g we form measures u™, n=0, 1, 2,.... We interpret u® as the
Dirac measure, u® as y and define for n>1

(n+l) ., ()
=y %,

where the existence of u®, u® ete. follows from Theorem 1.3.2 in Rudin [12]. Ob-
viously all the measures u are positive and regular and

Igdﬂ(n) = 1. (1.5)
We introduce the measures

They form a monotonically increasing sequence. Thus for every open set O the limit

F(0)= lim F,(0)
n—>00
exists, finite or infinite.

We denote by G(u) the closed subgroup of G which is generated by the elements
in the support of . We shall often assume that G( u) =G@. The main reason for this
is the result stated in Theorem 2.3b. We want to mention another important
consequence of this assumption, namely that the only solution of the equation
A(#) —1=0in G is the zero element.
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Constants are often denoted by C, or, if several constants appear in the same
relation, by C,, O, etc. These symbols may represent different numbers in different
formulas.

2. Necessary and sufficient conditions for the existence of hounded non-trivial
solutions of the inequality ¢ — @ % u >0

Before stating our results, we have to discuss the properties of the bounded tri-
vial solutions of the inequality (1.1), i.e. the solutions of the equation (1.3). It is
easily seen that the equation (1.3) is satisfied by all constant functions. Under cer-
tain conditions, no other bounded solutions exist. This can be shown to be a conse-
quence of the fact that if g € L™ and if the spectrum of @ (in the sense of Beurling
[2]) only contains one point, then ¢ is a character. On R, this was first proved by
Beurling [1]. At the beginning of §5, we shall use this method for solving the equa-
tion (1.3).

The bounded solutions of the equation (1.3) can also be found by use of the
following theorem by Choquet and Deny [3]. Their proof does not use Fourier
" methods.

Theorem 2.1. The bounded solutions of the equation (1.3) are periodic functions whose
group of periods contains the support of u.

Consequently, all the elements in the subgroup G(u) are periods of a bounded
solution of (1.3). If G= G(u), all such solutions are identically constant.
We can now state the main theorem of this section.

Theorem 2.2, The following properties of u are equivalent:

A. (1.1) has a non-trivial solution which is bounded from below and such that the
left member in (1.I) is positive in a set of positive Haar measure.

B. There exists an open, relatively compact set O such that 0 < F(0) < co.

C. F(z+0) is a bounded function of x for every open, relatively compact set O.

D. (1.1) has a bounded, non-trivial solution such that the left member in (1.1) is po-
sitive in a sel of positive Haar measure.

Remark 1. Obviously D= 4 and C= B.

Remark 2. Tt is mentioned but not proved in Lemma 1 in Choquet and Deny [3]
that 4 implies the weak convergence of F, to a measure, which is finite on every
compact set.

Remark 3. In Theorem 2.2, we have excluded non-trivial solutions of (1.1) which
are bounded from below and such that the left member in (1.1) is zero except in a
set of Haar measure zero. The behavior of such functions is given by Theorem 3 in
Choquet and Deny {3].

We can immediately state a corollary of Theorem 2.2. The total mass of F, is
n+1, hence F(@)= co. If G is compact, every continuous function on ¢ is bounded.
Since G is always open, the existence of a non-trivial solution would contradict
C. Hence we have proved the following
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Corollary. If G is compact, all solutions of the inequality (1.1) are trivial.

Before proving Theorem 2.2, we want to state Theorem 2.3. We start by observ-
ing that we can prove the existence of a non-trivial solution of the inequality (1.1)
by showing that the equation

p—pXu=g . (2.1)
has a solution for some non-negative, not identically vanishing function g. When
considering this equation, it is natural to introduce a class of functions M.

Definition 2.1. g € M if

(a) g is continuous,
(b) there exists an open, relatively compact set O and a sequence {x,}T such that the
support of g is covered by UT(x,+ 0) and such that

% Max |g(z)]| < .

1 zex,+0

It is easy to show that if g€ M, then for every open relatively compact set O
there exists a sequence {z,}T7 such that the conditions in (b) are fulfilled. On R,,
the class M was introduced by Wiener ([15], § 10).

Theorem 2.3. (a) Let g € M and let condition C in Theorem 2.2 be true for F. Then
g% F is a bounded, uniformly continuous function which satisfies the equation (2.1).

(b) We assume that the conditions in (a) are fulfilled and that G(u)=G. Then the
general bounded solution of the equation (2.1) has the form A +g% F, where A is an
arbitrary constant.

Proof of Theorem 2.2. The theorem follows if we prove that 4= B=C= D. For
technical reasons, we introduce a proposition E and prove that 4= B=E=C=D.

E. There exists a neighborhood O of zero such that F(0) is finite.

A=B. Let the inequality (1.1) have the non-trivial solution ¢, with properties
as those assumed in 4. Let k be a non-negative, continuous function with compact
support. Then ¢ = ¢, % k is also a solution of (1.1), which is bounded from below, and

Iex (@ % p) = (k% o) %

is a continuous function. Since g, — @,% u is positive in a set of positive measure,
the continuous function @ — @ % p is not identically zero and there exists an open,
relatively compact set N such that

(p—pxp)(x)>k>0for x€—-N, (2.2)
Now consider the algebraic identity.
p=(@—@xu)*G+pu+...+u™) +@xuy"P (2.3)
Wwhich is valid for all positive integers . Since the total mass of u™*" is one, ¢ > —a
implies
p*u"tV > —q, (2.4)
It now follows from (2.2), (2.3) and (2.4) that
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k- f dF.(y)<a+g(x)
I—-ye—N

for all « and all positive integers =, i.e.

F(x+N)<'ﬁ,;ﬂ’i)

and B is proved.
B=E. The proof will follow from the algebraic identity

Fo=Fo 1+ p ™ % Py p 0 — | — "0 = H, + 5™ % F,, 2.5)

which is valid for all positive integers n and n,. Using (1.5) we find that the total
variation of H, (cf. e.g: Rudin {12] p. 265) is at most 2n,.

Let O be an open relatively compact set such that 0< F(0)< co. Then there
exists a positive integer n, such that 4 (0) is positive. Now take x, € O such that
for all neighborhoods N of zero u™”(z,+ N)>0. It is easy to see that we can
choose open, relatively compact neighborhoods of zero 0, O, and O, such that

(a) {-'”1 +0,}<0,
(b) 0,< 0y,
© N ©0-1)>0,

Using (c) in the third inequality, we obtain from (2.5) that there exists a constant
C such that

f dF () > C+ f f 4. F oz ) 4™ () >
yer;+ 0,

T€2:+ O,
veG

=0+ f au'™ (y) dF,(u)=>
Yexr,+ 0,

ue,+ 0y
04 [ Ut F0)=C+ UM+ O)FU0),
Ver,+ 0,
Since ™ (x,+ 0,) is positive and (a) is true, it follows that there exist constants
C, and C, such that
Fo(0g)< O, Fr(z, +0)) + 0, < C, - F(0) +C,.

Thus F(0,) is finite, and Z is proved.
E= C. We first introduce certain concepts, which we shall need in the proof.

Definition 2.2. L€ H if

(a) the support of h is a compact neighborhood of zero,
(b) & is continuous, non-negative and not identically zero,
(¢) h is non-negative and h € L(G).

Obviously the class H is non-empty. Since k€ L}(G) and h € LV(G) we have
Lh(x —y)duly) = f f 5 k(%) (x—y, %) dxdu(y) = f s h(#) (=, &) p#)dE.  (2.6)
G
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(The integral in the middle is absolutely convergent.) We also introduce the weak
limit
n k)

Fomlim Zavop

which exists if ¢>0. For every open set O, F,(0) is a decreasing function of ¢ for
e>0 and

lim F,(0)=F(0),
&=>+0

where the right member can be finite or infinite. Now let k€ H. Using (2.6), we
find that

1+¢ P

hxF, x)——f k(&) (= 1———+£—u(f)

Since k% F, and % are real-valued, we can also write
hx F(x f h(£) Re {uii(—;} £. 2.7
We observe that for ¢ >0

1
Re {m} >0. (2.8)

We are now in a position to prove that E = C. Let O be an open, relatively com-
pact neighborhood of zero such that F(O) is finite. We choose h € H such that the
support of A is contained in — O and such that

0,={z|h(—2)>1}

is non-empty. Obviously 0, < 0. Hence

F(x+ 01)<f hx—y)dF (y) < hx F ().

z-ye—0,

Using (2.7) and (2.8), we find

h F [(z)+ (— z)] = f A(#) (1 +¢) Re {M—)} %

1+e—a(#)
<2fﬁ (1+e)Re{ 1 ()}d¢=2h*m0),
Hence
Fo(z+0)<hx F(z)<2h % Fy(0) < 2|| 2|0 Fe(O) <2[[ b || F(O) < o0.

It follows that F(z+ 0,) is a bounded function of 2. Since an arbitrary open. rela-
tively compact set O, can be covered by {(z,+ 0;)}n-1, the same conclusion is true
for F(z+ 0,) and C is proved.
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C=D. Let g be a continuous, non-negative function with compact support. It
follows from C that g % F is defined and is a bounded, continuous function of . We
want to prove that g % ¥ is a solution of the equation (2.1). Since g x F, —g % F, % u=
=g—g*u™*? and g x F, is uniformly bounded, this assertion follows if

(a) lim g% F,(x) =g F(x)

uniformly on every compact set and

(b) lim g % u"*Y(x) =0 for every z€ .

(a) {g*F,,}?f:l is an increasing sequence of continuous functions with the con-
tinuous limit g % F. Hence (a) follows from Dini’s theorem.

(b) Since the series

%g * p™(x) =g % F(x)

is convergent, we have

lim g% u"*P(z) = 0.
Thus D is proved and the proof of Theorem 2.2 is complete.
The following remark is needed in the proof of Theorem 2.3.

Remark. Let g be a continuous funetion with compact support and assume that
C in Theorem 2.2 is true. The function ¢ is uniformly continuous, and it is easy to
prove that g % F is also uniformly continuous.

Proof of Theorem 2.3. (a) There is no essential restriction in assuming that g is
non-negative. Since g € M, there exists an open, relatively compact set O and a cor-
responding sequence {x,}¥ with properties according to Definition 2.1. Since C in
Theorem 2.2 is true, there exists a constant C, such that

0<gxFz)<2 g(y)dF(@—y) <2, max g(z) dF(x—y)<C,.
1 1 !IEIv+

yer,+0 ver,+0

Thus g% F is a bounded function of x. It follows in the same way as in the proof
of C—D in Theorem 2.2, that g x F is a solution of the equation (2.1).

It remains to prove that g * F is uniformly continuous. Take ¢ >0. We choose an
integer n, such that

S max gly)<e

Ne+1 yer,+ O

and define U7* (z,+0)=0,. O, is an open, relatively compact set. Let for some
neighborhood O, of zero k be continuous and fulfil

{a) E(x)y=1 forz€0,,
(b) O0<k(x)<l forallz,
(c) k(x)=0 for z € compl. (Oy+ 0,).

120



ARKIV FOR MATEMATIK. Bd 5 nr 9

We have g=k-g+(1—-k)g=g,+9,
and g*F=g,%F+g,%F.

The function g, is continuous and has compact support. According to the remark
after the proof of Theorem 2.2 g, % F is uniformly continuous. For g, % ¥, we have
that there exists a constant C such that

|g.% F(2)|<C 3 Max g(y)<Ce

No+1 yexy+ O

and the uniform continuity of g % F follows.

(b) Let @ be an arbitrary bounded solution of the equation (2.1). For the function
py=@p—~g*%F, we have p —ypx* u=0. Since we have assumed that G'= G(u) it follows
from Theorem 2.1 that p is identically constant. Conversely, it is easily seen that
A+ g F satisfies (2.1) for arbitrary constants A, and hence Theorem 2.3 is proved.

It is difficult to see when the conditions of Theorem 2.2 are fulfilled. Lemma 2.1
gives an equivalent, more convenient condition.

Lemma 2.1. The following property of f is equivalent to the conditions of Theorem
2.2

There exists a neighborhood O of zero in the dual group G of G and a constant C
such that

1
— = targ oo 0. 2.9
féRe{1+£_ﬁ(ﬁ)}dx<C< forall &> (2.9)

Remark. Chung and Fuchs [4] have similar conditionsin an #-dimensional Euclidean
space. They treat the convergence problem for {F,}?* with combinations of proba-
bilistic and Fourier arguments.

Proof of Lemma 2.1. We first define a class of functions H'.
Definition 2.3. 1 € H' if

(a) the support of hisa compact netghborhood of the zero element in G,
(b) % is continuous, non-negative and not identically zero,
(¢) kb is non-negative and h € L\(Q).

Obviously the class H’ is non-empty.
Using the same type of argument as the one used in the proof of (2.7), we see
that if » belongs to H or H' and if £>0,

1+¢

= —1d. 2.10

L h(z)dF (x) f@ﬁ(ﬁ) Re {1 iy _ﬂ(i)}dx (2.10)

Let the conditions of Theorem 2.2 be true. We take % € H (Definition 2.2). Since the

left member of (2.10) is a bounded function of ¢ for £ >0 and % is positive in some

neighborhood O of the zero element of @, (2.9) follows. If conversely (2.9) is true

for some neighborhood O of zero, we take & € H' such that the support of 4 is in O.

Since the right member of (2.10) is bounded for £>0 and & is positive in some

neighborhood of the zero element of G, B of Theorem 2.2 follows and we have proved
Lemma 2.1.
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3. The existence of bounded, non-trivial solutions in R* and Z".

From now on, we shall only be concerned with the groups B" and Z" under their
usual topologies. We introduce a coordinate system and define, if  belongs to R"

or Z*
n b
ol {32}
1
n
and tr=21t,,.
1

Theorem 3.1. Let G be R" or Z" and assume that G(u)=G. Then the following
conditions for the existence of bounded, non-trivial solutions of the inequality (1.1) can
be stated.

(a) if n=1 and [¢|z|du(x) < oo, a necessary and sufficient condition is that

f zdp(r) +0.
G
(b) If n=2 and if for some positive number &
f [z ['* du(z) < oo. 3.1)
G

a sufficient condition is that

f Uzx)du(x) =0 for some linear function (x) = ax, + bz,. (3.2)

G

If fo|x[Pdu(z) < oo, condition (3.2) is also necessary.
(c) If n=3, such solutions always exist.

Corollary. Let u satisfy the conditions of Theorem 3.1. Then the equation
ppxu=g

has bounded solutions for all g € M (Definition 2.1). These solutions are uniformly con-
tinuous and are, except for an additive constant, unique.

Proof of Theorem 3.1. According to Lemma 2.1, condition (2.9) is necessary and
sufficient for the existence of bounded, non-trivial solutions of (1.1), and it thus
suffices to consider (2.9).

We observe that the assumption G{u) = @ implies that

A(t)=1 i t+0. (3.3)

This is important for certain estimates in the proof.
We also have

Re {1 - a(t)} >0. (3.4)
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Thus for every ¢>0
2 +[1-p@F) 2 [1+e-p@) >+ [1-a0) > [1-a@) P (3.5)

(a) The sufficiency. We assume that

3(0)= —if zdu(x)= —im+0.
We have °
Re {1—a(t)}= f (1 —cosiz)du(x) = 2f sin2t22d,u(x). (3.6)
G ¢

Let the number & satisfy 0 <b < z. It follows from the assumption m <0 and (3.3)
that there exists a constant  such that

0<C|t|<|1—a)| if 0<|t|<b. (3.7)
Now consider

g 1 ‘f° Re{l—a(t)} 4 &
1= ——tdi= ——— s dt = dt=1I,+1,.
f—b Re{1+8—ﬂ(t)} t f—b|1+8—ﬂ(t)|2 +f—b|1+~€—ﬁ(t)|2 v
Using (3.5), (3.6), and (3.7) and changing the order of integration, we see that there
exist constants C; and C, such that

tx
S8
» SID°

0<11<C’1f6dp(x)f‘b - dt<02f61x]dy(x).

Using (3.4) and (3.7), we see that there exists a constant C, such that

b e N
<< NIRRT L 5 dt< Oy 7.
0<1, f_b82+|1—ﬂ(t)l2dt Csf_b82+t2 3’

Thus I is bounded and the sufficiency is proved.

The necessity. We assume m = 0. Then to every ¢, >0 there exists ¢ >0 such that
l1—-a(t)| <e|t| for |¢|< 8. If <b, it follows from (3.5) that

i L1 LT
él-lTTo T, elffo e +ErT g
Hence lim,,,q I,=cc, I is not a bounded function of & and the necessity is
proved. ‘
(b) All constants used in this proof are positive. Let (3.1) and (3.2) be true. It
follows from (3.1) that the partial derivatives of 4 satisfy a Lipschitz condition of
order §, We choose the coordinate system in the ¢-plane so that

% 0)=20i+0 (a>0),
ot

op
2 oy=0.
3t2()0
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Two estimates of |1— ()| are needed. The first one is obtained by use of the

mean value theorem and of the Lipschitz condition for the partial derivatives of g
and gives the existence of a positive number b < 7 and constants ¢; and K such that

(1) |1—-a()|>]Im {ﬂ(O)—ﬂ(t)H
- op
- \ Im {tl . (68)+ tz a, (Bt)} l

>2alt,|— O {|t,] |t’6+|tz"tlé}
>2a|t,| - K|t|'*® for |t|<b.

Our second estimate is obtained by use of a method due to Chung and Fuchs [4].
We observe that it follows from the assumption G(u)= G that the mass of y cannot
lie on a straight line through the origin. Hence there exists a constant C, such that

2) |1—a()|>Re{l —,z(t)}=” 2sm2gd‘u(z)>|t|202 for |t|<b.
G
We shall prove that there exists a constant C such that

]
_ < >0. .
ffm(b Re {l +s—ﬂ(t)} di<C<oo forall £>0 (3.8)

It follows from (3.5) that

1 1 1
Re .
l {1+e ut)}l NIETE a0 S1=20)]

Hence it is sufficient to prove that

ff dt -
<o | 1—A(0)]

We have
dt dt
I= = +ff }——.——=I +1,.
fflt|<b|1—/t(t)| {ffn, p|1-p@®| "t 7*
Here .
D, ={tla|t,| - K[t['"°>0; [¢t|<b}
and

D,={t|a|t;|- K|t['""*<0; [¢|<b}.

The estimates (1) and (2) are used for I, and I, respectively. There exist constants

k and {C;}* such that
Kjcos g 1/0
0<I,<0C J‘ J‘ _rdrdp
ar | cos g

=O'2f |eos |2 dp < oo.
)
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27t b
rdrd
0<I,<C, f f S
0 Klcosglid T

2n
<C4f {1 +§[log|cos<p||}d¢p< oo,
0

Hence I is convergent. Thus, if for some positive number 8

fG|x|”‘sdp(x)< oo

f |z |2 du(r) < oo
@

Obviously, it is still true that (3.2)—(3.8). We shall prove that (3.8)—(3.2).
If (3.2) is false, then

it is true that (3.2)—(3.8).
We now assume that

O oy —
oty 0= 6t2 (0) 0.

We conclude, in the same way as in the discussion of estimate 2 that there exist
constants C; and C, such that

Re{l—-a(t)} =0, |t for [t|<b.
[1—a@)|< |t} for [t|<b.

Hence it follows by use of (3.5) that there exist constants C,; and C, such that

) 1+8 ,u(t |t|<bl1+8 A t)l
>0, r3drd(p c, oVe uddu oo
&+t o 14wt

when e— + 0, (3.8) is false and the proof of (b) is complete.
(c) Let the number b satisfy 0 <b<n. According to Theorem 6 in Chung and
Fuchs [4], there exists a positive constant C such that

[1-a@|=C|t]? for |t|<b.

1 dt
Rel{——tdi< — <
fmd e{1+6—ﬂ(t)} f.t.all—ﬂ(t)l

1 b
< Z'fo Tn_adT< S

Since

if n >3, (c) follows.
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4. Properties of bounded non-trivial solutions of ¢ — ¢ % u >0

The main part of this paragraph is devoted to a study of the bounded solutions
of the equation

P@xXu=g, 4.1)
where g € M (Definition 2.1). If ¢ is non-negative, these solutions also satisfy
p—@xu=>0. (4.2)

The one-dimensional cases (R! and Z!) are treated in Theorems 4.1, 4.2 and 4.3 and
the multi-dimensional cases (R® and Z" for n>2) in Theorem 4.4. We especially
mention the following result: Consider the class {u} of measures with the property
that if ¢ is a bounded, non-trivial solution of (4.2), then ¢ — @ % u € L1(G). On R! and
Z1, this class is non-empty since it contains every measure y which satisfies the
conditions of Theorems 3.1a (c¢f. Theorems 4.1 a and 4.3 a). If n >2 there exists no
measure in this class on R" and Z" (cf. Theorem 4.4 b).

Theorems 4.1 Let G=G(u)= R! and assume that

f_ x| du(x) < o
and that

f zdu(x)=m=+0.
(a) If the bounded function @ is a solution of the inequality (4.2), then ¢ — @
u€LY(RY).
(b) Let @ be as in (a). If @ is slowly decreasing (cf. e.g. Definition 9b, Ch. V in
Widder [14]), then lim,_, ., p(x) and lim,_,_ . @(x) exist and

IZo (9~ @ % p) (@) da
m

@) —@(— c0)=

(c) Let @ be as in (a). If lim, o, @(x) =Hm,_,_., p(z), then ¢ — @ % u=0.
(d) Let g€ M (Definition 2.1). If @ i3 a bounded solution of the equation (4.1), then
lim;, o, p(x) and lim,_,_ . @(z) exist and
e oy 0O
gloo)—g(— o)=L 2.

Remark 1. Let » be a bounded measure satisfying v —»x u>0. Then results
corresponding to those in (a) and (c) are valid for ». In (c), we assume that
limg oo v % k(x) =lim,, v % k(z)

for every continuous and non-negative function k with compact support. The results are

(a) fw diy—vxpu)(z)< o
and
(c) v—y¥u=0.
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This follows immediately from the formula

fw (v—v*;»)*zc<x)dx=f°° k(x)dx-fw Ay~ ) @),

- - 00

Remark 2. Results similar to those in Theorem 4.1 are found in Feller [8] for
right members g with compact support but with weaker conditions on u. Feller only
assumes the existence of F. His methods are probabilistic. Similar result can also
be found in Karlin [9], and his methods of proof resemble ours. Karlin only treats

measures g such that lim . |2(£)| < 1.
Before proving Theorem 4.1, we state two other theorems The proofs of these
three theorems are closely related and it is natural to treat them simultaneously.
The following Banach algebra 4, will be used in Theorems 4.2 and 4.3.

Definition 4.1. Let G be R! or Z, let n be a. non-negative and C, a positive number.
The function g€ A, if

||g||=00fG(l+|x|")|g(x)|dx< vo.

With suitable choice of C,, 4, is a Banach algebra of functions on R! and Z'.

Theorem 4.2. Let y and g be as in Theorem 4.1, let for some non-negative number n

f |2 du(x) < oo 4.3)
and let g € A, be such that § has compact support. If the bounded function @ is a solu-
tion of the equation (4.1), then ¢’ exists and ¢'€ A,.

Corollary. Let ¢ be as in Theorem 4.2. If n>1, then

J; {lp(0) —p(z)| +]|p(— ) —p(—2)| }|2|" dx < oo.

We introduce the following notation. If ¢ is a function on Z!, ¢’ is defined by
the formula

{¢;c}k”=—oo = {<P1c - ¢k—1}7c°=—oo-

Theorem 4.3, Let G = G(u) = Z* and assume that for some non-negative number n

2 | k" k< oo (4.4)
and that

_z klltk =m=+0,.
(a) Assume that n=0. If the bounded sequence ¢ is a solution of the inequality (4.2),
then ¢ — @ % p € LY(Z1),
(b) Let ¢ and n be as in (a). If Yimy_ o @i =limy_, o, @i, then ¢ —@* u=0.
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(c) Assume that n=0 and that g € L1(ZY). If @ is a bounded solution of the equation
(4.1), then lim;_,, @ and limy_, o, @i exist and

4o
o TP -0 m

(d) Let the sequence g€ A,. If ¢ is a bounded solution of the equation (4.1), then
¢ €A,

Corollary. Let ¢ be as in Theorem 4.3 d. If n 21, then
SE g =il |- —oslh < oo

Remark 1. Theorem 4.3 is the analogue on Z! of Theorems 4.1 and 4.2. Since on
Z! every function is slowly decreasing, the analogue of Theorem 4.1 b is contained
in Theorem 4.3 c.

The results for Z! are more complete than those for R!. This is due to the fact
that the dual group of Z!, the unit circle, is compact.

Remark 2. The corollaries of Theorems 4.2 and 4.3 are related to results in Kar-
lin [9], obtained by use of an induction argument. On R!, Karlin only treats the
case when u is absolutely continuous and the right member g in the equation (4.1)
is monotonic at infinity. Our corresponding restriction is the assumption that § has
compact support.

The following lemma is used in the proofs of Theorems 4.1, 4.2, and 4.3.

Lemma 4.1. Let the function p satisfy conditions 2.12 and 2.13 in. Domar [5] and
consider the Banach algebra A(p) of functions on G under the norm

171 [ 1)@z

If C is a compact set in G and € A(p) is such that f(£)=0 on C, then there exists
g € A(p) such that f(£)§(£)=1 on C.

Proof of Lemma 4.1. A(p) is a regular Banach algebra and f is the Gelfand repre-
sentation of € A(p) (Domar [5] Theorem 2.11, Lemma 1.24 and p. 15). Let %(C) be
the ideal of functions in A(p) whose Fourier transforms are zero on C. Since ¥(C)
is a closed ideal, the quotient algebra A(p)/k(C) is a Banach algebra with identity
and the result follows (Loomis [10] 6 B, 23 B, 25 B).

Proof of Theorems 4.1 and 4.3 a, b. For the proof of Theorem 4.1 a, b, we refer
to Essén [7]. It is there assumed that u is absolutely continuous, but the generali-
zation to measures u satisfying the conditions of Theorem 4.1 is easy. Theorem 4.1 ¢
is a direct consequence of Theorem 4.1 b. The results in Theorem 4.3 a, b follow in
the same way, if partial integrations are replaced by partial summations.

To prove Theorem 4.1 d, we observe that the general solution of the equation
(4.1) has, according to Theorem 2.3, the form 4 +gx F. Hence our solution ¢ is
uniformly continuous. In particular it is slowly decreasing and hence our result
follows from Theorem 4.1 b.
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Proof of Theorem 4.2. We shall use Lemma 4.1 with p(z)=C,(1+|z|"), which
satisfies the conditions 2.12 and 2.13 in Domar [5] if the constant C, is suitably
chosen. Obviously A(p)= A, (Definition 4.1). Let

f “duty) (@>0).
Nl(x) = ;

—f duly) (@<0).

— o0

Condition (4.3) implies that N, € 4,. Since u has no mass at zero,

- 1—a(t

F0-=L0 ¢+,

N,(0)=m.
We assume that the function [1 - a(t)]/it is defined by continuity for ¢=0. Since
N,(¢)*0 for all ¢, there exists for every compact set O a function in 4, whose Fou-

rier transform is (it)/[1— a(t)] on C. Now consider the equation (4.1) where g€ 4,,
g € M (Definition 2.1) and § has compact support. There exists k € 4, such that

_ i)
PO~ T

Here £(0) =§(0)/m and h— h % u=g'. Integrating, we obtain

f “wa- [ [ o dantn) = g - 9@

Let H(x)= f ’ h(t)dt.

If g— — oo, we obtain.
H—-—Hxpu=yg.

If @ is a bounded solution of (4.1), it follows from Theorem 2.3 that there exists a
constant C such that

p=H+C.
Thus ¢’ =h € 4, and Theorem 4.2 is proved.

Proof of the corollary. Since

z

#(00) — pla) = f “ b dt,

#(x) — g( — 00) = f h(t)de
and k€ 4,, the corollary follows.
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Proof of Theorem 4.3 ¢, d. The same principles as in the discussion on R! will be
used, but on Z! we have to replace derivation by the formation of differences. We put

o0
dty= 3 axe ™.
- 00

The sequence a'={a;—ax-1}%, has the Fourier transform d(f) (1~ e *). Hence
[1-a@®))/Q- e ") (defined by continuity for ¢ = 0) is the Fourier transform of ¢, where

-]
= m for »>0,
r+1

6=— 2w for »<—1.
It follows from (4.4) that c € A, (Definition 4.1). Since é(f) 30 for all ¢ (in particular

we have ¢(0) =m=+0), Lemma 4.1 implies that (1/¢) € 4, (the compact set C of the
lemma is chosen to be the whole unit circle). There exists k€ 4, such that

_gna-e
o=

Here 7(0)=§(0)/m and h—h* u=g’. A summation gives

n 0 n—k
Z h, — Z Z hv,uk=gn_gno—l'
y="ng k=-00 n,—k
Let {H,,}‘i"‘,o = { > h,}
—o0 -0
If ny— — oo, we obtain
H—-Hxp=g.

If ¢ is a bounded solution of (4.1), it follows from Theorem 2.3 that there exists a
constant C such that

e=H+C.

Thus lim,_,. @, and lim.,_. @, exist,
4(0)
m ’

(Pcc'—(p—eo:_ozo: hn=ﬁ(0)=

and Theorem 4.3 ¢ is proved. Theorem 4.3 d and the corollary follow in the same
way as in Theorem 4.2.
It remains to investigate what happens in R* and Z" when 7 > 2.

Theorem 4.4. Let G=@(u)=R", where n>2. If n=2, we assume that u satisfies
conditions (3.1) and (3.2).

(a) Let g€ M (Definition 2.1). If @ is a bounded solution of the equation (4.1), then
limz_, o @(x) exists.
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(b) There exists a bounded solution @ of the inequality (4.2) such that ¢ — ¢ % u ¢ L*(B")
and lim,_,. @(x) does not exist.

Remark. The analogous theorem on Z" is proved in the same way.

Proof of Theorem 4.4a. In the proof we shall use the Wiener Tauberian theorem.
We wish to consider the class M as a Banach algebra under convolution. As norm
we chose

o= 3, Max|gca),

where {I,}’{" is e.g. a partition of R" into “cubes” with side 1. It is clear that there
exists a constant C, which only depends on the dimension » such that

Hg=fll<Cligl £l

We can equip the algebra with an equivalent norm so that the constant is replaced
by 1 (Loomis [10] § 18).

Now the Gelfand transforms of the functions in M form an algebra belonging to
the class of Banach algebras considered in Domar [5]. It is easy to verify that the
assumptions I and IT in [5], Ch. I, §1 are satisfied. Hence the Wiener Tauberian
theorem [ibid. Theorem 1.53] is valid in this algebra.

In the special case G= R!, this has also been found by Edwards [6].

The general solution of the equation (4.1) has, according to Theorem 2.3, the form
A+gxF. Consider the set I of functions g € M such that lim,_, ., g% F(z)=0. It
follows in the same way as in the proof of Corollary 2 in 37 A in Loomis [10] that I
is a closed ideal. We shall prove that lim,_,., g ¥ F(x) =0 for every g € M such that
§ has compact support. It then follows from the Wiener Tauberian theorem that
lim, g % F(z)=0 for all g€ M and the proof of Theorem 4.4 a will be complete.

In the same way as in the proofs of Theorem 3.1 b or ¢, we conclude that the
following integrals are absolutely convergent. The constant C, is only dependent on
the dimension x.

olx) = C"f‘ Pl _g0)_ dt=
G

1-a()
o o JO (A +e) _
31—1:-1!—10 Cnf& ¢ 1+e— ﬁ(t) dt N el-lyl-il-lf)g * Fe(x) g * F(x)

Since ¢ is the Fourier transform of §/(1 — i) € L{(G), lim,_,., ¢(2) = 0 and Theorem
4.4 a is proved.

Proof of Theorem 4.4b. Let q be a continuous, non-negative function with com-
pact support. Theorem 2.3 and Theorem 4.4a imply that a=¢% F is uniformly
continuous and that lim, . a(x) = 0. (This conclusion is not true in one dimension.)
We shall construct a non-negative function g such that

(a) axg(x) is bounded function of z,
(b) g¢ L,
(¢) limg_,. a % g(x) does not exist.

The existence of such a function proves Theorem 4.4 b.
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Construction of g: Suppose that a(r) <2~ " for |x|> R,, where the sequence {R,}?
is chosen so that

B+ Ryt ...+ Ruy<Bn (0=2,3,...). 4.5)
We put Qn={z|Ru_1<|z|<R:} (n>2),
Ql={xl|x|<R1}.

In each annulus @y, we take a sphere Sy (all with the same radius). Let now g be
continuous and such that

() g(x)=1 when =2z€8;, (n=1,2,..)),
(b) 0<g(x)<1,
(c)f glx)de=1 (n=1,2,..)),
Q4n
(d) g(2)=0 if z2¢Qum (n=1,2,...).

"It is clear that g ¢ L.
First we have to show that a x ¢ is defined and bounded. Let z € @y. Using (4.5)
we obtain

lz—y|>Rys if 2€Qn, yEQ (K<N-—2),
|z~y|>Re_s if z€Qy, z€Q, (k>N+2)

and that there exist constants {C;}% such that
f alz—y)gly)dy= 2 a(z—y)gly)dy <
R7 k=1J o

N-2 N+1 o0
<2 2‘””] g(y)dy+Cy > 9(y)dy+ > 2"‘*‘”’f g(y)dy <
k=1 Qx N-1J Qg N+2 Q

k

S(N—-2)27¥3 4+ 0, +27V2< 0, (4.6)

Thus axg is a bounded function. Sinee for all positive integers g(x)=1 for € Sin
n and the function a is non-negative and not identically zero,

lim a % g(z) > 0.
T=>00

It remains to prove that
lim a % g(z)=0.

T=po0

Take N=2 (mod 4) and z € Q. Since {,, g(y)dy =0 if k=0 (mod 4), it follows from
(4.6) that

axgx)<(N—2)2°¥3 42250 as N-—>oo,
and the proof of Theorem 4.4 b is concluded.
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5. Properties of unbounded solutions of the inequality ¢ — ¢ % >0 in R! and
Z! when no bounded non-trivial solutions exist

In the remaining part of the paper we are going to deal with the case when no
bounded, non-trival solutions of the inequality

p-gxu=0 (5.1)

exist. According to Theorem 3.1, this means that the groups considered will be E*
and Z" with n=1 and n=2.

In this paragraph, we deal with measures 4 in R! or Z! satisfying {cdu=1 and
Jexdu(x) =0 and possessing moments of a certain order. We'investigate properties
of solutions not growing faster than linear functions (Theorem 5.1). Since it is easily
proved that every concave function satisfies the inequality, such solutions exist.
The existence of other solutions than the concave ones will follow from the discus-
sion of the equation

Q—@Xu=g (5.2)

(Theorems 5.2 a and 5.3 a) where we assume that g € L! and that § has compact
support. We also show that if a solution ¢ of the inequality does not grow too fast,
then ¢ —@ %y €L! (Theorem 5.1). Summing up these results, we obtain regularity
properties of functions satisfying the inequality and a certain growth condition
{Theorems 5.2 b and 5.3 b).

In order to find all the solutions of the inequality, we have to solve the equation

e—@p*xu=0. (5.3)

Now unbounded solutions can occur and these will be found by use of the theory
of Beurling [2] and Domar {5]. (The result of Choquet and Deny mentioned in
Theorem 2.1 only gives us the bounded solutions.) For simplicity the following
lemma will be proved only for the case G'= Rl, but analogous results with analogous
proofs are true in Z1, R? and Z2.

Lemma 5.1. Let G = G(u)= R! and assume that for some positive integer n
f |z |"du(z) < oo.
If @ is a solution of the equation (5.3) such that p(x) = O(|z|") at infinity, then ¢ is a
polynomial of degree not exceeding n.

Corollary, Let u and @ be as in Lemma 5.1. We further assume that
f zdu(x)=0.

Then there exist constants A and B such that p(x) = Ax + B. Conversely, every such
function satisfies (5.3).

Proof of Lemma 5.1. Let f€ A, (Definition 4.1). Consider 0= (p —@* u) % f=
@ % (f— f* u). Here f — f 3 u € 4, and ¢ € A7 (the class of linear functionals on 4,). Let
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A, be the spectrum of ¢ (cf. e.g. Definition 3.21 in Domar [5]). We here have that
A< {t| ) (1 — a(t)) = 0}. Since f is arbitrary in 4,, it follows that A, < {t| a(t)=1}.
Now, according to Definition 3.41 in Domar [5], {{| f € 4.} has polynomial growth
<n+1 for a compact neighborhood of zero in @ and z,+0 (and growth <1 for
z,=0). Hence Theorem 3.42 in Domar [5] implies that ¢ is a polynomial of degree
not exceeding ».

Proof of the corollary. Lemma 5.1 implies that ¢ is a polynomial. Let g(x)=2".
We obtain (¢, — g% ) (¥) = — (£) 2" 2% y*du+ ... If Py is a polynomial of degree
k>2, then P,— P;*u contains a term of degree k— 2, which cannot be compen-
sated by any other term. Thus P, — P, » u=+0 if k> 2. It is easy to see that p(z)=
Az + B satisfies the equation (5.3) and the corollary follows.

We shall now investigate the connection between the growth of a solution ¢ of
(5.1) and the magnitude of [, (p — ¢ % u) (z)dz.

Theorem 5.1. Let G = G(u)= R! and assume that for some o satisfying 0 <a<1

f |z du(x) < oo

— o0

and that f zdu(z)=0.

If @ is a solution of the inequality (5.1), then
(@) @(z)=0(z|")>g—p*u€LYRY),
(b) () =o(|z|)=>p—gxpu=0.

Remark 1. The corresponding theorem on Z! is true. The proof of this will be
discussed in the proof of Theorem 5.3.

Remark 2. Let a be a given number satisfying 0 <a<<1. Then there exists a
measure u and a solution @ of the corresponding inequality (5.1) such that
limy ;0 @(x)/| 2 |* exists different from zero. We can for instance take du(z) = f(x) dz,
where

1+ 1
—— i for |x[=1
fw-{ 2 p= o 1
0 for |z|<l.
Then we have
1—af(t
l'm——'u( )#0,

oD [t]t*e
and, if g € H' (Definition 2.3), that the function

_1 (g -1)
ple)=5— e 1 a0 di

is a solution of (5.1) with the desired property.
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Remark 3. Let u be as in the theorem, let u satisfy
v—yvxu=0
and assume that for some continuous, non-negative function k with compact support
v* k(x)=0(|z[*) atb infinify
or y* k(z)=o(|xz|) at infinity.
Then results corresponding to those in Theorem 5.1 are true for y. Confer Remark

1 of Theorem 4.1!
We shall need the following lemma in the proof of Theorem 5.1.

Lemma 5.2. Let h€ L' (R') be even, bounded and non-negative with two continuous,
bounded derivatives. We further assume that h(0) =1, that k'’ is monotonic for |z| > B >0
and that for some number o satisfying 0<a <1

f |y |"y)dy < oo,
L ly[*| 2 () |dy < o0

and f |y|¢lh~(y) |(1+a)/2dy< .
Then there exists a constant C such that
|r]‘1‘“f |y 1*|hy) — by +r)+ 1k’ () |dy<C for r=+0. (5.4)

Proof of Lemma 5.2. We first assume that |r| < 1. Using
| h(y) — By + ) + vk () | < r* [ B (y + 6,7) |

we obtain that there exist constants C; and C, such that
[ L) - by 0+ )l ay <
< f [y I*| Aly) — hiy + 1) + 7k () |4~ | By + 6,1 |4+ dy <
|¥|<B+1 |¥|>B+1
<ofir | lRIEy- DI g lea) -c.
j¥|>B+1

Thus (5.4) is proved for |7|<1.
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If |#|>1, the contribution of every term in the integrand in (5.4) is bounded
(division by #'*%) and the result follows.

Proof of Theorem 5.1. We shall show that it suffices to prove the theorem for
differentiable solutions of the inequality (5.1). Let ¢ be a solution of (5.1) and choose
a non-negative function k € C*° with compact support. Then g, = ¢ x k is a differenti-
able solution of (5.1), and it follows by the same argument as in Remark 1 of
Theorem 4.1 that if the theorem is true for the solution ¢, it is also true for the
solution ¢.

We assume ¢,(0)=0. Hence for every positive number b there exist constants
k, and k, such that

{ | o) | < kol |®, (|| <D),
lpo(@)| <Ky z[%, (|z|>0).
We put @, — % 1 =g and investigate [, g(z) k(az)dx with h chosen as in Lemma

5.2. If there exists a positive constant C such that

fw 9(x) blax)dx < C

for a near to 0, then g € L(R!). Since g is non-negative and continuous, we also have
that g(z) =0 for all z if C can be taken arbitrarily small.

f " g(z) h(az) dx

f_ (o — @o % p) (x) h(az) dx

- f ) %(x){h(ax)— f h(az+ay)dmy>}dx

|7 o[ thtam)— haz-+ ag) + et i}ty e

< f dﬂ(y)J‘f | go(z) {h(ax) — h(az + ay) + ayh’(azx)} | dz.

We divide the inner integral into j,,,d + §|x|>,, and use Lemma 5.2 and our esti-
mates of g,.

f kol x| blax) — h(ax + ay) + ayh' (ax) | dz
lz|<b

= kly [ f 0[] Bt) — bt + ay) +agh'(t)| de
|a:l/| Iti<ba
=o(a)|y["**, as a—0.

There exists a constant C, such that
f k,|z|*| h(az) — h(ax + ay) + ayh'(ax) | dx < C, ky |y |'+*.
1z}>b
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Hence fw g(x)h(ax)dx<f°o ly ' *duly) {o(a) + k,- C,}.

This implies Theorem 5.1 a. Since we can chose k, > 0 arbitrarily small, Theorem
5.1 b follows.

Theorem 5.2. Let G =G(u) = R' and assume that

f 22du(z) < o

and that f x du(z)=0.

— 00

(a) Let g € LY(RY) be such that § has compact support. Solutions of the equation (5.2)
are unique up to addition of linear functions. If ¢ is a solution of (5.2) sugh that
@(x) = O(a?) at infinity, then ¢’ € LY(RY), lim,_,., ¢(x)/2 and lim,_, ., ¢(x)/z exist and

(2) +p(—2)_ _24(0)

2

lim
| 2 j>o0 | x l [

where o= f 2 du(z).

—00

(b) If @ is a solution of the inequality (5.1) such that @(x)/x is bounded for |z|>1
and slowly oscillating (cf. e.g. Rudin [12]7.2.7), then lim._e @(2)/z and lim,_, ., p(x)/x
exist and

lim 2@ FTo(=2)_ _2f%, ((p—(p;*p) (x)dx, (5.5)
| £ }>00 le [
where the right member is finite.

The following corollary follows directly from Theorem 5.2 b. It can also be
obtained from Theorem 5.1 b.

Corollary. Let y be as in Theorem 5.2. If ¢ is a solution of the inequality (5.1) such
that p(x)=o(|z|) at infinity, then ¢ — @ % u=0.

Remark. Assume that for some positive integer n

f |z|"*2du(x) < oo,

that § has compact support and that g € 4, (Definition 4.1). Then, with methods
similar to those we shall use in the proof of Theorem 5.2, we can find the following
property of a solution ¢ of the equation (5.2).

There exist linear functions @, and @_ such that

p(x) ~ Qi(x)=o(lz| ") as z—>oo,

P@) - Q-(x)=o(z| ") as x—> — oo.
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Before proving Theorem 5.2, we state the corresponding theorem on Z1, The
proofs of these two theorems are closely related, and it is natural to treat them
simultaneously.

We introduce the following notation. If ¢ is a function on Z!, we define ¢’ by
the formula

{9k} %0 = (@i = 2011+ P2} Ve
¢’ was defined before Theorem 4.3 and obviously
¢Il — (wl)/.
Theorem 5.3. Let (f = Q(u)=Z' and assume that

2 K< oo

and that S ki =0.

(a) Let g € LY(Z1). Solutions of the equation (5.2) are unique up to addition of linear
functions. If @ is a solution of (5.2) such that @, = O(n®) at infinity, then @'’ € LY(Z?),
limy_ye @n/n and limn, o, @,/n exist and

i P02 _20)
| n {00 l'ﬂ/l g

where o= oﬁ: Bu.

(b) If @ is a solution of the inequality (5.1) such that @,/n is bounded for n=+0,
then iMoo @n/n and lim,_, o, @n/n exist and

lim P2t r_ 227 (@ X p)n

| 2> I'nl 0'2

where the right member is finite.

The following corollary is a direct consequence of Theorem 5.3 b.

Corollary. Let y be as in Theorem 5.3. If @ is a solution of the inequality (5.1) such
that p(n) = o(|'n|) at infinity, then ¢ — % p=0.

Remark. The same remark as the one of Theorem 5.2 applies here. Since Ztis
compact, § always has compact support.
In the proof of Theorem 5.2, we shall need the following lemma.

Lemma 5.3. Let u be as in Theorem 5.2. We define

f f du(t)dy (@>0),
f f du(t)ydy (x<0).
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If g is such that

(a) f_ |g(x) | du(z) < oo,
(b) lim g(x)L du(y)=0

Jim 9(x)f_ du(y)=0,

() lim g'(z) Ny(@)=0,

[EA 2]

(d) ¢ is absolutely continuous and g’ a.e. bounded from above or below, then

- g" (x) Ny(x) d. (5.6)

9(0) - f " g@) duta)— ~ f

Corollary, (a) Let g satisfy the conditions in Lemma 5. Then
g—g¥xp=—g¢" %N,
(b) If we assume that the right member is defined by continuity for t=0,
0 A1
Nz(t) ('bt)2 °
Proof of the corollary. (a) Apply (5.6) to g,, where g,(x)=g(a — ).
(b) Apply (5.6) to g(z)=e™".

Proof of Lemma 5.3. We use partial integrations. The function N, is defined in
the proof of Theorem 4.2.

f: glz)du(x)= — J:O g(x)}dN (x) = g(0) N,(+0) + fo g (z) Ny(x)dx=

o0

=g(0) Ny(+0)— f g'() AN ()=

0
— O)N,(+0) + g"(O) Ny +0) + f ¢"(@) Ny(z) da.

In the same way

0

0
f wg(x)d,u(z)= —9(0) Nl(“O)—g'(O)Nz(—O)—f

g (x) Ny(z) dx.

Adding these equations, we obtain an expression where the coefficient of g(0) is
JZwdu(x)=1 and the one of ¢'(0) is JZw% 2z du(x) =0. Thus the new equation is (5.6)
and Lemma 5.3 is proved.

Proof of Theorem 5.2. Tt follows from the corollary of Lemma 5.1 that two solu-
tions differ by a linear function. We shall find the solutions of the equation (5.2) by
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inverting (1 — @(f)) on the support of §. It follows from the corollary of Lemma 5.3
that (a(t) — 1)/ it)? is the Fourier transform of N, € L. Since N,(t) =0 for all ¢, we
can apply Lemma 4.1 where we choose p in such a way that p(z) =1 for all x. Hence
there exists b € L1, so that

_(18)*§(t)

=4 5.7
10— a@) ®), (6.7

ie. h—h*xu=g". We put
H@)- [ e-nhndy

and assert that H is a solution of the equation (5.2). The assertion follows from the
corollary of Lemma 5.3, since

H-Hxuy=—-H"%N,
and the Fourier transform of the right member is §. Thus the general solution of

(56.2) can be written g(z) = H(x) + Az + B.
From this the existence of lim,_,., p(z)/% and:._,—. @(z)/ follows and we have

lim PO FTO(=2)_ f _°° hiy)dy = 5(0) = —2"’;(20 ), (5.8)

| T |00 |$|

The last equality is implied by (5.7). Hence (a) is proved.

(b) Let @ be as in Theorem 5.1 b. We shall prove that lim,_,., p(z)/ exists. The
proof for x— — oo is analogous.

We put ¢ — ¢ % u=g. It follows from Theorem 5.1 a that g € L'. Now take g€ H'
(Definition 2.3) such that ¢(0)=1 and

f |z]|g(z)dx < oo.
Let a be a positive number. We define g.(x) = ag(ax). Then ¢, =@ % q. satisfies

PPy ¥p=9g%¢y=0.

Since the Fourier transform of g % g, has compact support, it follows from (a) that
lim;_,.. ,(x)/x exists.

It may occur that @(x)/x is not a bounded function of x. Therefore we write
@ =1y, + v, where, if b and  are positive numbers,

(z) = p(x) for |z|<b
Yol 0 for |z|>b+é

0 for |z|<b

and vale) = { p(x) for |z|=b+é.

For b<|x|<b+4d, we define g, and p, so that they are continuous for all z. Hence
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L[ e
lim = | 9ol = 9) galy)dy = lim ;f [pol@ — y) + po(= — 9)] da(y) dy.
1
Now lim — ) yo(x—y)galy)dy =0

and thus, if we define y,(z)/z=0 if y,(x)=0,

1 © yle—y), _

}ggz 2=y (- ¥ q(y)dy =
. had x— ) x
“tim |7 P aay- s B

Since g(x)/x is slowly oscillating, the same is true for »(z) =y, (z)/x. We know that
v€EL® and that lim,_. v % g,(x) exists for all positive numbers a, and thus we can
apply the Wiener Tauberian theorem in the same way as in the proof of Theorem
4.4 a. This implies the existence of lim;_,., v % f(x) for every f€ L'. In particular, we
see that this is true for every function f € L! with the property f(t)==0 for all ¢.

Hence a Tauberian theorem of Pitt (cf. e.g. Rudin [12] 7.2.7) implies that
lim,_, ., ¥(x) = lim,_,, ¢(x)/z exists. It remains to prove the formula (5.5). We define
»(x) =»(— ). It follows from (5.8) that

. + o (— 24(0
lim @a(x) + i x)z _ 9(2 )

500 x [

This implies that for all @

lim (v -+ 29‘(20)) *g.(x)=0

Tro0 g

and it follows from Pitt’s theorem that

i (PE)F9(-2), 200)
x g

24(0
)

) = lim (v(x) —~{x) +
T~»00 T—>00
and the proof is complete.

We shall prove theorem 5.3 in the same way as Theorem 5.2. Before doing this,
a preliminary discussion is needed. We first observe that the solutions of the equa-
tion (5.3) are obtained from the corollary of Lemma 5.1, which is also valid on Z%.
Secondly, let the function 4 be defined on R! and satisfy the conditions of Lemma 5.2.
The theorem on Z! corresponding to Theorem 5.1 on R! is true, and this follows if
we use the summation sequence

{hi} 20 = {h(ak)} o0

In the proof of Theorem 5.3, we modify the method, used for obtaining Theorem
5.2, in the same way as the proof of Theorem 4.2 was modified in the demonstration
of Theorem 4.3 ¢, d. The sequence g’ has the Fourier transform §(t) (1 — e *)* which
can be divided by (1 —j(f)). We obtain a sequence k€ L(Z!) which satisfies the
equation h—hxu=g".

Now we can proceed as in the proof of Theorem 5.2, and Theorem 5.3 follows.
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6. Properties of unbounded solutions of the inequality ¢ — ¢ % ¢ >0 in R? and Z2
when no bounded non-trivial solutions exist

In this paragraph we consider the two-dimensional analogues of Theorems 5.1,
5.2, and 5.3. The measure y is assumed to have properties such that no bounded
non-trivial solutions of the inequality exist. Conditions implying this are deduced
from Theorem 3.1 b. We deal with solutions which are O(log |z|) at infinity. The
existence of solutions satisfying this growth condition can be proved in the following
way. Take g € H' (Definition 2.3) and put

1 et
Pi(x)= @n)? f f& g() 1=40) dt, di,.

The function ¢, satisfies the equation
g-@pxu=g (6.1)
and it will follow from Theorem 6.1 that ¢,(z) = O(log | z|) at infinity.

The solutions of the equation
p—pxpu=0

in R? and Z*? are found in the same way as those in R! (Lemma 5.1).
We introduce certain notations. Let G be R? or Z*, let G = G(u) and assume that

f xld,u(x)=f zydu(z) =0 ‘ (6.2)
@ G
and that f [z|Pdu(z) < oo. (6.3)
@
We put f ridu(z)=a,
¢

f 23 du(z)=b,
6

f z, 2, du(x)=c.
G
Since G(u) is two-dimensjonal, the polynomial of the second degree

ats + btg + 2ty ty = f (tz)®du(z)
G

is positive definite. Hence there exists an affine transformation ¢= Au such that
atf + bt} + 2ty to—>ul + u3.

Let | A| be the determinant of the matrix 4 and let A* be the adjoint of 4. We
choose 4 so that | 4]>0.
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Theorem 6.1. Let G = G(u)=R? and assume that the conditions (6.2) and (6.3) are
fulfilled.

(a) Let g € L'(R?) be such that § has compact support. Solutions of the equation (6.1)
are unique wp to addition of linear functions. If @ is a soluticn of (6.1) such that
@(x) = O(log | z|) at infinity, then

|3111_1>1w10g|A*x| n 4] (6.4)

(b) Let @ be a solution of the inequality
¢e—@xu=0. (6.5)
If p(x)=0(log | z|), then ¢ — @ x u € LY R?).

(c) Let @ be as in (b) and furthermore let p(x)/log | A*z| be slowly oscillating (cf. e.g.
Rudin {12] 7.2.7). Then

; plx) _”m((p—tp*‘u)(x)dx
|}}?oolog|A*x|_ - |4].

Remark 1. The result in (b) can be generalized. Let u be as in the theorem,
let the measure » satisfy ‘

v—rxu=0
and assume that for some continuous, non-nega,tive function k with compact support
» % k(z) = O(log | z|)

at infinity. If (b) is true, then v  k — v % k» u € L1(R?), and it follows that the total
mass of the measure v —» %y is finite. Confer Remark 1 of Theorem 4.1 and
Remark 3 of Theorem 5.1.

Remark 2. If the coordinate system is chosen such that a=b= a* and c=0, we
obtain in (¢)

lim 2@ _ _Jimlp—gxp)(z)de
110 log |z no® :

Remark 3. The methods used in the proof of (b) could also have been applied in
the one-dimensional case.

Theorem 6.1 is also valid on Z%. We can, however, simplify the statement in (a)
and combine (b) and (c).

Theorem 6.2. Let G=G(u)=2* and assume that the conditions (6.2) and (6.3) are
fulfilled.

(a) Let g € L\(Z?). Solutions of the equation (6.1) are unique wp to addition of linear
functions. If @ is a solution of (6.1) such that p(x)=O(log |z|) at infinity, then

. px) _ §(0)
|}}Twlog|A*x| 7 |41
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b, ¢) Let @ be a solution of the inequality (6.5) such that p(x) = O(log| z|) at infinity.
Then ¢ — @ % p € LNZ?) and

m 2@ _Hz@-exp@dz
Iz |>o0 log | A*z| n

Remark. Corollaries of Theorems 6.1 and 6.2 analogous to the corollaries of Theo-
rems 5.2 and 5.3 are true. The proof is easy.
The following lemma is needed in the proofs of Theorems 6.1 and 6.2.

Lemma 6.1. Let y and A be as in Theorem 6.1 or Theorem 6.2 and let the number
b satisfy 0<b<m. Then

1 "1 g d 4
lim ———— —dt, dt,= — 4 .
IJ}Tw lOg |A*x| fJ‘Ith 1 —ﬂ(t) 1772 nl l

Proof of Lemma 6.1. We approximate (1 — ji(t)) by }(at} + bt3 + 2¢t1 85). It is easily
shown that

(a(t) — 1) + $(ath + b + 2t, t,c) = e®) | £, (6.6)

where lim;_, &(t) = 0.

f o - ldtdt 1) LI 2 }dt dt,+
<o 1 —a(t) * ,t,<,,(e 1—4(t) ati+bti+2chts) ' °

(eitz 1)2
dt, dt,=1I,+1,.
fﬁt|<bat1+bt2+2ctlt2 1772 1 2

We write the integrand in I, with a common denominator and use the estimate
(6.6). Assuming that |e(¢)| < & for |t| <& <1, we obtain that there exists a constant

C(d) such that
[1,|<C)+ ff

and that there exists a constant C such that for every ¢ >0

e(t) | 2dt, dt,

— |I l . 27 ‘dleirlzloostp_ll
[

lim drdep=
| z]->o0 lOgIA xl |I|—>oo lOgIA xl dw

S &|z||cos¢|| 1u_1|
2e [
= Hm ——5— ——dudp<
|%|—>00 10g |A*.’E| fo fo u d¢
— 2n 1z ] iu
< lim —2—8,‘( f le ulldud<p<0's.
0

|.1:|—>oo10g I A x] 0

H
enee .}?_’flw log | A*x|

In the second integral we have for some ¢ >0
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(e —1
I = B 1, =
2 ff,,,<,,at%+bt§+2ctl dt, dty
2(eu'(Au) — 1)
Aldu, du,=
N P

2(6114(44‘1') 1)
Aldu,d
{ff.. ffl.} T ep [ Aldndn,

1r|A'1‘]cos¢p

and that

I, 2(eT T — 1)
lim drdeo=
m_mloglA log[A*z| |z|_>wlog|A*x|f f T

. 4l4] f f cos(rlA*x|cosqa)—
= lim drdp=
{z]-»00 log]A x] -2 r 9

lim AL f"m fcl""”m""cosu 1

= dudp=
|x|->oo lOglA .’tl 2 4
lim —~——4, ‘
|J:|->oo10g|A z|J-

= —4n|A4]

( log c—log|A*z|—log| cos ¢ |)dgp=

and Lemma 6.1 is proved.

Proof of Theorem 6.1. (a) The equation (6.1) is satisfied by

1tz___1
7= Gy H =A@ 0

Since the support of § is compact, the integral is absolutely convergent and we can
calculate ¢, — @, % u by an inversion of the order of integration. We shall show that
limz e [@,(%)]/log | A*z| exists and is finite. Hence if @ is a solution of (6.1) satis-
fying ¢(x) = O(log | z|) at infinity, there exists a constant C such that ¢(x) = ¢,(z) + C.
Thus (6.4) is proved if we can show that

Pilx) _ §(0)
o g A Al

Since g € L1, § is continuous. Assuming that |§(t) —§(0)]< e for |t| <48, we have
1tz‘
4(t) — §(0)} dt +

9(0) f f ” _
I¢l<61 .“(t) 27!) it1>6 1 — a(t) t)dt

=11+12+13.

There exist constants C; and C, such that for every £>0
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L|<ao,- 1] gy < 0pe1o |2]
|1,|<0,-¢ wes TP < Cpelog|z].

Lemma 6.1 implies that

. I, _ §0)]4]
|}|I-I:1w log|4*z| -

We further have that | I,| is a bounded function of z. Hence

() |4]40)
13;3; log | A*z| n
and the proof of (a) is complete.
(b) We put ¢—@¥u=g=hg+gs,
_[9 lzl<&,
where hR—-[O |2|> R
4 0 |z|<R,
a = |
" I g |z|=R.

Now take g € H' (Definition 2.3) such that ¢(0)=1 and

J-J. log* |z]g(z)dz < 0.
R
Consider the equation
p=@*xu=hgxq. (6.7)

It follows from (a) that there exists a solution yg of (6.7) such that yg(x) = O(log | z|)
at infinity and such that

ve@) _  ha(0)4(0), . _ _Ha(0)
zleco log | A*z| T 4] n l4].

We put ¢, =@ % ¢. Hence @, — yp is a solution of the equation

P—@RU=gr*q.
Since @, (z)=O0(log|xz|) at infinity, there exists a constant C such that for large =

Fx(0), .
(9, — yr) (x) >log | A*z| {0+ iy(z—)]’A |}.
If g ¢ L(R?), we can by choosing R large attain that
c+ %T(O) |4]>o0.
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Hence there exists a number R, such that

lim (g, — yp,) (¥) = oo (6.8)

fx]-»00

and the continuous function (@, — yz,) has an absolute minimum which is assumed
at some point x,. Since @, ~ 5, satisfies the inequality (6.5) it follows that

(1 — ¥r,) (%) = (91— ¥r,) (o)

for x€xy— S(u), where S(u) is the semigroup generated by the support of x. This
contradicts (6.8), it follows that g € LY(R?) and (b) is proved.

(¢) Applying the same method as the one used in the proof of Theorem 5.2 b, we
put ¢ —@x u=g. It follows from (b) that g € L1(R?). Now take ¢ € H’ (Definition 2.3)
such that ¢(0)=1 and

ff log* || g(x)dx < oo.
R$
We define g,(x) = a*q(az) and ¢, = ¢ % g,. It follows in the same way as in the proof
of (a) that
o g | A%%| |41

Keeping the method and the notations from the proof of Theorem 5.2 b we put
p= %-i-z;;l Choose b such that| 4*z|>2 for |2|>b and define y,{z)/(log| A*z[)=0
if y,(x) =0. We have

0
|a!|—>oe lOg l A*x | Yo qa(x)

and hence

im L 2 — d §(0)
- _ __0 m
|.1:.![1—>oo log I A*a:l ffm Yl Y) ¢(y) dy | |

We shall prove that this implies that

o ) __io,
|z‘|—>oo ffn-log | A'(x y)l a(y) d 14 | l

If this is true, the same argument as in the proof of Theorem 5.2 b with Wiener’s
and Pitt’s theorems implies that

p(z) 9(0) yi(®) 9(0) A}
Ifll—l?w{logl“!*ﬂ lAl} |r|—»o{log|A*x| 4]

Since #0)= ffﬂ (p—@xu)y)dy,

this is the result we want. It thus remains for us to prove that
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Too | 4% xr— Ay dy =
]I|—>w]0g|A xlfflr oisb (e~ ¥) gu(y)dy =

. yilr—y)
=1 - o) di
lrll»ntejﬁz ,,|>bloglA (x - ’/)|q Wy

If we form the difference of the two integrals and define »(x) =y, (x)/(log| 4*x|),
we obtain

log | A*(x— y)[_ ‘:
lfﬁr yl\bv(x y){ log|A*z| l}qa(y)d.z/

log | 4*(x— y)
'(fﬁ vl + Hu y>D)V(x—y)qa(y){~9%|—g|;;—|-l—l}d!/l~‘11+12

. log|A*(z—y)_
In Il’ |}|l—>oe lOg | A*.’El

uniformly. Since v is a bounded function, we have lim . I, =0. There exists a
constant C and a number R, such that for |x|>b, for R> R, and for y in the do-
main of integration of the integral I,

0<log|A*(x—y)|<Cllog|A*z|+log|A*y|).

Hence there exists a constant C, such that for every ¢ >0

loglA*yI) ” }
L|<C 1+ 212 90 oy dy + () d
| 7, I{HWR( * fog | 4°2] 2.(y) dy lmkq(y) yr<e

for R > R(e) and |z|>b. Thus limzjse | I, + I,| =0 and the proof of Theorem 6.1 is
complete.

Proof of Theorem 6.2 The proof is the same as the proof of Theorem 6.1, except
that it is unecessary to introduce a function ¢q € H', since Z® is compact.

7. Summary of certain results on R” and Z*

We here summarize those results on R" and Z" which deal with the connection
between the growth of a solution ¢ of the inequality (1.1) and the magnitude of

Jolp — @ * p) (2) da.
1. Let G=G(u) be R! or Z! and assume that

f | x| du(x) < oo
G

and f xdu(x)+0.
G

Then bounded, non-trivial solutions of the inequality (1.1) exist (Theorem 3.1). Let
@ be a bounded function. We have the following properties of u.
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(a) If @ is a solution of (1.1), then ¢~ ¢ % u € LYG) (Theorems 4.1 a and 4.3 a).

(b) If @ is a solution of (1.1) and lim;. p(x)=1lim,,_p(x), then p —@ % u=0
(Theorems 4.1 ¢ and 4.3 b).

(e} Let G= R If g is a solution of (1.1) and ¢ is slowly decreasing, thenlim._, ., p()
and lim,_,_ . @(x) exist (Theorem 4.1 b).

Let G=2Z21 If ¢ is a solution of (1.1), then lim.,. ¢(x)} and lim., . @(z) exist
(Theorem 4.3 a, c).

II. Let G=G(u) be R" or Z" where n>2 and assume that a bounded, non-trivial
solution of the inequality (1.1) exists {cf. the sufficient conditions of Theorem 3.1).
Then the results in Ia, b and ¢ are not true (Theorem 4.4).

III. Let G=G(u) be R or Z". We consider the case when no bounded, non-trivial
solutions of the inequality (1.1) exist. This can only occur if n=1 or n=2 and is
in particular true if

fG|x|2dy(x)< oo

and if for every linear function !

f Hx)du{x)=0
(Theorem 3.1).

Under these conditions, we have the following properties of y if n=1.

(a) If @ is a solution of (1.1) and @(x)=O(|z|) at infinity, then ¢ — @ * € LYG) -
(Theorem 5.1 a).

(b) If @ is a solution of (1.1) and if @(x)=o(|z|) at infinity, then ¢ —@* =0
(corollaries of Theorems 5.2 and 5.3). ]

If n=2, we have analogous results with |x| replaced by log | z| (Theorems 6.1
and 6.2).

8. Properties of functions satisfying a sequence of convolution inequalities

In this paragraph, we consider a new problem which connects the results of this
paper with the theory of subharmonic functions (¢f. Radé [11]). The emphasis here
is on this connection, and therefore the treatment of the problem is not complete.
The author hopes that he will be able to return to this subject.

It is well known that the mean value of a continuous, superharmonic function
over e.g. the interior of a circle is smaller than the value that the function assumes
at the centre of the circle. This means that the function is a solution of a convolu-
tion inequality of our type, namely the one that occurs if the measure u is chosen
as the uniform distribution of the unit mass over the circle. Obviously this is true
for a whole class of measures. Thus. we are led to the following problem.

Let n be a natural number. We define the measure u, by setting

#(0) = ()
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for every open set 0. Let A4, be the class of all functions ¢ that are solutions of
P—@*un=>0 (8.1)

for all natural numbers # in an increasing sequence {n,}7°. What functions belong
to A4,? It is clear that there exist measures u such that 4, is non-empty. In the spe-
cial case when y is a uniform distribution of the unit mass over the perimeter or
the interior of a circle, it is well known that A, is a class of functions, superhar-
monic in the whole plane (cf. Radé [11] 3.7).

Theorem 8.1 Let @ = G(u) = R? and assume that p is as in Theorem 6.1, that a =b=¢°,
that ¢ =0 and that for some positive number a

fm|x|“+3d,u(x) < oo,

Let 9 € A, be such that p(x) = O(|z|*) at infinity. Then @ is a superharmonic function.

Remark. If we cancel the assumptions a = b= o” and ¢ = 0, we obtain that there ex-
~ ists a superharmonic function s and an affine transformation B such that ¢(x) = s(Bz).

Proof of Theorem 8.1 All integrals in the proof are absolutely convergent, and we

can therefore change the order of integration as we like. Let the positive function
p€C* have compact support. Multiplying (8.1) with y and integrating, we obtain.

[ 700 [ wtor—ptu-+ ) dutapyau>o. (82)
It follows from (6.2) that

[ - mautm)= [ - patn)+i gl @)+ g ) dum) 63)
Rs Rt 1 2

and from Taylor’s theorem that

pluty)— (w(u>+y1%1<u)+yzé@%<u»=

l X4 27 7
=35 {ylpii(u+ Oy) + 2y, yo prz(u + Oy) + 3 yee(u+0y)}. (8.4)

Here i = 0%p/du; duy, (i, k=1,2) and 0 is a function of » and y such that 0< 0<1.
Using (8.3) and (8.4), we obtain from (8.2) after a change of the order of integration
and the change of variables ny =v that

1 ” v v Ov " Ov
fmd,u(v) fm-— ot (vf 1/)11(“ + -;) + 20, vy 12 (u + ;) + V3 (u + -;:,—)) p(u)du=0.

Multiply by n® and let n— co. Here we will only consider the term
’ ov
f dp(v)f vipn (u + ——) @(u)du. (8.5)
Rt R n
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The discussions of the two other terms are similar. We need an estimate of

f i (u + @) @(u)du. (8.6)
Rt n

Let S, be the support of p. The domain of integration in (8.6) is contained in

D= U (s,,— “—”)
0l n

Hence there exist constants {C;}} such that
(8.6)| < f |p(u)|du < “‘f (1+|u|“)du<0’3(l+
D
v a+l
- < 1 a+l
)<t

and f |v[***du(v) < oo,
Rt

v a+71
» .

Since (1 +

we can use Lebesgue’s theorem on dominated convergence twice and obtain

'}inolo (8.5)= fn d,u(v)fﬂ v} pu(v) p(u) du= J‘R P(u) pri(v) > du.
Hence it follows that

- J- p(u)Ayp(u)du >0
Rt

and by Schwartz ([13] p. 76) @ is superharmonic a.e. Since ¢ is continuous, we con-
clude that ¢ is superharmonie, and the theorem is proved.
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