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S o m e  e x a m p l e s  o f  sets  w i t h  l i n e a r  i n d e p e n d e n c e  

B y  INGv.MAR W i g  

A necessary and sufficient condition for the real numbers x 1, x2,. . . ,  xN to be 
linearly independent (rood 2~t) over  the rational numbers is, by  Kronecker 's  
theorem: 

(1) For  every e > 0  and real numbers  01, 03 . . . . .  0~, there exists a real number  
t such tha t  

[e' t~,-e~~ (v= 1,2 . . . . .  N). 

An. equivalent condition is: 
(2) For every sequence a 1 . . . . .  aN of complex numbers 

N N 

sup [1+ ~E a,e'~'l= 1+ ~1 la, I, 
t v = l  

where t represents a real number.  
Ins tead of using all real numbers t, we might  as well use only the positive 

integers n >0 ,  with the same conclusion. 
The two conditions above give rise to generalizations of the notion of linear 

independence in closed sets, 

A. E is a uni[orm Kronecker set if, to every continuous function ] on E,  of 
absolute value 1, and to every ~ >0 ,  there exists a real number  t such tha t  

B. 

sup I/(z) - e'~Xl < 2. 
X E E  

E is a Kronecker set if 

where F0(E ) is the class of functions ~u which are constant  outside E and satisfy 

For a finite set, x 1, z~, . . . ,  xN, condition B is satisfied if and only if x ~ - x  1, 
x 3 - x  I . . . . .  x N - x  1 are l inearly independent (mod 2~). 

Thus a finite set E is a uniform K-set  if and only if E U {0} is a K-set.  In  
the general case the following is true: 

I /  E is a uni form K-set,  then E U {0} is a K-set.  
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I. WlK, Sets with linear independence 

Proof. Suppose that  E is a uniform K-set and choose an arbitrary p EF0(E U {0}) 
and an e >0.  We may suppose, :without loss of generality, that  p has a real 
jump a at  x=O. We have 

sup fEu<o>/d/x = fsu<o>ldp]= l, 

where the supremum is taken over all continuous functions on E, of absolute 
value 1. Thus there exists a continuous / such that  I S~u<0>/dl~l> 1 -  e ,  and 
since E is a uniform K-set t o exists such t h a t  

I / ( x ) - e ' t ' ~ l  < e o n  E .  

The triangle inequality gives: 

] f ~o<o> e'~~ d~(x) l = a + f Er d~ (x) l > l - 2 e. 

Since e is arbitrary, E U {0} is a K-set. 
The question, raised by Rudin in [1, p. 113], about the equivalence of K- 

sets and uniform K:sets i s  answered negatively by Theorem 2. (If E U (0} is a 
K-set, then E is not necessarily a uniform K-set.) 

I t  follows from the Riemann-Lebesgue lemma that  a K-set cannot have po- 
sitive Lebesgue measure. (Choose dl~(x)=ex p ( iNx) .dx/mE.)  How large can a 
K-set be? Theorem 1 gives the answer to that  question. Finally we prove, in 
Theorem 3, that  a uniform K-set cannot be maximal, i .e.  we can always add 
one point and the set remains a uniform K-set. I t  is not known whether the 
same is true for K-sets. 

The idea of the construction in Theorem 1 is the following: Let (p~r be a 
sequence, such that  PN+l/pN--->oo, and I1,I  ~ . . . . .  IN intervals on (0, 2z~). A sign 
+ 1 or - 1  is at tached to the intervals in every possible way, i.e. 2 N ways. If  

Pl is large enough .there are intervals in each /~ where exp(iplx ) is approxima- 
tely equal to the first combination of signs. The union of these intervals = E  1. 
If  Pz/Pl is large enough there are intervals in each /~ fl El, where exp(ip2z ) is 
approximately equal to the second combination of signs. The union of these 
= E 2 c E 1. Proceeding like tha t  we finally get E~N which has the property tha t  
an arbitrary combination of signs on /~ is approximated on E,N by one of the 
exp(ip~x), ~, = 1, 2 . . . . .  2 N. 

The intervals of E2N are now taken as / / s  and we proceed as above. If  we 
make the pv's grow rapidly, it means that  the intervals are partitioned into a 
great many parts. This makes the Hausdorff measure large. At last we obtain 
a Cantor set with large Hausdorff measure such that  every combination of signs 
on intervals is approximated by '  the exp(ip~x)'s. This is roughly speaking the de- 
finition of a uniform K-set. 

In  Theorem 2 we mak6~ the same construction but at  each partition we leave 
one "odd"  interval large enough to guarantee that  the combination of signs is 
I~ot approximated on it. This is enough for the set not  to be a uniform K- 
set. Since the  definition of K-sets involves an integration, the set is a K-set if 
the "odd"  intervals are disjoint and tending to zero. 
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ARKIY FOR MATEMATIK. B d  5 nr 12 

To facilitate the reading we have omit ted some uninteresting details. There- 
fore the proofs contain a few unprecise s tatements  tha t  can easily be proved. 

Theorem 1. Let h(r) be a continuous positive/unction de/ined /or r >10 and such 
that h(0)=0,  h(r) is increasing and lim~_~+o h(r)/r= + co. Then there exists a 
per/ect uni/orm K-set E o[ positive Hausdor/[ measure with respect to the measure 
/unction h. (Mh (E) > 0). 

Proo/. We prove the theorem by  constructing a set with the desired property.  
I f  h(r)/r does not tend to infinity monotonously when r tends to +0 ,  we 

s tudy the measure function hl(r ) defined by  

hl(r ) = r .  in:[ h ' r l ) ,  ( 
f l  ~ V r 1 

which has this property.  Since hl,(r ) <. h(r), it follows immediately from the de- 
finition tha t  MhI(E)>0 implies Mh(E)>0.  We may  thus suppose, without loss 
of generality, tha t  h(r)/r is decreasing. 

We construct the set E as a generalized Cantor set E = N ~ EN. Let  (qN}~ 
be an increasing sequence of positive integers and (~N}~ r a decreasing sequence 
of real numbers  with the proper ty  limN_,~r ON=limN_.:r 1/qN=O. 

Suppose tha t  EN has  been constructed as the union of MN disjoint closed inter- 
vals I ,  of length r We at tach to each of these intervals a "s ign" exp(2~tik/qN), 
where  k can be 0, 1, 2 . . . . .  q N - 1 .  This can be done in qMN different ways. To 
each combination of signs we choose a positive integer p~. N+I, �9 ' -  1, 2 . . . . .  q~N ~- 
This choice is made so tha t  the inequalities (1) and (4) are satisfied. 

2O 
P,~I.N+I > "p,. N+I (V= 1,2 . . . . .  qMx--1). 

~N+I (1) 
2O 

Pl, N=I ~ - - " P . M ~ - - I .  
(~N+I "N 

NM 

We construct EN+I as a finite intersection N qN E~ N+I, where Ev+i, N+I c Ev,'N+I I 
E~+i.N+I is the part of E~. N+I where 

l e,~,+~, N + ~ _  e~,'(~,)  I < ~N+~. (2) 

Here k has the different in teger  values in I i  U E, ,N+I  tha t  are associated with ~. 
EN=.Eo.N+I. Only intervals of equal lengths (~ON+I/P,+LY+I) are accepted. 
Then E,. N+l consists of M,. N+I intervals  of lengths eo,. N+I. The total  length of 
E,+I.N+I is approximate ly  (~N+I times the length of E,.~+I and we obtain the 
following relation: 

~N+I 
M , + I ,  N+I " (D,+I, N+I >M,.N+I (D,, N+I " 2 (3) 

(~N+I Thus h(o~,+I.N+I)'M,+I.N+I-; h(OJ'+I'N+*)'M,.N~I"eO,.N+I" > 1 (4) 
r N+I 2 



X. WIK, Sets with linear independence 

i f  0 ) v + l , N + l  is small enough, because h(r)/r-->oo when r - - > + 0 .  Since 

~N+I  

(D~+I. N+I  ~ Dr+l ,  N+I ~ 

the  inequal i ty  (4) is satisfied if P,+L~+I is chosen large enough.  
We have  now cons t ruc ted  E,+I. N+I s tar t ing from E,. N+I- El. N+I is const ructed  

in a similar w a y  f rom EN. 'W e  get  E~+I= f')E,.N+I and  finally E =  f)~~ as 
a perfect  set of Cantor  type.  

We first prove (I) t h a t  the  Hausdorf f  m e a s u r e  with respect to  h is positive 
and  then  (II)  t h a t  E is a uniform K-set.  

I. To prove t h a t  Mh(E)>0 we show t h a t  the equivalent  condit ion is ful- 
filled: There exists a non-negat ive  set funct ion ~u(e) with ~u(E)= 1 such t h a t  
la(S) <~ h(r) for every  i n t e r v a l s  of length 2r .  

Let  /~. N be continuous,  with its to ta l  mass  1 equal ly dis t r ibuted on the in- 
tervals  of E,. N, and constant  outside E,. N. /~+I.N is equal to /~. N outside E,.N 
and  the  mass of ~uN on an interval  I 0 of E~. N is equal ly dis t r ibuted on the  in- 
tervals  of E,+I.N t h a t  are conta ined in I o. 

Define juN+I = ~u0. N+z = ~u ~ .N+ 1. 

Then  /~-->/~ when N - ~ o o  and  /~ is cont inuous and  distr ibutes its un i ty  mass 
only  on E .  

We now prove t h a t  h(mI)>~/~(I) for an  a rb i t r a ry  interval  I .  For  one v and  
one N, I satisfies 

w,+I.N< m I  < eo~..v. 

From the  ~ a y  /~ is const ructed  it follows immedia te ly  t h a t  

I~(I) < m I 'c ,+l.m 

1 
Cv+l. N M~+I. t~" o)v+l. N 

where 

and  we have f rom (3) 
2 

Cv+l, h r <  Cv. N " ~--. 

(5) 

Since h(r)/r is decreasing and  (4) holds we obta in  

h(mI) >h(o~,.N) > 2 > 2 
m I  eo,.~ (}N'M,.N(,O,.N ~ c' '  N > c'+I'  N" 

Thus  h(mI) ~ m I  . c,+1. N. (6) 

(5) and  (6) give h(mI)>ju(I) and  it follows t h a t  M ~ ( E ) > 0 .  

I I .  We now prove tha t  every  continuous funct ion 9 on E such t h a t  19] = 1, 
can be uniformly approx imated  on E by  characters  e ~nx. 

210 



AllKIV FOIl MATEMATIK. Bd 5 nr 12 

Let  r be an arbi t rary  function of the described kind and choose e >0 .  ~ is 
uniformly continuous on E and thus 

Iq)(x)-q~(x,)l< e if ] x - x , l <  (~. 

Choose an N such tha t  coN<~ and x, as one point in the v:th interval of E~, 
K > N .  Approximate  ~0 with the step function having the values qJ(x,)-~ exp(i0,) 
on the v:th interval  of E~. By the triangle inequality we obtain 

Here the numbers  k m a y  be chosen in  the best possible way and it follows 
]exp (inx) -- exp(i0,)] ~ ~g+i -~ 2 I sin (~z/q~:)l < e for n = one of thep, .  K+~, v = 1,2 . . . . .  qM~ 
and K > K  0. But  K is arbi t rary  > K  0 and thus 

inf I q ) ( x ) - e " ~ l < 2 e  on E. 
n 

Thus E is a uniform K-set  q.e.d. 

Lemma. I f  E is a uniform K-set there exists, to every s >0,  a 'sequence {t~}~, 
t,--->~, such that lexp ( i t ~ x ) - l l <  e on E.  

Proof. Let  ~ be a continuous function of absolute value 1 on E but  not  
equal to any  character on E. Then there exists {s,}ff where s,-->c~ such t h a t  

l e " , x - ~ ( x ) l  < 2 on E.  

Thus by  the triangle inequality: 

I d ' ~ x - d ~ x l < e  and l e ' ( ~ - 8 ~ ' X - l l < e  

and { s , -  st} is a sequence with the desired property.  

Theorem 2. There exists a set E such that E U {0} is a K-set and E not a uni- 
form K-set. 

Proof. We prove this theorem by  a construction similar to tha t  in Theorem 1. 
Condition (4) need not, however, be fulfilled. But  when constructing E,. N+I we 
leave one interval 11 of length 2~/pv-1.  n+l and one interval 12 of length 2X~/p~, N+I 
unchanged. In  E,+I. N+I I~. serves as an 11 and an interval  of length 2xe/p,+i. N+I 
is left unchanged as an 12. The former 11 is, however, divided in accordance 
with the "sign" and so on. These "odd"  intervals may be chosen disjoint from 
all preceeding "odd"  intervals.  This is easily checked since the number  of in- 
tervals increase by  a factor 3, a t  least, a t  each part i t ion because of (1). The 
set E~.N thus consists of one interval o f  length 2~/p~-I.N, one of length 27e/p,.n, 
and all the others of length approximately  (~N/P~. N. 

rl E,. N+I = E~+I and ffl EN = E 
v = l  1 

is a perfect set of Cantor type as in Theorem 1. 
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L WIK, Sets with linear independence 

1. E U {0} is a K-set. 
We choose an arbi t rary  e > 0 and a function /~ of bounded variat ion with 

support  on F U {0}. We normal ize  /~ so tha t  J'EOO> [d~[ = 1, i.e. E e F 0 ( E  0 {0}), 
and /~ has a real jump a at  x = 0 .  p has jumps = a .  a t  the points xn. Choose 

a p such tha t  ~ + ~ [  n [ < e  and put  /ai(x)=,a(x)-~+isn(x) where 

an, X ~ Xn 
s~(x) = O, x <  x~. 

Then If~<oe'"~d~(x)-f~o<o>e'~Xd~l(X)l<e. (7) 

We make a finite division of (0, 2~) in intervals I~ such tha t  

where U / ,  ~ E  and /,, has its endpoints in the complement of E. For  the in- 
terval  tha t  contains x = 0  we take 0, = 0. This is possible, for, by  the Radon -  
Nikodym theorem, d#(x)= exp (ig(x))ld~(x)[ where g(x) is measurable with respect 
t o  IdOl a n d  t h u s  c a n  be  approximated by  a step function. Exp(iO,)ld~(x)l h a s  
constant argument  on every interval in EN for N > N 0. For N > N  1 > N  0 it is 
also true tha t  xn, n=l ,2  ..... p, do not lie in any  "odd"  interval. The conti- 
nuous par t  of /~1 is uniformly continuous and thus I I d/~l < e, where we integrate 
over the two "odd"  intervals of EN and N > N ~ .  

For  N > Max (N1, N2) we obtain 

where .11 and 12 are the two "odd"  intervals of EN. Hence 

IfEeinXd~l(X)l~l~( etnXd[-~l(X)l-e~]~3fie~'(inx+~ 3 JI v 

~ ~ ~ , d/~l (x) . - ~a ~l ] l -- e'(nx+~ ][d~Ul (X) ' - 2 e. 

For n = one of the p~. N+I, ~ = 1, 2 . . . . .  qM~ we find 

~ j~]l-e'("x§ ~N+l + 2]sin ~ l <  

for N > N  a. We thus obtain 

sup. ,~f e"~d/~l (x ) l>~l -e-~-2e=l-4e  
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and by  (7) and since e is a rb i t r a ry  > 0  it follows 

and E is a K-set. 

2., E is not a uni/orm K-set. 

Suppose tha t  E is a uniform K-set.  Then, by  the lemma, there exists t o 
such tha t  

I e'~'x- 1 I< ~ on E. (S) 
For  one v and one N 

p,.N<<,to< P,+l.N. 

On the "odd"  interval of length 2~t/p,.N there are points from E on every in- 
terval  of length 2zr//p,+~. N- But  exp(itox ) assumes all values of absolute value 
i on an interval  of length 2~t/p,.N. L e t  ~ be a point from the "odd"  interval 
such tha t  exp ( i ron)=-1 .  x 0 is a point from E such tha t  Ix , -~l<2~/p~+2,N.  
Then 

le "~176 - iI > I e'~ I I -  I e''~- e'~'=' I > 2  - 2 ' - t ~  2____~ [ 
[Pv+2. NI 

> 2 - - 2  sin ~P,+I.N > 2 - - 2  sin go--g~ 
P,+2. N 20 ' 

which is a contradiction to (8) if e is sufficiently small. 
This proves par t  2 of the theorem. 

T h e o r e m  3. There exists no maximal uni]orm K-set. 

Proo[. Let  E be a uniform K-set.  Then, by  the lemma, there exists, to an 
arbi t rary  e > 0 ,  a sequence {t~}~ such tha t  lexp ( i t ~ x ) - l l < e ,  v = 0 , 1  . . . . .  Let  
((~,}~ be a sequence of positiye numbers tending to zero. We m a y  take the 
increasing sequence (t,}~. so thin tha t  

~,/t,>2~/t,+l,  v = o ,  1, 2 . . . . .  (9) 

Then there exists a point ~ E C(E) such tha t  {exp (it,~)}~ is everywhere dense on the 
unit  circle. 

We construct this point as a N ~ E , ,  where E,+lcE , .  The complement of E 
contains an interval I and m I > 2 ~/tN for some h r. 

E0=  interval in C(E) of length 2~/tN, 

E l = o n e  interval where le~tN+l x -  11< 41- 

E~ = one interval where l exp (itN+,x) - exp (2~ir,) I < 8,, v = 2, 3 . . . . .  where r, runs 
through the rational numbers between 0 and 1. 

(9) secures tha t  this can be done. 
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L ~ ,  Sets  w i th  l inear  independence  

Let  ] be an  a rb i t ra ry  cont inuous function,  I/1=1, on E U {e} and  / ( ~ ) = e x p  
(i~%). Since E is a uniform K-se t  there exists, to  an  a rb i t ra ry  e > 0, a real num-  
ber s o such t h a t  I / ( x ) - e x p  ( /sox)l<e on E. Bu t  exp ( i so~)=ex  p (i~ox), where q~l 
m a y  be different f rom ~o o. The wa y  we const ructed  ~ gives us a number  t~. such 
t h a t  l exp (it ,  o ~) - exp (i(~0 o -  q01))l < e and  l exp (its. x) - 11 < e on E.  Hence 

I/(~) - e x p  (r + t,.) z )  l < I/(~) - e"~ 1 + I e ' ' '  - e ' '  "exp  (~t,.~) I < 2 

on E.  I/(~) - e x p  (i(8o + t, .)~) I = l e'~' - e '~ ' .  e x p  (its. ~)1 < e. 

Thus s o + t~o is a t such t h a t  ]exp ( i tx)  - ](x)  l < 2 e on E tJ {~}. Since ~ is a rb i t ra ry  
E U {~} is a uni form K-set,  which proves Theorem 3. 
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