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Introduction 

Let /x  be a positive, regular measure with total  mass one on a locally compact 
Abelian group G (we refer to Appendix E 1 in Rudin [12] for the definition of regular 
measure). For certain classes of regular measures v the operation voc/x can be de- 
fined and gives a new regular measure. We consider classes such that ,  if v is in a 
certain class, then the same is true for (cf. Rudin [12] 1.3.4) k ~ v ,  where k is any 
continuous function with compact  support,  and 

(k-x-v) -)(-/z = k-)(- (v-)e/z). (0.1) 

The measure v-x-/t can be interpreted as a "weighted mean value" of v. The 
start ing point of this paper  is the following problem: 

Let {v} be a given class and consider the inequality 

v-v-~#>~O. (0.2) 

Which are the solutions in the given class and what properties do they have? 
Suppose v is such a solution. Let  k be an arbi t rary non-negative continuous func- 

tion with compact  support  and form q = k~v. I t  easily follows from (0.1) and (0.2) 
tha t  

~ - ~ # > ~ 0 .  (0.3) 

Obviously v can be completely described by varying the function k. Hence the solu- 
t ion of the original problem can be characterized using the continuous solutions of 
(0.3). This gives a reason for our choice to confine the investigations of this paper 
to classes of continuous solutions of (0.3). At some instances in the forthcoming 
discussions, however, we shall mention the implications on the original problem. 

In  w 2, we let/~ be arbi t rary  and s tudy a class {~} of continuous functions which 
satisfy (0.3) and which are bounded from below. In  Theorem 2.2, conditions are 
given Which are necessary and sufficient for the existence of such solutions of (0.3), 
non-trivial in the sense tha t  the strict inequality holds in a set of positive Haar  
measure. An equivalent criterion is given in Lemma 2.1, namely tha t  for some 
neighborhood 0 of zero in the dual group d of G there exists a constant C such tha t  

f s R e { i  +e 1/~(&)}d&<C for all s > 0 .  (0.4) 

In  special cases (0.4) has been considered by  many  authors, cf. e.g. Chung and Fuehs 
[4]. We find tha t  in this case we always have non-trivial solutions which are bounded. 

9:2 113 



M. E s s ~ ,  Studies on a convolution inequali ty 

In  w 3, the criterion (0.4) is used to give more direct conditions on ~u when G is 
n-dimensional Euclidean space R n or the space of points with integral coordinates 
in R", Z n. We have only been able to t rea t  the case when/z has moments  of a cer- 
tain order. Since the existence of moments implies that/~(&) approaches 1 rather  
quickly as & approaches zero, the case t reated is unfavorable for the fulfilment of 
the criterion (0.4) and hence also unfavorable for the existence of bounded, non-tri- 
vial solutions of (0.3). 

In  paragraphs 4, 5 and 6 Tauberian methods are used for the s tudy of properties 
of continuous solutions of (0.3) in R" and Z n. Many proofs have been simplified by 
application of results from Domar  [5]. One of the problems we consider is to find a 
connection between the growth of a solution ~ a t  infinity and the magnitude of 
~a(9 - ~ ~ u )  (x )dx .  A survey of the results obtained is given in w 7. In  the paragraphs 
4-6, we also study the equation 

~ - ~ / ~ = g  (0.5) 

for 9 in certain classes of continuous functions. Measures # such tha t  bounded, non- 
trivial solutions of the inequality (0.3) exist are t reated in w 4. Theorems 4.1 c and 
4.3 c which give properties of solutions of (0.5) should be compared with a theorem 
by Feller [8]. The corollaries of Theorems 4.2 and 4.3 are related to results on the 
renewal equation earlier obtained by Karlin [9] by  an application of the Wiener 
Tauberian theorem. Although the same theorem is applied in w 4, our approach to 
(0.5) is different from the one of Karlin and in many  cases, we obtain more general 
results. Measures/z such tha t  no bounded, non-trivial solutions of (0.3)exist  are 
t reated in w 5 and w 6. I t  follows from the results of w 3 tha t  this can only occur in 
one and two dimensions. The one-dimensional case is considered in w 5 and the 
two-dimensional case in w 6. 

In  w 8, we s tudy functions ~ on R ~ such tha t  (0.3) is true for a certain sequence 
of measures {~u.} and prove tha t  {r is a class of superharmonic functions. 

The main tools used in this paper  are taken from Fourier analysis and from the 
theory of Banach algebras. The use of probabilistic methods has been avoided. For 
the basic definitions of Fourier transforms, convolutions, etc., we refer for instance 
to Rudin [12]. 

I wish to thank Professor L. Carleson and Professor Y. Domar for their kind 
interest and their many  valuable suggestions during the preparat ion of this paper, 
the theme of which was suggested by  Professor Domar. 

1. Definitions and assumptions 

Let G be a locally compact Abelian group (of. e.g. Appendix B 4 in Rudin [12]). 
As group operation we choose addition. We assume tha t  ju is a positive regular 
measure with total  mass one on G and tha t /~  is not  the Dirac measure 6. We shall 
s tudy the class {r of real-valued, continuous functions on G such tha t  for every x 

cp * I~(x) = Sa ~ ( x  - y)  d/a(y) 

converges absolutely and such tha t  on G 

~ - 9 ~ / ~ > 0 .  (1.1) 

We call such functions solutions of the inequality (1.1). 
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We shall also consider the corresponding class {~} of functions which, instead of 
the  inequali ty (1.1), satisfy the equa t ion  

qo - q~ ~ # = g, (1.2) 

where g is chosen in certain classes of continuous functions on G. We call such a 
funct ion ~o a s o l u t i o n  of (1.2). 

A special class of solutions of (1.1) is formed b y  the solutions of 

~ 0 - ~ 0 ~ / z =  0. (1.3) 

We call such solutions of (1.1) t r i v ia l .  I n  this paper,  we are chiefly interested in the 
non-tr ivial  solutions of (1.1). 

We also assume t h a t  ~u has no mass at  zero. We shall prove t h a t  this is no essen- 
tial restriction. 

Let  p have  mass a at  zero (where 0 ~< a < 1) and  define ~u 1 by  the formula 

/z = ax~ + (1 - a) / t  1 . 

Since ~ - ~ ~- / z = (1 - a) (~ - ~ ~- ~f~l) 

the  class of solutions of the inequali ty (1.1) coincides with the class of solutions of 
the inequali ty 

- ~ ~e #~ i> 0 (1.4) 

and  it is sufficient to  consider (1.4). Since ~u 1 has no mass a t  zero, our assertion is 
proved.  

Start ing f rom/~ we form measures /z (n), n = 0, 1, 2 . . . . .  We interpret/~(0) as the 
Dirae measure, ~u (1) as p and define for n >~ 1 

where the existence of ~u (2), p(a) etc. follows from Theorem 1.3.2 in Rud in  [12]. Ob- 
viously all the  measures/~ are positive and  regular and  

;ad l~  ̀ " ) =  1. (1.5) 
We introduce the measures 

They  form a monotonical ly  increasing sequence. Thus  for every open set O the limit 

F(O) = l i m  F~(O) 

exists, finite or infinite. 
We denote by  G(p) the  closed subgroup of G w h i e h  is generated by  the elements 

in the suppor t  of/~. We shall often assume t h a t  G(/z) = G. The main  reason for this 
is the result  s ta ted in Theorem 2.3 b. We want  to  ment ion  another  impor tan t  
consequence of this assumption,  namely  t h a t  the only solution of the equat ion 
/2(&) - 1 = 0 in ~ is the zero element. 
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Constants are often denoted by  C, or, if several constants appear  in the same 
relation, by  C1, C 2 etc. These symbols may  represent different numbers in different 
formulas. 

2. Necessary and sufficient condit ions for the existence o f  bounded non.trivial  
solutions o f  the inequality ~ - ~ ~- y />  0 

Before stating our results, we have to discuss the properties of the bounded tri- 
vial solutions of the inequality (1.1), i.e. the solutions of the equation (1.3). I t  is 
easily seen tha t  the equation (1.3) is satisfied by all constant functions. Under cer- 
tain conditions, no other bounded solutions exist. This can be shown to be a conse- 
quence of the fact tha t  if ~0 E L ~ and if the spectrum of ~0 (in the sense of Beurling 
[2]) only contains one point, then ~0 is a character. On R 1, this was first proved by 
Beurling [1]. At the beginning of w 5, we shall use this method for solving the equa- 
tion (1.3). 

The bounded solutions of the equation (1.3) can also be found by  use of the 
following theorem by  Choquet and Deny [3]. Their proof does not use Fourier 

m e t h o d s .  

Theorem 2.1. The bounded solutions o/the equation (1.3) are periodic/unctions whose 
group o/periods contains the support o/It .  

Consequently, all the elements in the subgroup G(ju) are periods of a bounded 
solution of (1.3). I f  G =  G(#), all such solutions are identically constant. 

We can now state the main theorem of this section. 

Theorem 2.2. The/ollowing properties o//a are equivalent: 

A. (1.1) has a non-trivial solution which is bounded /rom below and such that the 
le/t member in (1.1) is positive in a set o/positive Haar measure. 

B. There exists an open, relatively compact set 0 such that 0 < F(O) < oo. 
C. F(x  + O) is a bounded/unction o / x / o r  every open, relatively compact set O. 
D. (1.1) has a bounded, non-trivial solution such that the le/t member in (1.1) is po- 

sitive in a set o/positive Haar measure. 

Remark 1. Obviously D ~ A and C ~ B. 

Remark 2. I t  is mentioned but  not proved in Lemma 1 in Choquet and Deny [3] 
tha t  A implies the weak convergence of Fn to a measure, which is finite on every 
compact set. 

Remark 3. In  Theorem 2.2, we have excluded non-trivial solutions of (1.1) which 
are bounded from below and such tha t  the left member in (1.1) is zero except in a 
set of Haar  measure zero. The behavior of such functions is given by  Theorem 3 in 
Choquet and Deny [3]. 

We can immediately state a corollary of Theorem 2.2. The total  mass of F ,  is 
n + 1, hence F(G) = ~ .  I f  G is compact, every continuous function on G is bounded. 
Since G is always open, the existence of a non-trivial solution would contradict 
C. Hence we have proved the following 
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Corollary. I / G  is compact, all solutions o/the inequality (1.1) are trivial. 

Before proving Theorem 2.2, we wan t  to  state Theorem 2.3. We s tar t  by  observ- 
ing tha t  we can prove the existence of a non-tr ivial  solution of the inequal i ty  (1.1) 
by  showing tha t  the equat ion 

~ -  ~ e / ~ = g  , (2.1) 

has a solution for some non-negative,  no t  identically vanishing function g. W h e n  
considering this equation,  it is na tura l  to introduce a class of functions M. 

Definition 2.1. g E M i/  

(a) g is continuous, 
(b) there exists an open, relatively compact set 0 and a sequence {x~)~ such that the 

support o /g  is covered by [.J ~(xv + O) and such that 

Max Ig(x)l < 
1 xexv+O 

I t  is easy to  show t h a t  if g G M,  then  for every  open relat ively compact  set 0 
there exists a sequence {xv}~ such t h a t  the conditions in (b) are fulfilled. On R1, 
the class M was in t roduced b y  Wiener ([15], w 10). 

Theorem 2.3. (a) Let g E M and let condition C in Theorem 2.2 be true/or F. Then 
g ~ F  is a bounded, uni/ormly continuous /unction which satisfies the equation (2.1). 

(b) We assume that the conditions in (a) are/ul/illed and that G(~) = G. Then the 
general bounded solution o/ the equation (2.1) has the/orm A + g ~e F, where A is an 
arbitrary constant. 

Proo/ o/ Theorem 2.2. The theorem follows if we prove t h a t  A ~ B ~ C ~ D. For  
technical reasons, we introduce a proposit ion E and prove t h a t  A ~ B ~ E ~ C ~ D. 

E. There exists a neighborhood 0 o/zero such that F(O) is finite. 
A ~ B .  Le t  the inequal i ty  (1.1) have the non-tr ivial  solution ~0 0 with properties 

as those assumed in A. Le t  k be a non-negative,  continuous funct ion with compact  
support .  Then ~o = ~0 ~- k is also a solution of (1.1), which is bounded from below, and 

k *  (~o*  ~) = (k ~ o )  ~/~ 

is a continuous func t ion .  Since ~0 o - ~v o-x-/~ is positive in a set of positive measure, 
the continuous funct ion ~0-~0 ~-/t is no t  identically zero and there exists an  open, 
relatively compact  set N such t h a t  

(~0-~-x-/~) ( x ) > k > O  for x G - N .  (2.2) 

Now consider the algebraic identity.  

~9 = (99 - -  ~9 -X- ]~) -)(- ((~ + ~ - ~ . . .  2t- ~(n)) .~_ ~9 -)(- ~(n  § (2.3) 

which is valid for all positive integers n. Since the tota l  mass of #(n+x) is one, q/> - a 
implies 

~0 ~_/~(n+l) >/ _ a. (2.4) 

I t  now follows f rom (2.2), (2.3) and (2.4) t ha t  
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k .  J~=~,,_ dFn(y) < a + q~(x) 

for all x and all positive integers n, i.e. 

.F(x + N )  < - -  
a + ~(x) 

and B is proved. 
B ~ E. The proof will follow from the algebraic identity 

Fn = Fn,_l +/~(n') ~e F~ - p(~+l) - . . .  _ p(~ +~,) = Hn + #(~') ~ Fn, (2.5) 

which is valid for all positive integers n and n 0. Using (1.5) we find tha t  the total  
variation of H ,  (el. e.g: Rudin [12] p. 265) is a t  most 2n 0. 

Let  0 be an open relatively compact set such tha t  0 <  F(O)<  oo. Then there 
exists a positive integer n o such tha t  p(no) (0) is positive. Now take x 1 E O such tha t  
for all neighborhoods N of zero p(" ) (x  1 + N ) >  0. I t  is easy to see tha t  we can 
choose open, relatively compact neighborhoods of zero 01, 0 2 and 0a such tha t  

(a) {x~+ o , } c  o, 
(b) 02c 01, 
(C)  ~'~ ( 0 1  - -  y) ~ 03. 

YEOz 

Using (c) in the third inequality, we obtain from (2.5) tha t  there exists a constant 
C such tha t  

fy.~,+od~'.(Y)>~c+ ff dJ.(x-y)d~('"(Y)>~ 
X~X 1 + O l 
yeO 

>~ c + f y,x,+o dP(n') (Y) ~ , l + o l _ y  d-Fn(u) >/ 

>1 C + I "  dta("')(y) Fn(Oa) = C + p(n~ 1 + 02) F,(0a). 
J~ CXa+ Ot  

Since p("') (x 1 + 02) is positive and (a) is true, i t  follows tha t  there exist constants 
C 1 and C 2 such tha t  

F,(O~) < ~ . $'~(~ + 0 0 + C 2 < C, " ~'(0) + C2. 

Thus F(03) is finite, and E is proved. 
E ~ C. We first introduce certain concepts, which we shall need in the proof. 

Definition 2.2. h E H i/  

(a) the sutrport o/ h is a compact neighborhood o~ zero, 
(b) h is continuSus, non-negative and not identically zero, 
(c) ~ is non-negative and s e Ll((~). 

Obviously the class H is non-empty.  Since h e L l ( G )  and ~ e L l ( ~ )  we have 

f (  A A A A " dx. h(x - y) dp(y) = ~) (x - y, x) dx dla(y ) = x) (x, x)lu(&) (2.6) 
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(The integral in the middle is absolutely convergent.) We also introduce the weak 
limit 

F ,  = lira (1 + e) k' 
n-~oo k=0 

which exists if e > 0. For  every open set 0, F~(0) is a decreasing function of e for 
s > 0 and 

lira F~(0) = F(0),  
$--~+0 

where the right member can be finite or infinite. Now let h E H. Using (2.6), we 
find that  

f 0  l + e  . h-)e F,(x) = ~(&) (x, ~) i + s - f,(&) dx.  

Since h ~-F~ and )~ are real-valued, we can also write 

f 0  ~ [(1 + e) (x, ~)l . .  h ~ F.(x) = ~(&) ~ e  I 1 + e - # (:~)~ ax. (2.7) 

We observe that  for e > 0 

1 
R e { l +  - / 2 ( x i } > 0 .  (2.8) 

We are now in a position to prove that  E ~ C. Let  O be an open, relatively com- 
pact neighborhood of zero such that  F(O) is finite. We choose h E H such that  the 
support of h is contained in - O  and such that  

01 = {glh(--gO) ) l }  

is non-empty. Obviously 01 c O. Hence 

F , ( x + O 1 ) <  f~  h(x-y)dF~(y)<~h-)eF~(x) .  
--ye--O~ 

Using (2.7) and (2.8), we find 

h ~ F . [ (x)  + ( - x)] = f ~  ~i(~) (1 + e) ~ f (x ,  ~) + (x, ~ ) ]  . .  

Hence 

Fax  + 01) < h .  F(x) .< 2 h .  Fao} < 2 IIh II~ F~(o) .< 2 IIh IJ~ F(o) < oo. 

I t  follows tha t  E(x + O1) is a bounded function of x. Since an arbi t rary open rela- 
tively compact set O~ can be covered by {(xn + 01)}~=1, the same conclusion is true 
for F(x + O~) and C is proved. 
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C * D .  Le t  9 be a cont inuous ,  non-nega t ive  funct ion  wi th  c ompa c t  suppor t .  I t  
follows f rom C t h a t  g ~e F is def ined and  is a bounded ,  cont inuous  func t ion  of x. W e  
w a n t  to  p rove  t h a t  g ~e F is a so lu t ion  of the  equa t ion  (2.1). Since g -)e Fn  - g ~e F~ ~e ~ = 
= 9 - g  ~-/~('+~) and  g 06 Fn is un i fo rmly  bounded ,  th is  asser t ion  follows if 

(a) l im g -)e F~(x) = g ~ F (x )  

un i fo rmly  on every  compac t  set  and  

(b) l im g -)e ~(n +l)(x ) = 0 for eve ry  x E G. 

-)6 ~o (a) {g ~ ' . )n= l  is an  increas ing sequence of cont inuous  funct ions  wi th  the  con- 
t inuous  l imi t  g qe F .  Hence  (a) follows f rom Dini ' s  theorem.  

(b) Since the  series 
oo 

~_. g ~ ~("(x)  = g ~ F(x)  
0 

is convergent ,  we have  

l im g ~/~("+l)(x) = O. 
n - - ~  

Thus  D is p roved  and  the  proof  of Theorem 2.2 is complete .  
The following r e m a r k  is needed in the  proof  of Theorem 2.3. 

Remark. L e t  g be a cont inuous  funct ion wi th  c ompa c t  s u p p o r t  a n d  assume t h a t  
C in Theorem 2.2 is t rue .  The func t ion  g is un i fo rmly  cont inuous ,  a n d  i t  is easy  to  
p rove  t h a t  g ~ F is also un i fo rmly  cont inuous.  

Proo/ o/ Theorem 2.3. (a) There  is no essent ia l  res t r ic t ion  in  assuming t h a t  g is 
non-negat ive .  Since g E M,  the re  exis ts  an  open,  r e la t ive ly  c ompa c t  set  O and  a cor- 
responding sequence {xn}~ wi th  proper t ies  according  to  Def in i t ion  2.1. Since C in 
Theorem 2.2 is t rue,  there  exists  a cons t an t  C 1 such t h a t  

0 ~ g-~ F(x)  ~ g(y) dF(x  - y) <~ m a x  g(x) dF(x  - y) <~ C~. 
1 txv+O y~.x +O ~xv+O 

Thus  g ~ F is a bounded  func t ion  of x. I t  follows in the  same w a y  as  in  the  proof  
of C->D in Theorem 2.2, t h a t  g~eF  is a solut ion of the  equa t ion  (2.1). 

I t  remains  to  prove  t h a t  g ~+ F is un i fo rmly  cont inuous.  Take  e > 0. W e  choose an  
in teger  n o such t h a t  

m a x  g(y) < e 
no+l YExn+O 

and  define [.J ~* (x~ + O) = 0 o. 0 o is an  open,  r e la t ive ly  c ompa c t  set. L e t  for some 
ne ighborhood  01 of zero k be cont inuous  a n d  fulfil 

(a) k ( x ) = l  f o r x E O  0, 

(b) 0 < k(x) ~< 1 for all  x, 

(c) k(x) = 0 for x E compl.  (00 + 01). 
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We have g = k. g + (1 - k) g = gl + g2 

and g ~ F = gl -)e F + g~-)e F. 

The function gl is continuous and has compact support. According to the remark 
after the proof of Theorem 2.2 gl ~ F is uniformly continuous. For g2 ~+ F, we have 
that  there exists a constant C such that  

oo  

I g , *  F(x) l < C Z Max g(y) .< 
o+I Y~zv+O 

and the uniform continuity of g ~e F follows. 
(b) Let q be an arbitrary bounded solution of the equation (2.1). For the function 

V = q~ - g ~ F ,  we have V - V~-P = 0. Since we have assumed that  G= G(#) it follows 
from Theorem 2.1 that  y~ is identically constant. Conversely, it is easily seen that  
A + g ~-F satisfies (2.1) for arbitrary constants A, and hence Theorem 2.3 is proved. 

I t  is difficult to see when the conditions of Theorem 2.2 are fulfilled. Lemma 2.1 
gives an equivalent, more convenient condition. 

Lemma 2.1. The /ollowing property o/ ft is equivalent to the conditions o] Theorem 
2.2. 

There exists a neighborhood 0 o/ zero in the dual group G o/ G and a constant C 
such that 

fo {1 1 }  . R e  + e - f i ( &  d&~<C<c~ /orall  e > 0 .  (2.9) 

Remark. Chung and Fuchs [4] have similar conditions in an n-dimensional Euclidean 
space. They treat the convergence problem for {Fn}~ r with combinations of proba- 
bilistic and Fourier arguments. 

P r o o / o / L e m m a  2.1. We first define a class of functions H' .  

Definition 2.3. h 6 H' i/ 

(a) the support o~ ~ is a compact neighborhood o/ the zero element in ~, 
(b) ~ is continuous, non.negative and not identically zero, 
(e) h is non-negative and h E LI(G). 

Obviously the class H' is non-empty. 
Using the same type of argument as the one used in the proof of (2.7), we see 

that  if h belongs to H or H'  and if e > 0, 

fohCx)a '(x)=fo ( )Re{1 e - r,( )Jld  . (2.10, 

Let the conditions of Theorem 2.2 be true. We take h E H (Definition 2.2). Since the 
left member of (2.10) is a bounded function of e for e > 0 and ~ is positive in some 
neighborhood 0 of the zero element of ~, (2.9) follows. If  conversely (2.9) is true 
for some neighborhood 0 of zero, we take h E H '  such that  the support of ~ is in 0. 
Since the right member of (2.10) is bounded for e > 0  and h is positive in some 
neighborhood of the zero element of G, B of Theorem 2.2 follows and we have proved 
Lemma 2.1. 
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3. The existence o f  bounded, non-trivial  solutions in R n and Z n. 

From now on, we shall only be concerned with the groups R n and Z ~ under their 
usual topologies. We introduce a coordinate system and define, if x belongs to R n 
or Z n 

{i }' Ixi= x; 
n 

and tx = ~ t, x,. 
1 

Theorem 3.1. Let G be R" or Z n and assume that G(p)= G. Then the/ollowing 
conditions /or the existence o/ bounded, non-trivial solutions o/the inequality (1.1) can 
be stated. 

(a) i~ n = 1 and So I x [ dp(x) < ~ ,  a necessary and su/ficient condition is that 

axdp(x) 4 0 .  

(b) I / n  = 2 and i / /or  some positive number 

fal x l'+6dp(x) < ~ .  (3.1) 

a su//icient condition is that 

fal(x)  dg(x) 4= /or some /unction l(x) ax 1 bx 2. 0 linear + 

I / S o  Ix dF,(x) < ,  ondition (3.2) i8 nccessary. 
(e) I / n  >13, such solutions always exist. 

Corollary. Let ]a satis/y the conditions o/Theorem 3.1. Then the equation 

q ~ - q ~ p = g  

(3.2) 

Proo/ o/ Theorem 3.1. According to Lemma 2.1, condition (2.9) is necessary and 
sufficient for the existence of bounded, non-trivial solutions of (1.1), and it  thus 
suffices to consider (2.9). 

We observe that  the assumption G(p)= G implies that  

/2 (041  if t#O.  (3.3) 

This is important  for certain estimates in the proof. 
We also have 

Re {1 -fi( t)} >/0. (3.4) 
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Thus for every e > 0 

2(e2+ll-/2(t)l~)>~ll+e-/2(t)12>~e~+11-/2(t)l~>~ll-/2(t)l 2. (3.5) 

(a) The su//iciency. We assume tha t  

= - i I _  x d ~ ( x )  = - i m  # 0 .  /2'(o) 

We have 

Re {1-/2(t)} = f a  ( 1 - c ~  d~(x)" (3.6) 

Let  the number  b satisfy 0 < b < z~. I t  follows from the assumption m :~ 0 and (3.3) 
tha t  there exists a constant C such tha t  

o<cItl<ll-/2(t)l if  o<ltl<b. (3.7) 
Now consider 

I ~ ~ i  ~t  + J-b I1+ e-/2(t) 
Using (3.5), (3.6), and (3.7) and changing the order of integration, we see tha t  there 
exist constants C t and C z such tha t  

sins $_x 

Using (3.4) and (3.7), we see tha t  there exists a constant C 3 such that  

0 ~ I 2 ~< e 12 dt ~ C a b e 2 + ] 1 --/2(0 b e ~ + t ~ dt-~. C3 ~. 

Thus I is bounded and the sufficiency is proved�9 
The necessity. We assume m = 0. Then to every ~1 > 0 there exists 5 > 0 such that  

Ix-/2(t)l<e~ltl for Itl<~�9 I f  ~ < b ,  it follows from (3 .5) tha t  

lira I ,>~lim ; :-e~t~dt ~ 
~-~ + ~ 0  e-~+0 0 e 2 e l  

Hence lim~_.+0 I ~ =  o~, I is not a bounded function of e, and the necessity is 
proved. 

(b) All constants used in this proof are positive. Let  (3.1) and (3.2) be true. I t  
follows from (3.1) tha t  the partial  derivatives of/2 satisfy a Lipschitz condition of 
order ~, We choose the coordinate system in the t-plane so tha t  

~ (0) = 2 3 i # 0  (a >0),  

~/2 (o) = o.  
~2 
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Two estimates of I 1 - ~ ( t ) [  are needed. The first one is obtained by  use of the 
mean  value theorem and  of the  Lipsehitz condition for the part ial  derivatives of /2  
and gives the existence of a positive number  b < ~r and constants  C~ and K such t h a t  

(t) I1 -p ( t )  I ~> ] Im {p (0 ) -  p(t)} I 

= Im{tla~.l(Ot)+t,~t2(Ot)}l 

>~ 2alt~l-Ci {Itilltl~ + lt, lltl '} 
>>-2a l t~ l -K l t l  x+' for I t l<b.  

Our second est imate is obtained by  use of a method due to Chung and Fuchs  [4]. 
We observe tha t  it follows f rom the  assumption G(F) = G tha t  the mass of/z cannot  
lie on a straight  line through the  origin. Hence there exists a constant  C 2 such t h a t  

(2) I I -p( t ) l>~Re{1-p(t) }= ( (  2sin'tX-d#(x)>~ltl'C2 for Itl<b. 
d j o  2 

We shall prove tha t  there exists a constant  C such t h a t  

ffltl<oRe{l+el-__f~t)}dt<~C<oo for all e > 0. (3.8) 

I t  follows from (3.5) t h a t  

1 

Hence it is sufficient to  prove t h a t  

We have 

ff~ dt ,t<~ I i -p ( t )  I < ~ "  

I :  : , + , 1 1 _ ~ ( t S 1 - - 1 1 + 1 2 .  

Here 
Da=( t la l t l I -K l t l l+~O;  I tl<b} 

and 
D,= {tlaltll-gltll+~ 0; Itt<b}. 

The estimates (1) and  (2) are used for 11 and 12 respectively. There exist constants  
k and {C~} 4 such t h a t  

f klc~ r dr dcp 

/? = C, I cos (p 11/~-1 d~ < oo. 
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('en l,b r dr dq~ 
0~I2~<C3 L Lleos~ll/~ r 2 ~< 

f:{'  } < c ,  l + ~ l l o g l c o s v l l  d v < ~ .  

Hence I is convergent. Thus, if for some positive number 

it is true tha t  (3.2)-->(3.8). 
We now assume tha t  

f l~ II+Od, u(x) < oo, 

fi x I'd,,,(~) < oo. 

Obviously, it is still true tha t  (3.2)-->(3.8). We shall prove tha t  (3.8)-->(3.2). 
I f  (3.2) is false, then 

~P (o) - ~ (o) = o.  ~tl 

We conclude, in the same way as in the discussion of estimate 2 tha t  there exist 
constants C 1 and C~. such tha t  

l:te{1-,a(t)}~>Cllt[" for It l<b. 
I I - p ( , ) l < c , I , l  ~ for I*l<b. 

Hence it follows by use of (3.5) tha t  there exist constants C3 and C 4 such that  

f~ f2nradrdcl) 1"~/~ u3du 

when e--> + 0, (3.8) is false and the proof of (b) is complete. 
(c) Let  the number b satisfy 0 < b < ~. According to Theorem 6 in Chung and 

Fuchs [4], there exists a positive constant C such tha t  

I i - p ( t ) l ~ > c l t l  ~ for I t l < b  
Since 

~-~( t ) j  Jj,M.. I 1 ~ ( t ) l  < 

if n >/3, (c) follows. 
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4. Propert ies  o f  bounded non- tr iv ia l  so lut ions  o f  9~ - ~ ~- ~ ~> 0 

The main  pa r t  of this paragraph  is devoted to a s tudy  of the bounded  solutions 
of the equat ion 

~0 - ~0 ~-/~ =g ,  (4.1) 

where g E M (Definition 2.1). I f  g is non-negative,  these solutions also satisfy 

90-  90~ep >~0. (4.2) 

The one-dimensional cases (R x and  Z I) are  t rea ted  in Theorems 4.1, 4.2 and  4.3 and  
the multi-dimensional cases (R n and  Z n for n >12) in Theorem 4.4. We especially 
ment ion the following result: Consider the class {p} of measures with the p roper ty  
tha t  if ~ is a bounded, non-trivial  solution of (4.2), then r - ~ ~e p E LI(G). On R 1 and 
Z 1, this class is non-empty  since it contains every measure p which satisfies the 
conditions of Theorems 3.1 a (cf. Theorems 4.1 a and 4.3 a). I f  n ~>2 there exists no 
measure in  this class on R n and  Z n (el. Theorem 4.4 b). 

Theorems 4.1 Let G - - G ( p ) =  R 1 and assume that 

and that 

~_ x d p ( x ) = m @ O .  

(a) I /  the bounded /unction q) is a solution o/ the inequality (4.2), then ~ - q )  !e 
/~ e LI(R1). 

(b) Let q~ be as in {a). I[  q~ is slowly decreasing (c/. e.g. Definit ion 9 b, Ch. V in 
Widder C14]), then limz_~oo~0(x) and limx_._oo~0(x) exist and 

~(~) _ ~ (  _ ~ )  _ S~_~ ( ~  - ~ .  ~ )  (x )  dx 
m 

(c) Let ~0 be as in (a). I{  limx~,oo~o(x)=limx~_oo~o(x), then q)-qJ ~e l~=O. 
(d) Let g e M (Definition 2.1). I / cp  is a bounded solution o / the  equation (4.1), then 

limx_,~ ~(x) and limx_~_ ~ ~(x) exist and 
~(0) ~ ( ~ ) - ~ ( -  ~ ) =  

m ~ 

Remark 1. Let  v be a bounded  measure satisfying v -  v-)(-p >10. Then results 
corresponding to  those in (a) and  (c) are valid for u. I n  (c), we assume t h a t  

limx~oo �9 ~- k(x) = limx_._ oo ~ -)e k(x) 

for every continuous and non-negative function k with compact  support .  The results are 

. I ~  d(~- ~ ~ ~) (x) < oo (a) 

and 

(c) ~ - ~ / ~ = 0 .  

126 



ARKIV F6R MATEMATIK. Bd 5 nr 9 

This follows immediately from the formula 

f~_~ (~ - ~  ~e l~) ~ k(x)dx= f ~ c  ]c(x)dx" f ~  d(v - v  ~e #) (x) �9 

Remark 2. Results similar to those in Theorem 4.1 are found in Feller [8] for 
right members g with compact support  but  with weaker conditions on p. Feller only 
assumes the existence of F. His methods are probabilistic. Similar result can also 
be found in Karlin [9], and his methods of proof resemble ours. Karlin only t reats  

measures # such tha t  limltl_.oo [fi(t)[< 1. 
Before proving Theorem 4.1, we state two other theorems. The proofs of these 

three theorems are closely re la ted and it  is natural  to t reat  them simultaneously. 
The following Banach algebra An will be used in Theorems 4.2 and 4.3. 

Definition 4.1. Let G be R 1 or Z 1, let n be a non.negative and C O a positive number. 
The/unction g E A ,  i/ 

Ilgll = c0 (1 + Ixl n) Ig(z)[dx< ~ .  

With suitable choice of Co, A ,  is a Banach algebra of functions on R 1 and Z t. 

Theorem 4.2. Let p and g be as in Theorem 4.1, let/or some non-negative number n 

(4.3) 

and let g 6 A ,  be such that ~ has compact support. I / t h e  bounded/unction cf is a solu- 
tion o/ the equation (4.1), then ~o' exists and qJ'E An. 

Corollary. Let q) be as in Theorem 4.2. I / n  >1 1, then 

f : {  ~(X)[-~-[~(-- oo)--~9(--X)[}lXl n-1 co, dx< 

We introduce the following notation. I f  ~ is a function on Z 1, ~ '  is defined by 
the formula 

{ V k ) ~ = - o o  = { V k  - -  ~Ok- i  }~ = -oo .  

Theorem 4.3. Let G = G(lZ ) = Z 1 and assume that/or some non-negative number n 

I k I" +1# ]c < oo (4.4) 
- c o  

an:l that 

~ k t ~ = m ~ O .  

(a) Assume that n =0. I / t he  bounded sequence q~ is a solution o/the inequality (4.2), 
then q~- q~e /z E Lt(Zt). 

(b) Let q~ and n be as in (a). I/lim~_~oo ~0k =limk_,_or 90~, then q)-~-)e /a=O. 
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(c) Assume that n = 0 and that g E LI(Z1). I1 q~ is a bounded solution o/the equation 
(4.1), then limk_,~ qJk and limk_+_:r ~ exist and 

d(o) 
~ - ~ _ ~  - 

m 

(d) Let the sequence g E An. I/q~ is a bounded solution o/ the equation (4.1), then 
~ 'EAn.  

Corollary. Let q~ be as in Theorem 4.3 d. I1 n >1 l,  then 
o o  

1 

Remark 1. Theorem 4.3 is the analogue on Z 1 of Theorems 4.1 and 4.2. Since on 
Z 1 every function is slowly decreasing, the analogue of Theorem 4.1 b is contained 
in Theorem 4.3 c. 

The results for Z 1 are more complete than  those for R 1. This is due to the fact 
tha t  the dual group of Z ~, the unit  circle, is compact. 

Remark 2. The corollaries of Theorems 4.2 and 4.3 are related to results in Kar-  
lin [9], obtained by  use of an induction argument.  On R 1, Karlin only treats the 
case when/z is absolutely continuous and the right member g in the equation (4.1) 
is monotonic at  infinity. Our corresponding restriction is the assumption tha t  ~ has 
compact support. 

The following lemma is used in the proofs of Theorems 4.1, 4.2, and 4.3. 

Lemma 4.1. Let the /unction p satis/y conditions 2.12 and 2.13 in Domar [5] and 
consider the Banach algebra A(p)  o//unctions on G under the norm 

II/11 = j" If(x) Ip(x) dx. 

I / C  is a compact set in ~ and l E A ( p )  is such that ](&)TO on C,  then there exists 
g E A(p) such that f(&)~(&)= 1 on C. 

P r o o / o / L e m m a  4.1. A(p) is a regular Banach algebra and ] is the Gelfand repre- 
sentation of /E A(p) (Domar [5] Theorem 2.11, Lemma 1.24 and p. 15). Let  k(C) be 
the ideal of functions in A(p) whose Fourier transforms are zero on C. Since k(C) 
is a closed ideal, the quotient algebra A(p)/k(C) is a Banach algebra with identity 
and the result follows (Loomis [10] 6B, 23B, 25B). 

Proo/ o~ Theorems 4.1 and 4.3 a, b. For the proof of Theorem 4.1 a, b, we refer 
to Essdn [7]. I t  is there assumed tha t  p is absolutely continuous, but  the generali- 
zation to measures ju satisfying the conditions of Theorem 4.1 is easy. Theorem 4.1 e 
is a direct consequence of Theorem 4.1 b. The results in Theorem 4.3 a, b follow in 
the same way, if partial  integrations are replaced by partial summations. 

To prove Theorem 4.1 d, we observe tha t  the general solution of the equation 
(4.1) has, according to Theorem 2.3, the form A +g~eF.  Hence our solution ~ is 
uniformly continuous. In  particular it is slowly decreasing and hence our result 
follows from Theorem 4.1 b. 
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Proo/ o/ Theorem 4.2. We shall use Lemma 4.1 with p(x) = C0(1 + Ix In), which 
satisfies the conditions 2.12 and 2.13 in Domar  [5] if the constant C O is suitably 
chosen. Obviously A(p)=An (Definition 4.1). Let  

- f~r d~(y) (x < 0). 

Condition (4.3) implies tha t  N 1 E An. Since ~ has no mass a t  zero, 

f _~l(t ) _ 1 - fi(t) it 
~1(o) = m. 

(t+o),  

We assume tha t  the function [1 - f t ( t ) ] / i t  is defined by  continuity for t = 0. Since 
Nl(t) # 0 for all t, there exists for every compact set C a function in An whose Fou- 
rier transform is (it)~[1 -/2(t)] on C. Now consider the equation (4.1) where g E An, 
g E M (Definition 2.1) and ~ has compact  support. There exists h E An such tha t  

~(t)= it~(t) 
1 - p ( O  

Here ~((~)= ~(O)/m and h -  h ~-# = g'. Integrating, we obtain 

Let H(x) = ;o0 h(t) dt. 

I f  a -+  - ~ ,  we o b t a i n  

H - H  ~I~=g. 

I f  ~ is a bounded solution of (4.1), it follows from Theorem 2.3 tha t  there exists a 
constant C such tha t  

q~=H+C. 

Thus ~ ' =  h E An and Theorem 4.2 is proved. 

Proo/ o/ the corollary. Since 

~(~o ) -~(x)  = f ;  h(t) dt, 

~(~) - ~( - ~ )  = j ~  h(t) dt 

and h E An, the corollary follows. 
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Proo] o] Theorem 4.3 c, d. The same principles as in the discussion on R 1 will be 
used, bu t  on Z ~ we have to replace derivat ion by  the format ion  of differences. We pu t  

d(t) = ~ ake -~kt. 
- v r  

The sequence a ' =  {ak--ak_l}~_~ has the Fourier  t ransform d(t)(1-e-U).  Hence 
[1 - / 2 ( 0 ] / ( 1  - e -it) (defined by  cont inui ty  for t = 0) is the Fourier  t ransform of e, where 

oo 

c , =  ~ y k  for v>~0, 
t + l  

~: ~< 1. e ~ = -  ~/~k for v - 

I t  follows from (4.4) t h a t  c E An (Definition 4.1). Since ~(t) # 0 for all t (in part icular  
we have $(0)= m 4 0 ) ,  Lemma 4.1 implies t ha t  (1/~)E An (the compact  set C of the 
lemma is chosen to be the whole uni t  circle). There exists h E An such t h a t  

~(t )  = ~(t)  (1 - e -'~) 
1 - F t ( t )  

Here ~(0) = ~(O)/m and h - h ~- y = g'. A summat ion  gives 

Let  

I f  no- ->-  c~, we obtain  

H - H ~ p = g .  

I f  q is a bounded solution of (4.1), it fo]lows f rom Theorem 2.3 t h a t  there exists a 
constant  C such tha t  

q~=H+C. 

Thus limn_,~r q ,  and l ira, . ._= q ,  exist, 

~= - ~ - =  = ~ hn = ~/(0) = ~(0), 
--oo m 

and Theorem 4.3 e is proved. Theorem 4.3 d and the corollary follow in the same 
way  as in Theorem 4.2. 

I t  remains to investigate wha t  happens in R n and Z n when n ~ 2. 

Theorem 4.4. Let G = G(p) = R n, where n >~ 2. I !  n = 2, we assume that/x satis]ies 
conditions (3.1) and (3.2). 

(a) Let g t iM (Definition 2.1). I !  qJ is a bounded solution o/the equation (4.1), then 
limx_.~ q~(x) exists. 

130 



ARKIV FOR MATEMATIK. B d  5 nr 9 

(b) There exists a bounded solution ~ o/the inequality (4.2) such that q~ - cp ~ i ~ r LI(R n) 
and lim~_.~r q)(x) does not exist. 

Remark. The analogous theorem on Z ~ is proved in the same way. 

Proo/ o/ Theorem 4.4 a. In  the proof we shall use the Wiener Tauberian theorem. 
We wish to consider the class M as a Banach algebra under convolution. As norm 
we chose 

Ilgll = ~ Maxlg(x)l, 
wl  .rGx v 

where (I,)~ r is e.g. a part i t ion of R n into "cubes" with side 1. I t  is clear tha t  there 
exists a constant C, which only depends on the dimension n such tha t  

IIg~-/ll<Cllgll II/11. 
We can equip the algebra with an equivalent norm so tha t  the constant is replaced 
by  1 (Loomis [10] w 18). 

Now the Gelfand transforms of the functions in M form an algebra belonging to 
the class of Banach algebras considered in Domar  [5]. I t  is easy to verify tha t  the 
assumptions I and I I  in [5], Ch. I, w 1 are satisfied. Hence the Wiener Tauberian 
theorem [ibid. Theorem 1.53] is valid in this algebra. 

In  the special case G = R 1, this has also been found by Edwards [6]. 
The general solution of the equation (4.1) has, according to Theorem 2.3, the form 

A + g ~- F. Consider the set I of functions g E M such tha t  limx_~ g-)e F(x)  = 0. I t  
follows in the same way as in the proof of Corollary 2 in 37 A in Loomis [10] tha t  I 
is a closed ideal. We shall prove tha t  l i m ~  g ~ F ( x ) =  0 for every g E M such tha t  

has compact  support.  I t  then follows from the Wiener Tauberian theorem tha t  
limx_.~o g ~- F(x) = 0 for all g E M and the proof of Theorem 4.4 a will be complete. 

In  the same way as in the proofs of Theorem 3.1 b or c, we conclude tha t  the 
following integrals are absolutely convergent. The constant C. is only dependent on 
the dimension n. 

= C n ~  e it~ ~(t) dt q~(x) J~ 1 -~(t) 

= lira C~ f e i~ ~(t) (1 +e)  dr= lim g~-F~(x) =g-~F(x ) .  
�9 - .+o . ta  1 + ~ - / 2 ( t )  ~-.+o 

Since ~0 is the Fourier transform of 8 / ( 1 - / 2 )  E LI(G), lim~_~o~ ~0(x)=0 and Theorem 
4.4 a is proved. 

Proo I o{ Theorem 4.4 b. Le t  q be a continuous, non-negative function with com- 
pact  support.  Theorem 2.3 and Theorem 4.4a imply tha t  a = q ~ F  is uniformly 
continuous and tha t  lim~_.oo a(x) = 0. (This conclusion is not  true in one dimension.) 
We shall construct a non-negative function g such tha t  

(a) a ~eg(x) is bounded function of x, 

(b) g ~ L  ~, 

(c) lim~_.~ a-)eg(x) does not exist. 

The existence of such a function proves Theorem 4.4 b. 
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Construction o/g: Suppose t h a t  a(x) < 2-  = for  Ix  ] > R~, where the sequence {Rn}~ 
is chosen so t h a t  

R I + R ~ + . . . + R n _ I < R  n. ( n = 2 , 3  . . . .  ). (4.5) 

We pu t  Q,={xlRn_l<~lxl<Rn) (n~>2), 

Ql=~X[ Ixl<Ri}.  

I n  each annulus Q4, we take  a sphere Sa, (all with the  same radius).  Le t  now g be 
continuous and  such t h a t  

(a) g ( x ) = l  when xES4,~ ( n =  l,  2, . . .),  

(b) 0 ~< g(x) <<. 1, 

(c) I "  g(x) d x = l  ( n = l , 2  . . . .  ), 
JQ 4n 

(d) 9 ( x ) = 0  if xCQ4,~ ( n = l , 2  . . . .  ). 

I t  is clear t ha t  g q / ) .  
F i rs t  we have  to show t h a t  a-)(-g is defined and  bounded.  Le t  x E QN. Using (4.5) 

we obta in  

Ix--yl>~RN_a if xEQm yEQk ( k ~ < N - 2 ) ,  

Ix-yl>~R~,_a if xEQN, xEQk ( k ~ > N + 2 )  

and  t h a t  there exist  constants  {C~}~ such t h a t  

y) g(y) dy <~ f R n a ( x - Y ) g ( y ) d y = ~ , f ~ ,  a( x -  

L . . (  ~< ~ 2 -N+3 g(y)dy+C 1 ~ g(y)dy+ ~ 2 -k+3 g(y)dy<~ 
k = l  J Qk N - 1  k N §  J Qk 

~< (N - 2) 2 -N+8 + C~ + 2 -N+s ~< C a. (4.6) 

Thus  a ~-g is a bounded  function.  Since for all posi t ive integers g(x) = 1 for x E S4n 
n and  the funct ion a is non-negat ive  and  not  identical ly zero, 

I t  remains  to prove  t h a t  

m 

l i m a  ~ g(x) > O. 
x - ~ o o  

lira a -)e g(x) = O. 
X - - ~ o O  

Take  N -  2 (mod 4) and x E QN. Since J'Qk g(Y) dy = 0 if k ~ 0 (mod 4), i t  follows f rom 
(4.6) t h a t  

a~eg(x)<~(N--2)2-N+3+2-N+s---~O as N - - > ~ ,  

and  the proof  of Theorem 4.4 b is concluded. 
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5. Propert ies  o f  nnhounded  so lut ions  o f  the inequal i ty  ~ - ~ ~e ~ />  0 in Rx and 

Z~ w h e n  n o  bounded non- tr iv ia l  so lut ions  ex is t  

In  the remaining pa r t  of the paper  we are going to deal with the case when no 
bounded, non-trival solutions of the inequality 

q -  ~0 ~-/x ~> 0 (5.1) 

exist. According to Theorem 3.1, this means tha t  the groups considered will be R ~ 
and Z n with n = 1 and n = 2. 

In  this paragraph,  we deal with measures/~ in R 1 or Z 1 satisfying Sadju = 1 and 
S c x  d# (x )=  0 and possessing moments  of a certain order. We'investigate properties 
of solutions not growing faster than linear functions (Theorem 5.1). Since it is easily 
proved tha t  every concave function satisfies the inequality, such solutions exist. 
The existence of other solutions than  the concave ones will follow from the discus- 
sion of the equation 

~ - ~ e / x = g  (5.2) 

(Theorems 5.2 a and 5.3 a) where we assume tha t  g EL 1 and tha t  ~ has compact 
support. We also show tha t  if a solution q of the inequality does not grow too fast, 
then q - q ~-/x E L 1 (Theorem 5.1). Summing up these results, we obtain regularity 
properties of functions satisfying the inequality and a certain growth condition 
(Theorems 5.2 b and 5.3 b). 

In  order to find all the solutions of the inequality, we have to solve the equation 

- ~ ~e # = 0. (5.3) 

Now unbounded solutions can occur and these will be found by  use of the theory 
of Beur]ing [2] and D0mar [5]. (The result of Choquet and Deny mentioned in 
Theorem 2.1 only gives us the bounded solutions.) For simplicity the following 
lemma will be proved only for the case G = R 1, but  analogous results with analogous 
proofs are true in Z 1, R 2 and Z 2. 

Lemma 5.L Let G = G(p) = R 1 and assume that ]or some positive integer n 

I f  q~ is a solution o / the  equation (5.3) such that q~(x) = 0(] x In) at infinity,  then ~ is a 
polynomial o/degree not exceeding n. 

Corollary. Let ~ and qj be as in Lemma  5.1. We Jut]her assume that 

= 0 .  

Then there exist constants A and B such that q)(x)= A x  + B.  Conversely, every such 
]unction satis]ies (5.3). 

Proo] o] Lemma 5.1. Le t  /CA. (Definition 4.1). Consider O= (qJ- q~ ~e p) ~e ]=  
~- ( ] -  ] ~ p). Here ] - ] ~ / x  e An and ~ e A* (the class of linear functionals on A~). Let 
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A~ be the spectrum of ~0 (el. e.g. Definition 3.21 in Domar  [5]). We here have tha t  
A~= {t I [(t)(1 - / 2 ( 0 ) =  0}. Since / is arbi t rary  in An, it follows tha t  A r c  {t I/2(0 = 1}. 
5low, according to Definition 3.41 in Domar  [5], {~1/E An} has polynomial growth 
< n + 1 for a compact  neighborhood of zero in G and x 0 # 0 (and growth < 1 for 
x 0 = 0). Hence Theorem 3.42 in Domar  [5] implies tha t  ~ is a polynomial of degree 
not exceeding n. 

Proo/ o/ the corollary. Lemma 5.1 implies tha t  9 is a polynomial. Let  ~0k(x)= x k. 
k - 2  o0 We obtain ( ~ -  9~ ~-/t) (x) = - (3) x k S-~  y2 d/~ + . . .  I f  Pk is a polynomial of degree 

k ~> 2, then P k -  Pk-x-/z contains a term of degree k -  2, which cannot be compen- 
sated by  any other term. Thus P k - P ~ e t z # O  if k~>2. I t  is easy to see tha t  q0(x)= 
A x  + B satisfies the equation (5.3) and the corollary follows. 

We shall now investigate the connection between the growth of a solution 9 of 
(5.1) and the magnitude of S_*r ( 9 -  9~-/~)(x)dx. 

Theorem 5.1. Let G = G(I~ ) = R 1 and assume that /or  some ~ satis/ying 0 <~ ~ ~ 1 

f ~ I~ l ,+ ,~d,~(~)< oo 

and that f?. x d~(~) = o. 

1[ ~o is a solution o / the  inequality (5.1), then 

(a) ~(~) = o ( Iz l  ~) : ~  - q , .~ ,  s L I (RI ) ,  

(b) r = o ( l~ l ' )~  r 1 6 2  0. 

Remark 1. The corresponding theorem on Z 1 is true. The proof of this will be 
discussed in the proof of Theorem 5.3. 

Remark  2. Let  ~ be a given number  satisfying 0 < ~ ~ 1. Then there exists a 
measure # and a solution ~0 of the corresponding inequality (5.1) such tha t  
liml z I ~  ~~ x I ~ exists different from zero. We can for instance take dla(x ) =/ (x )  dx, 
where 

{ l + e  1 
1 (~ )=  2 I~1 "~+" for I~1>/1 

0 for I ~ 1 < 1 .  
Then we have 

lira I - /2 (0  _ 0 
t--~O ~ =l= 

and, if g E H '  (Definition 2.3), tha t  the function 

1 q)(X) = - ~  f_r162 ~(t) (e 'tz -- 1) d t 

is a solution of (5.1) with the desired property.  
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Remark 3. Let/~ be as in the theorem, let p satisfy 

v - v -)e la >~ O 

and assume that  for some continuous, non-negative function k with compact support 

v ~e k(x) = 0(] x ]~) at  infinity 

or ~ ~ k(x) = o( I x }~) at  infinity. 

Then results corresponding to those in Theorem 5.1 are true for v. Confer Remark 
1 of Theorem 4.1l 

We shah need the following lemma in the proof of Theorem 5.1. 

Lemma 5.2. Let h E LI(R 1) be even, bounded and non-negative with two continuous, 
bounded derivatives. We/urther  assume that h(O) = 1, that h " is monotonic/or I x ] > B > 0 
and that /or  some number o: satis/ying 0 <<. o: <. 1 

f ~  lYl~h(Y) dY< ~ ,  

f~ lYi~lh'(y) ldy< 

l i l Y  I~ I h"(Y)1(1+~)12dY < ~ . and 

Then there exists a constant C such that 

Ir1-1-" lYl~lh(y)-h(y+r)+a'(y)ldy<C for r . O .  (5.4) 
o o  

P r o o / o / L e m m a  5.2. We first assume that  [ r [ ~ 1. Using 

I h(y) - h(y + r) + rh'(y) I < r2lh"(y + O~r) l 

we obtain that  there exist constants C 1 and C2 such that  

I r 1-1-~ -~  l Y I~1 h(y)- h(y + r) + rh'(y) ldy 

f ~o~ ] y [~ ] h(y) - h(y + r) + rh" (y)1 (1-~)t2 . I h"(y  + O~r) Ja +~'l~ dy < 

Thus (5.4) is proved for I r ] ~< 1. 
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If  I r I >~ 1, the contribution of every te rm in the integrand in (5.4) is bounded 
(division by r 1+~) and the result follows. 

Proo] o/ Theorem 5.1. We shall show tha t  i t  suffices to prove the theorem for 
differentiable solutions of the inequality (5.1). Let  q be a solution of (5.1) and choose 
a non-negative function k E C ~r with compact  support. Then ~0 = ~ * k is a differenti- 
able solution of (5.1), and it  follows by  the same argument  as in Remark  1 of 
Theorem 4.1 tha t  if the theorem is true for the solution q0, it is also true for the 
solution ~0. 

We assume ~o(0)=0. 
k o and k~ such tha t  

Hence for every positive number b there exist constants 

{ l~o(x)l<kolxl  ", (Ixl<b),  
]r  ~, (l~l>~b). 

We put  q~o- q~o-x-# = g  and investigate j '_~ g(x)h(ax)dx with h chosen as in Lemma 
5.2. If  there exists a positive constant C such tha t  

f ~, g(x) h(ax) dx <~ C 

for a near to 0, then g E LI(Ra). Since g is non-negative and continuous, we also have 
tha t  9(x)= 0 for all x if C can be taken arbitrari ly small. 

<~ 

(q% - q~o ~ I a) (x) h(ax) dx 
-oo 

'_~ q % ( x ) f ~  , h (ax) -h(ax+ ay) Wayh'(ax)} d , , y ) d x  I 

Jo~ foc d/a(y) I qo(x) {h(ax) - h(ax + ay) + ayh'(ax)} I dx. 
-r162 - o o  

We divide the inner integral into Slxl<b + Slxl>b and use ]..emma 5.2 and our esti- 
mates of ~o o. 

f, I~l~lh( o~)- + +'~Yh'(a~)ld:~ ko h(ax uy) 
I<b 

=kolul,+. 1 / ,  lay-i ~-" ,,<boltl"lh(t)-~(t+ay)+ayh'(t)ldt 

=o(a)lyl 1+', as a-->0. 

There exists a constant C 1 such tha t  

f,x ,>b k, Ix I" I h(ax) - h(ax + au) + ayh'(ax) I dx < C1 h l u 11§ 
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Hence f ~ g ( x )  h(ax)dx <~ f ~ r  l Y ]~+~d~t(y) {o(a) + k I �9 C~}. 

This implies Theorem 5.1 a. Since we can chose ]cl > 0 arbitrarily small, Theorem 
5.1 b follows. 

Theorem 5.2. Let G = G(/~) = R 1 and assume that 

2 2 2 )  ~ o o  

-oo 

and that f~r x dr(x  ) = O. 

(a) Let g E / ) ( R  1) be .such that ~ has compact support. Solutions of the equation (5.2) 
are unique up to addition of linear functions. I /  qp is a solution o/(5.2) such that 
q)(x) = O(x 2) at infinity, then ~" E LI(RI), limx_,~ q)(x)/x and lim . . . .  qg(x)/x exist and 

lim r + T( - x) 28(0 ) 

where a ~ = f ~  x ~ d/,(2). 

(b) I f  ~p is a solution o/the inequality (5.1) such that q~(x)/x is bounded/or 121 >1 1 
and slowly oscillating (ef. e.g. Budin [12] 7.2.7), then limx-,~ q~(x) / x  and limx_,_~r q~(x)/x 
exist and 

lim q~(2) + qD( - x) _ 2S~_~ (qD - q) ~e p) ix) dx (5.5) 

where the right member is finite. 

The following corollary follows directly from Theorem 5.2 b. I t  can also be 
obtained from Theorem 5.1 b. 

Corollary. xlLet) p be as in Theorem 5.2. I f  q) is a solution o/the inequality (5.1)such 
that ~(x)=o(I at infinity, then q~-q~e /~ =0. 

Remark. Assume that  for some positive integer n 

tha t  ~ has compact support and that  g E An (Definition 4.1). Then, with methods 
similar to those we shall use in the proof of Theorem 5.2, we can find the following 
property of a solution r of the equation (5.2). 

There exist linear functions Q+ and Q_ such that  

q)(x)-Q+(x)=o(Ix]  -a+l) as x-->~,  

q~(x)--Q_(x)=o(Ixl -'+1) as x - > - o o .  
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Before proving Theorem 5.2, we state the corresponding theorem on Z i. The 
proofs of these two theorems are closely related, and it is natural  to t reat  them 
simultaneously. 

We introduce the following notation. I f  ~0 is a function on Z 1, we define ~"  by  
the formula 

= - + 

~0' was defined before Theorem 4.3 and obviously 

qy'= (q j)'. 

Theorem 5.3. Let G = G(l~ ) = Z i and assume that 

~ k2p~ < oo 

and that ~/r = 0. 

(a) Let g ELl(Z1). Solutions o / the  equation (5.2) are unique up to addition o/ l inear 
/unctions. I/q~ is a solution of (5.2) such that q~n = O(n~) at infinity,  then q)" fi Li(Z~), 
limn_~.r q)n/n and lim . . . .  ~n/n  exist" and 

lira ~0. + ~0_._ 2~(0) 
I n J  

where u s = y~ k2~k. 

(b) I] q) is a solution of the inequality (5.1) such that q~,/n is bounded/or n:#O, 
then l im,_~  q) , /n  and lira . . . .  q) , /n  exist and 

where the right member is ]inite. 

The following corollary is a direct consequence of Theorem 5.3 b. 

Corollary. Let p be as in Theorem 5.3. I[  qD is a solution o/the inequality (5.1) such 
that q)(n) = o([ n [) at in/inity,  then q) - q~ ~ p = O. 

Remark. The same remark as the one of Theorem 5.2 applies here. Since ~l  is 
compact, ~ always has compact  support.  

In  the proof of Theorem 5.2, we shall need the following lemma. 

I ~ m m a  5.3. Let i ~ be as in Theorem 5.2. We define 

f ; f ~ d l ~ ( t ) d y  (x >0) ,  
N~(x) = 

F f:dt'(t)dy(x<O) �9 
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I / g  is such that 

(a) f_~ [g(x) ld~(x )< ~, 

f; (b) lira g(x) d/~(y) = 0 

If lira g(x dl~(y ) = 0, 
X . - - ~  - -  O O  - -  O O  

(e) lim g'(x) N2(x ) = 0 ,  
ix i-~or 

(d) g' is absolutely continuous and g'" a.e. bounded ]rom above or below, then 

g(o)- g(x)dl,(x)=- f :  g"(x)N (x)dx. (5.6) 

Corollary, (a) Let g satis/y the conditions in Lemma  5. Then 

g - g -)e tt = - g " ~e N v 

(b) I / w e  assume that the right member is de[ined by cont inui ty /or  t = O, 

_~(t) = f ~  1 

Proo /o f  the corollary. (a) Apply (5.6) to gl, where gl(x)= g ( a -  x). 

(b) Apply (5.6) to g(x)= e -~tx. 

Proo/ o/ Lemma 5.3. We use partial integrations. The function N 1 is defined in 
the proof of Theorem 4.2. 

f : g(x) dt~(x) = - f : g(x) dNl(x) = g(O) Nl( + O) + f : g' (x) ~Vl(x) dx = 

= g(O) NI(  + O) - g'(x) dN~(x) = 

N d + O) + g'(O) N~( + O) + I ;  g"(x) N~(x) g(O) dx. 

In  the same way 

f~ g(x)d~(x)= -g(O)Ns(-O)-g'(O)N~(-O)-F~ " x g (x) N~( ) dx. 

Adding these equations, we obtain an expression where the coefficient of g(0)is 
S~-r162 dtt(x ) = 1 and the one of g'(0) is S_~ xd#(x)  = 0. Thus the new equation is (5.6) 
and Lemma 5.3 is proved. 

Proof of Theorem 5.2. I t  follows from the corollary of Lemma 5.1 that  two solu- 
tions differ by a linear function. We shall find the solutions of the equation (5.2) by 
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inverting (1 - f t ( t ) )  on the support  of ~. I t  follows from the corollary of L e m m a  5.3 
tha t  ( f t ( t ) -  1)/(it) z is the Fourier  t ransform of N z E L 1. Since 2~z(t)#0 for all t, we 
can apply  Lemma 4.1 where we choose p in such a way  tha t  p(x) = 1 for all x. Hence 
there exists h E L 1, so t h a t  

(it)~g(t) ~(t) , (5.7) 
(1 -/2(t))  

i.e. h - h ~ e t t = g " .  We pu t  

H(x) = f [  (x - y) h(y) dy 

and assert t ha t  H is a solution of the equat ion (5.2). The assertion follows from the 
corollary of Lemma 5.3, since 

H - H ~ # =  - H " - ~ N  2 

and the Fourier  t ransform of the r ight  member  is ~. Thus the general solution of 
(5.2) can be wri t ten ~(x) = H(x) + A x  + B. 

From this the existence of lim~_,~ q(x) /x  andx_,_~r q(x) /x  follows and we have 

qD(x)+cp(-x)-- f~,~ 2~(0) (5.8) lim h(y) dy = ~(0) = (r 2 

The last equal i ty  is implied by  (5.7). Hence (a) is proved.  
(b) Let  ~0 be as in Theorem 5.1 b. We shall prove tha t  limx_,,r cf(x)//x exists. The 

proof for x--> - ~ is analogous. 
We pu t  ~0-q~ ~e/~ = g. I t  follows from Theorem 5.1 a t ha t  g E L 1. Now take q E H '  

(Definition 2.3) such t h a t  ~(0) = 1 and  

f ;  Ix]q(x)dx< ~. 

Let  a be a positive number .  We define q,~(x)= aq(ax). Then ~01 =~0 ~-qa satisfies 

~01 --  ~1 -)(-/[~ = g -)(- q a / >  0.  

Since the Fourier  t ransform of g ~-qa has compact  support ,  it follows f rom (a) t h a t  
limx_,,r q~l(x)/x exists. 

I t  m a y  occur t ha t  qJ(x)/x is no t  a bounded function of x. Therefore we write 
~o = ~P0 + Y)I where, if b and  (~ are positive numbers ,  

[ q ( x )  for I xl~<b 
~po(X) 

0 for txl>~b+O 

and 
0 for ]xl<~b 

vA(x)= q~(x) for Ix]~>b+(~" 

For  b < I x I < b + (~, we define ~P0 and v,h so tha t  they  are continuous for all x. Hence 
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l im x q%(x - y) q,~(y) dy = l im x [v2~ - y) + ~ ) l ( x  - y)] qa(Y) dy. 

Now lim 1 ~ y~o(x _ y) qa(Y) dy = 0 
z-~or x d _r162 

and  thus,  if we define ~l (x ) /x  = 0 if v21(x ) = 0, 

l ira 1_ f~r vA(x - y) (x - y) q,~(y) dy = 
x-.~ x j _r x - y 

~r - y ) q  . . . .  im ~l(X) = l im - - - -  a(Y) a y -  1 -:: . 
x - ~  x -  y x ~  x 

Since ~(x) /x  is s lowly oscil lating, t he  same is t rue  for u (x )=  ~l(x) /x .  We know t h a t  
u E L ~ a n d  t h a t  l i m x ~  u ~-qa(X) exis ts  for all  pos i t ive  numbers  a, and  thus  we can 
a p p l y  the  Wiener  Taube r i an  theorem in the  same w a y  as in the  proof  of Theorem 
4.4 a. This  implies  the  existence of limx_,~r v ~e/(x) for every  / E L 1. I n  par t i cu la r ,  we 
see t h a t  th is  is t rue  for every  funct ion  [ E L 1 wi th  the  p r o p e r t y  f(t)~= 0 for all  t. 

Hence  a Taube r i an  theorem of P i t t  (cf. e.g. R u d i n  [12] 7.2.7) implies  t h a t  
l imx_~ ~(x) = lim~_.~ rp(x)/x exists.  I t  remains  to  p rove  the fo rmula  (5.5). We  define 
~(x) = ~ ( -  x). I t  follows f rom (5.8) t h a t  

l im ~ I ( X )  + ~01( - -  X) 2 ~ ( 0 )  
X- -~  X ($2 " 

This  impl ies  t h a t  for all  a 

lim(v-~+2~--(qO~))~eqa(x)=O 

and  i t  follows f rom P i t t ' s  t heorem t h a t  

h m  ~ ( x ) + ~ ( - x ) +  = l i m  v ( x ) - ~ ( x ) +  as ] = 0  
x--~ao X z--~:o 

a n d  the  proof  is complete.  
We  shall p rove  theorem 5.3 in the  same w a y  as Theorem 5.2. Before doing this,  

a p r e l im ina ry  discussion is needed.  W e  f i rs t  observe t h a t  the  solut ions of the  equa-  
t ion  (5.3) are  ob ta ined  from the  coro l la ry  of L e m m a  5.1, which is also va l id  on Z 1. 
Secondly,  le t  the  funct ion h be def ined on R 1 and  sa t i s fy  the  condi t ions  of L e m m a  5.2. 
The  theorem on Z 1 corresponding to  Theorem 5.1 on R 1 is t rue,  and  this  follows if 
we use the  s u m m a t i o n  sequence 

I n  the  proof  of Theorem 5.3, we modi fy  the  method ,  used for ob ta in ing  Theorem 
5.2, in the  same w a y  as  the  proof  of Theorem 4.2 was modif ied  in the  demons t r a t i on  
of Theorem 4.3 c, d. The sequence if" has  the  Four i e r  t r ans fo rm ~(t) (1 - e - a )  2 which 
can be d iv ided  b y  (1- /2( t ) ) .  W e  ob ta in  a sequence hELI (Z  1) which satisfies the  
equa t ion  h - h ~e # = g". 

Now we can proceed as in the  proof  of Theorem 5.2, and  Theorem 5.3 follows. 
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6. Properties of  unbounded solutions o f  the inequality ~f - ~f ~- p >~ 0 in/12 and Z 2 
w h e n  no  bounded non-trivial  solutions exist 

In  this paragraph we consider the two-dimensional analogues of Theorems 5.1, 
5.2, and 5.3. The measure p is assumed to have properties such tha t  no bounded 
non-trivial solutions of the inequality exist. Conditions implying this are deduced 
from Theorem 3.1 b. We deal with solutions which are O(loglx I) a t  infinity. The 
existence of solutions satisfying this growth condition can be proved in the following 
way. Take g E H '  (Definition 2.3) and put  

1 f f e ux - 1 
~~ = (2y~)2J J ~ g( ) l -- ~(t) dtl dt2" 

The function ~ satisfies the equation 

~ - ~ - / ~ = g  (6.1) 

and it will follow from Theorem 6.1 tha t  ~ l (x)=  O(log Ixl) a t  infinity. 

The solutions of the equation 
~ - ~ e / ~ = 0  

in R ~ and Z 2 are found in the same way as those in R 1 (Lemma 5.1). 
We introduce certain notations. I ~ t  G be R 2 or Z 2, let G = G(/~) and assume tha t  

f xld/~(x)=fx2d/~(x)=O (6.2) 

and tha t  f a l x  ]3 alp(x)< ~o. (6.3) 

We put  f a x2 dp(x) = a, 

f o x  2 = b, dlu(x) 

f x~x~d~(~) c. 

Since G(p) is two-dimensional, the polynomial of the second degree 

+ 2ct~ t2 = f a  (tx)2dp(x) at21 + bt2~ 

is positive definite. Hence there exists an affine transformation t= Au  such tha t  

at~ + bt 2 + 2 2 ctl t2-->ul § u2. 

Let [A I be the determinant of the matrix A and let A* be the adjoint of .4. We 
choose A so tha t  1.4 1 > 0. 
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T h e o r e m  6.1. Let O = G(#)= R 2 and assume that the conditions (6.2) and (6.3) are 
/ul/illed. 

(a) Let g E Lt(R 2) be such that ~ has compact support. Solutions o/ the equation (6.1) 
are unique up to addition o/ linear /unctions. I /  cp is a solution o / ( 6 . 1 ) s u c h  that 
9~(x) = O(log Ix ]) at in/inity,  then 

lim ~ ( x )  _ ,/(~0 A I (6.4) 

(b) Let 9 be a solution o / the  inequality 

~ o -  ~o ~ - #  ~> O. (6.5) 

I~ ~(x) = O(log lxb ,  then  q~ - ~ ~e p E L~(R~). 
(c) Let q~ be as in (b) and ]urthermore let ~(x) / log  I A*x  I be slowly oscillating (el. e.g. 

Rudin  [12] 7.2.7). Then 

~(x)  S~R,(~ - q~ -)e /~) (x) dx I 
lira A i. I 

Remark  1. The result  in (b) can be generalized. Let  p be as in the  theorem, 
let  the  measure  v sa t is fy  

and  assume t h a t  for some continuous,  non-negat ive  function/r  wi th  compac t  suppor t  

* } (x)  = O(log I x I) 

a t  infinity.  I f  (b) is t rue,  then  v-)e lc - ~ ~+ k ~e p E LI(R2), and it  follows t h a t  the  to ta l  
mass  of the  measure  v - v ~ - / ~  is finite. Confer R e m a r k  1 of Theorem 4.1 and  
R e m a r k  3 of Theorem 5.1. 

Remark 2. 
obta in  in (e) 

I f  the  coordinate  sys tem is chosen such t h a t  a = b = a S and  c = 0, we 

lim ~(x)  ~R,(~--cp~p)(x)dx 
= - 

Remark  3. The methods  used in the  proof  of (b) could also have  been applied in 
the one-dimensional  case. 

Theorem 6.1 is also valid on Z ~. We  can, however,  s implify the  s t a t emen t  in (a) 
and  combine (b) and  (e). 

Theorem 6.2. Let (7 = G(p)= Z ~ and assume that the conditions (6.2) and (6.3) are 
/ulflUed. 

(a) Let g e Ll(g~). Solutions o / the  equation {6.1) are unique up to addition of linear 
/unctions. I]  ~ is a solution o/(6 .1)  such that ~ ( x )=  O(log ix ]) at in/inity,  then 

l im ~(x) _ ~ 0 
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b, c) Let  99 be a solution o / the  inequali ty  (6.5) such that 99(x) = O(log ] x ]) at in f in i ty .  
Then  99 - q9 9e i x E LI(Z 2) and 

99(x) SS~,(qJ-99-)e~)(x)dXlAi. lira = 
I x l ~  log [A 'x ]  zt 

Remark .  Corollaries of Theorems 6.1 and  6.2 analogous to  the corollaries of Theo- 
rems 5.2 and  5.3 are true.  The proof  is easy. 

The  following l emma is needed in the proofs of Theorems 6.1 and  6.2. 

I ~ m m a  6.1. Let  p and A be as in  Theorem 6.1 or Theorem 6.2 and let the number  
b satis/y 0 < b < zt. Then  

~, a e ax - 1 
l im 1 �9 . J jttt<b 1 - -~( t )  dr1 dr2 = - 4zt [ A [. 

t~l-,~ log IA x[ 

P r o o / o / L e m m a  6.1. We approx ima te  ( 1 - ~ ( t ) )  by  �89 + bt~ + 2Ctl t2). I t  is easily 
shown t h a t  

(#(t) - 1) + �89 + bt~ + 2t 1 t2e ) = e(t) lt  12, (6.6) 

where limt_,0 eft) = O, 

t I<b 1 - ft(t) tl<~ 1 - ft(t) all + bt~ + 2ctl t2 dr1 dr2 + 

(e a z -  1)2 . 
+ f f  2 - ~ - I V ; , - -  d r x d t 2 = I a + I 2  �9 

,J ,J itl<b at1 + bt2 + 2et~ t2 

We write the  in tegrand in 11 with  a common  denomina to r  and  use the  es t imate  
(6.6). Assuming t h a t  t~(t) I < ~ for It I.< ~ < 1, we obta in  t h a t  there exis ts  a cons tan t  
C(O) such t h a t  

[1, I<~ C(~) + f f l  [e "~ - 1 I �9 ,,<, I tl 2 I~(t) 12atl at2 

and t h a t  there  exists a cons tan t  C such t h a t  for every  e > 0 

lira ]111 < - -  2e (2.  (0 [ e,rl~l ~os ~ - 1  [ dr d99 --- 
1 ~ 1 - ~  log O * x  ] l i m  ~l--.-~ log ~ -*x  I J o Jo r 

_ 

= lira . - - ,  lldud99<<- 
i~l- ,~loglA x l d o  do u 

< lim (2. (' 'le'U-ll ud99 c. . 
t ~ l - , ~ l o g  A x lJ0  J0 u 

Hence l im I1 = 0 .  
I~1-~,0 log ] A ' x ]  

I n  the second integral  we have  for some c > 0 
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f f l  2(e u x -  1 12 = t2 dr1 d t  z = 
t I< ~ at~ + bt~ + 2ct 1 

: fflaul<~ 2(e'x(~u) -  !ialaUla  = 

lul' 1"1 a la' "Zu' 

I' Iz = lim [AI f-  [-r162 l m  7 -  �9 , _ - 1) dr dq) = 
Exl-.~clog[A x[ i x l - . ~ l o g [ A * x l j _ . j  0 r 

= lim 4 [A[  ~./~ ( C c o s ( r [ A . x [ c o s c f ) -  
Ixl-.~ log [ -A ~ x [ J _~j2 J o -r l dr dq) = 

= lim 4 [A!  ;./2 ;clA*zllcoS~lcosu - l d u d ~ =  

,.,-. logla IJ-., Jo u 
4JA] f ' ~  

Ixliml-~ ~ log I A *x ] j -./~ ( - log c - log I A * x  I - log ] cos ~ 6) dr = 

= -4 lAi 

and Lemma 6.1 is proved.  

Proo/  o/ Theorem 6.1. (a) The equat ion (6.1) is satisfied by  

1 l" I" d t~ 1 
g( ) dr. 

Since the suppor t  of ~ is compact ,  the  integral  is absolutely convergent  and we can 
calculate ~1 - ~1 ~- ff by  an inversion of the order of integration.  We shall show tha t  
limlxl-.~ [r  A * x  I exists and is finite. Hence if ~ is a solution of (6.1) satis- 
fying ~(x) = O(log I x ) a t  infinity,  there  exists a constant  C such t h a t  ~(x) = ~l(x) + C. 
Thus  (6.4) is p roved  if we can show t h a t  

n 0 
lira r g( ) 

Since g e L 1, ~ is continuous.  Assuming t ha t  I ~(t) - ~(0) l < e for [tl < (~, we have 

1 f f t  e i t x - I  ~t ~l(X) = ( - ~ p  - - . , < ~  1 _f i ( t ){g  ( ) - ~(0)} dt + 

~(0)  f f e t~x-  1 _ 1 f /"  e i t s -  1 

= 11 -{- I s + I s- 

There  exist  constants  C 1 and C~ such t ha t  for every  ~ > 0 
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f fl l e "z- 1 I I~ l<c"e  ,l<~ Itl ~ Idt<C~el~ 

Lemma 6.1 implies that  

llm I~ -__ #(o)[a  [ 
ixl~or log [ A*x I = 

We further  have that  I lsl  is a bounded function of x. Hence 

lira ~l(x) 1.4 [d(o) 
I~l-~ log J A*xI 

and the proof of (a) is complete. 

(b) We put  

where h n f l  g ] x [ < R ,  
[ 0 I l >g 

and gn-- g Ixl ~>R. 

Now take qEH" (Definition 2.3) such that  ~(0)= 1 

~-~-~ p=g=hn +gn, 

and 

ff~,1og+ [ [ g~ oo. q(x) < 

Consider the equation 

q~=q~ p =  hs~q .  (6.7) 

I t  follows from (a) that  there exists a solution ~s of (6.7) such that  ~ps(x) = O(log ] x [) 
at infinity and such that  

lim W ( z )  J;~(o).~(o) 

We put ~1 =~o-x-q. Hence ~z-~0B is a solution of the equation 

Since ~1 (x) = 0(log [ x [) at infinity, there exists a constant C such that  for large x 

(w~- w~) (=) ~> log I A*x I {C+ ~ ) [  A [}. 

If g ~ LI(R2), we can by choosing ~ large attain that  

c + ~(~ A I >o. 
7g 
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Hence there exists a number  R 0 such tha t  

lim (q~ - ~R~ ( x )  = c o  ( 6 . 8 )  
Izl-~ 

and the continuous function (~o t -~#Ro) has an absolute minimum which is assumed 
at  some point x 0. Since q l -  v~R, satisfies the inequality (6.5) it follows tha t  

(~1 - ~~ (~) = (~1 - ~ , )  (~0) 

for x E x 0 - S(p), where S(p) is the semigroup geiierated by  the  support  of #. This 
contradicts (6.8), it follows tha t  g E LI(R s) and (b) is proved. 

(c) Applying the same m e t hod  as the one used in the proof of Theorem 5.2 b, we 
put  r - ~ ~- p = g. I t  follows from (b) tha t  g fi LI(R2). Now take q E H '  (Definition 2.3) 
such tha t  ~(0) = 1 and 

log+ < oo. I lq( ) dx 

We define q~(x) = a2q(ax) and ~1 = ~ ~- qa. I t  follows in the same way as in the proof 
of (a) tha t  

- -  n 0  
lim ~l(X) 9( ) 

Keeping the method and the notations from the proof of Theorem 5.2 b we put  
~0=v/o+~or Chooseb such that lA*xl~>2 for {~{~>b andde f ine~ l (x ) / ( l og lA*x l )=0  
if ~01(x ) = 0. We have 

1 
lim . 

,~ ,~  log I A �9 [ ~ 0 "  q~(~) = 0 

and hence 

lim 1 f f a  ~ log 174"~ I . v,l(~ - y )  qa(y) dy = - ~(~ I ~  A I- 

We shall prove t h a t  this implies tha t  

li ? f ~ ( ~ - v _ )  v #(o) m iAl .  ,xl~JJR.loglA (x- )[q•(y)dy . . . .  zt 

I f  this is true, the same argument  as in the proof of Theorem 5.2 b with Wiener's 
and Pi t t ' s  theorems implies tha t  

lim ~ v(x) ~ 0 ~ 0 

Since ~(o)=ffR@--q~-~#)(y)dy, 

this is the result we want.  I t  thus remains for us to prove tha t  
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1 * 

jllm logl~ 4 xlf fl~ .,~by,l(x- y)q.(y)dy= 
= l im f f  ~ l ( X -  

Izl--,:r ,/3 I=-~,l~>b iog [ A*(x ~!/)1 q~(Y)dy. 

I f  we form the difference of the  two integrals and  define v (x)=  ~pl(X)/(loglA*xl), 
we obta in  

I f f ,  x ~, , ( x - "  )ll~ 
:~ [ l og lA*x[  

" ", "[l~ 1}dy =lea . 

I n  I x, lira log I A*(x - Y)I _ 
I~l~r log I A*x[ 1 

uniformly.  Since v is a bounded  function,  we have  liml~l_.~ I x = 0 .  There  exists a 
constant  C and a n u m b e r  R 0 such t h a t  for I x I >~ b, for R > R0, and for y in the do- 
main  of in tegrat ion of the  integral  I~ 

0 ~< log I A*(x - y)] ~< C(loglA*x I+ log [A*y I). 

Hence there  exists a cons tan t  C t such t h a t  for  every  e > 0 

I I, l < Cx { f f ,,,>~a ( l + l~ ] A*y l dy} < e ~ ) q o ( y ) d y +  f f,,,>~ qo(y) 
for R >1 R(e) and  Ixl >~ b. Thus  limlxl_.oo ] I ,  + I z I = 0 and the  proof  of Theorem 6.1 is 
complete.  

Proo/ o/ Theorem 6.2 The proof  is the same as the  proof  of Theorem 6.1, except  
t h a t  it is unecessary  to  introduce a funct ion q E H ' ,  since ~2 is compact .  

7. S n m m a r y  o f  certain results  on  R n and Z" 

We here summar ize  those results on R n and  Z" which deal wi th  the  connect ion 
between the  growth  of a solut ion ~ of the  inequal i ty  (1.1) and  the  magn i tude  of 

S~(~ - ~ ~ )  (x) dx. 

I. Let  G = G(p) be R 1 or Z x and  assume t h a t  

and  ~ x alp(x) :4 = O. 
J (  7 

Then  bounded,  non- t r iv ia l  solutions of the  inequal i ty  (1.1) exist  (Theorem 3.1). Le t  
be a bounded  funct ion.  We  have  the  following proper t ies  of p.  
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(a) I f  ~ is a solution of (1.1), then  ~ - ~ u E L I ( G )  (Theorems 4.1 a and 4.3 a). 
(b) I f  ~0 is a solution of (1.1) and lim~_,~ ~ (x )=  l im~_,_~(x) ,  then ~0-q0 ~-# = 0 

(Theorems 4.1 c and 4.3 b). 
(c) Let  G = R 1. I f  ~ is a solution of (1.1) and ~ is slowly decreasing, t h e n l i m x ~  ~(x) 

and limx_._~ ~0(x) exist (Theorem 4.1 b). 

Let  G = Z  1. If  ~ is a solution of (1.1), then l i m x _ ~ ( x )  and l i m x _ , _ ~ ( x ) e x i s t  
(Theorem 4.3 a, c). 

I L  Le t  G = G(p) be R ~ or Z n where n ~> 2 and assume t h a t  a bounded,  non-trivial  
solution of the inequal i ty  (1.1) exists (el. the sufficient conditions of Theorem 3.1). 
Then the results in I a, b and c are, no t  t rue (Theorem 4.4). 

I I I .  Let  G = G(ju) be R" or Z n. We consider the case when no bounded,  non-tr ivial  
solutions of the  inequal i ty  (1.1) exist. This can only occur if n = 1 or n = 2 and is 
in par t icular  t rue  if 

and  if for every linear funct ion l 

f l(x) =o 
7 

(Theorem 3.1). 

Under  these conditions, we have the following properties of/~ if n = 1. 

(a) I f  ~ is a solution of (1.1) and  ~ ( x ) =  O(I x I) at  infinity, then ~ - ~  ~ep ELi(G) 
(Theorem 5.1 a). 

(b) I f  ~0 is a solution of (1.1) and  if c])(x)=o(Ixl) at  infinity, then  ~ - ~ - / ~ = 0  
(corollaries of Theorems 5.2 and  5.3). 

I f  n =  2, we have  analogous results with I xl replaced by  log x I (Theorems 6.1 
and 6.2). 

8. Propert ies  o f  f u n c t i o n s  sa t i s fy ing  a s equence  o f  c o n v o l u t i o n  inequal i t ies  

I n  this paragraph,  we consider a new problem which connects the results of this 
paper  with the theory  of subharmonie  functions (el. Rad6  I l l ] ) .  The emphasis here 
is on this connection, and  therefore the t r ea tmen t  of the problem is not  complete. 
The au thor  hopes t h a t  he will be able t o  re turn  to this subject. 

I t  is well known t h a t  the  mean  value of a continuous,  superharmonie funct ion 
over e.g. the interior of a circle is smaller than  the value t h a t  the funct ion assumes 
a t  the centre of the circle. This means  t h a t  the funct ion is a solution of a convolu- 
t ion inequal i ty  of our  type,  namely  the  one tha t  occurs if the measure/~ is chosen 
as the uniform distr ibut ion of the uni t  mass over the  circle. Obviously this is t rue 
for a whole class of measures. T h u s  we are led to the following problem. 

Le t  n be a na tura l  number.  We define the measure pn by  sett ing 

~.(o) =~(nO) 
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for every open set O. Let  A~ be the class of all functions ~ tha t  are solutions of 

9 - 7,-x- p,, ~> 0 (8.1) 

for all natural  numbers n in an increasing sequence {n~}~. Wha t  functions belong 
to Aa? I t  is clear tha t  there exist measures p such tha t  Aa is non-empty.  In  the spe- 
cial case when p is a uniform distribution of the unit mass over the perimeter or 
the interior of a circle, i t  is well known tha t  Aa is a class of functions, superhar- 
monic in the whole plane (cf. Rad6 [11] 3.7). 

Theorem 8.1 Let G = G(p) = R ~ and assume that /z is as in Theorem 6.1, that a = b = (~2 

that c = 0 and that/or some positive number a 

Let ~ E Aa be such that ~ (x)=  0([ x [a) at infinity. Then ~ is a superharmonic,/unction. 

Remark. H we cancel the assumptions a - -  b = a s and c = 0, we obtain tha t  there ex- 
ists a superharmonic function s and an affine t ransformation B such tha t  r = a(Bx). 

Proo/ o/ Theorem 8.1 All integrals in the proof are absolutely convergent, and we 
can therefore change the order of integration as we like. Le t  the positive function 
~0 E C ~ have compact  support.  Multiplying (8.1) with ~ and integrating, we o b t a i n  

f m r f a, (~a(u) - ~p(u + y) ) dp(ny) du >10. (8.2) 

I t  follows from (6.2) tha t  

f n  (~(u)-v / (u+y))dp(ny)= fm(v / (u) -y~(u+y)+yl-~l (u)+y2-~2(u))dp(ny  ) (8.3) 

and from Taylor 's  theorem tha t  

yJ(u + Y ) -  (yJ(u) + yl ~ (u) + Y , ~  (u))-~ 

1 . 2 ,, "" y2 ~a2~.(u + Oy)}. = ~ {yl~ll(U + Oy) + 2yly2 ~ ( u  + Oy) + ~ "" (8.4) 

Here ~ = ~ / 0 u ~  0u~ (i, k = 1,2) and 0 is a function of u and y such tha t  0 ~ 0 ~< 1. 
Using (8.3) and (8.4), we obtain from (8.2) after a change of the order of integration 
and the change of variables ny = v tha t  

dp(v) -~n~(V l~ l l (U+ +2vxv2~l~" u+  n ~ - v ~ 2  u+  r 

Multiply by  n 2 and let n-~  oo. Here we will only consider the .term 

/. ,dl~(v) ,V~l, u+-~ ~(u)du. (8.5) 
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The discussions of the two other terms are similar. We need an estimate of 

f t~ ~o'/x (u + O-~) eP(u) du. 

Let  S v be the support  of ~. The domain of integration in (8.6) is contained in 

o -  o 
0~<~1 

Hence there exist constants (C,)~ such tha t  

[(8,6)[ ~ C1 fD [~9(,M)idu~C2f D (1~_ [uia)du~ ~8 (1_~_ ] v a+l). 
�9 ?/ a + l \  

Since  (1-~- ~ ) < ( 1 + [ ~ ) [  a+l) 

and fRI < oo, 

we can use Lebesgue's theorem on dominated convergence twice and obtain 

lim (8.5)= dp(v) V ~ I I ( U ) ~ ( U ) d U  = ~ ( U ) ~ I I ( U ) a  du .  

Hence it  follows tha t  

- fR.cp(u)Av,(u) du >I 0 

(8.6) 

and by  Schwartz ([13] p. 76) ~ is superharmonic a.e. Since ~0 is continuous, we con- 
clude tha t  ~o is superharmonic, and the theorem is proved. 
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